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Linear-Gaussian Causal Models

▸ Assume that
xi = fi(pai ,ui) = ∑

k

αikxk + ui

where U ∼ N(0,Σ) st Σij = 0 if Xi ↔ Xj is not in the causal structure G ,
i.e. Ui ⊥pUj ∣∅.

▸ Note that V ∼ N(0, (I − α)−1Σ(I − α)−1).

▸ Assume without loss of generality that the variables are standardized to
have zero mean and unit variance (it simplifies some expressions such as
expectations and path analysis).

▸ The normality assumption may be explained via the central limit theorem
by letting Ui represent the sum of many iid unobserved microprocesses.

▸ The linearity assumption promotes interpretability by allowing to annotate
G with the path coefficients αik .
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Linear-Gaussian Causal Models
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Linear-Gaussian Causal Models

▸ By modifying the appropriate equations,

CDE(Z ,Y ) = E[Y ∣do(z+1,w)]−E[Y ∣do(z ,w)] = d(z+1)+ew−dz−ew = d .

▸ Note that NDE(Z ,Y ) = CDE(Z ,Y ) = DE(Z ,Y ) because the value at
which W is fixed is irrelevant.

▸ Note also that
∂

∂z
E[Y ∣do(z ,w)] = d .
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Linear-Gaussian Causal Models

▸ TE(Z ,Y ) = sum of the products of the path coefficients of the edges on
every directed path from Z to Y . In the example

we have that

Y = dZ+eW +UY = dZ+e(bX +cZ+UW )+UY = (d+ec)Z+ebX +UY +eUW

and, thus, an increase of one unit in Z will increase Y by d + ec units.

▸ Note that DE(z + 1, z ,Y ) = −DE(z , z + 1,Y ) and, thus, TE(z + 1, z ,Y ) =

IE(z + 1, z ,Y ) −DE(z , z + 1,Y ) = IE(z + 1, z ,Y ) +DE(z + 1, z ,Y ).

▸ Then, IE(Z ,Y ) = sum of the products of the path coefficients of the
edges on every directed path from Z to Y with the exception of Z → Y .

▸ Note that TE({Z1, . . . ,Zm},{Y1, . . . ,Yn}) = (∑
m
i=1TE(Zi ,Yj))j=1,...,n.

Hence, we assume singletons hereinafter.
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Multiple Linear Regression

▸ Linear regression: Predict E[Y ∣x] where Y is the response or dependent
variable and x is a value of the explanatory or independent variable X .
Assume that Y ∣x ∼ N(µ(x), σ2

) and E[Y ∣x] = µ(x) = β0 + βX x . It is
known that

βX = rYX =
∂

∂x
E[Y ∣x] =

σXY

σ2
X

.

▸ Multiple linear regression: Predict E[Y ∣x1, . . . , xn] under the assumption
that Y ∣x1, . . . , xn ∼ N(µ(x1, . . . , xn), σ

2
) and

E[Y ∣x1, . . . , xn] = µ(x1, . . . , xn) = β0 + β1x1 +⋯ + βnxn. It is known that

βi = rYXi ⋅X1,...,Xi−1,Xi+1,...Xn =
∂

∂xi
E[Y ∣x1, . . . , xn] =

σYXi ⋅X1,...,Xi−1,Xi+1,...Xn

σ2
Xi ⋅X1,...,Xi−1,Xi+1,...Xn

.

▸ Note that Y ∣x1, . . . , xn ∼ N(µ(x1, . . . , xn), σ
2
) is equivalent to

y = β0 + β1x1 +⋯ + βnxn + ε where ε ∼ N(0, σ2
).
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Multiple Linear Regression

▸ Consider some samples {(xi1, . . . , xin, yi)}
N
i=1. The maximum likelihood

estimates of the regression coefficients can be obtained by maximizing
the function

p({yi}∣{(xi1, . . . , xin)}) =∏
i

N(yi ∣µi , σ) =∏
i

1

(2πσ2)1/2
e
− 1

2σ2 (yi−µi )2

where µi = µ(xi1, . . . , xin) = β0 + β1xi1 +⋯ + βnxin.

▸ This is equivalent to minimizing the function

− lnp({yi}∣{(xi1, . . . , xin)}) = ∑
i

1

2σ2
(yi − µi)

2
+
N

2
lnσ2

+
N

2
ln 2π

which implies that ML estimates coincide with the least squares estimates
obtained by minimizing the function

∑
i

(yi − µi)
2.

▸ The LS minimization problem can be solved analytically as

β̂ββ = (xxxTxxx)−1xxxTyyy

where β̂ββ = (β̂0, . . . , β̂n)
T , xxx = (1, xi1, . . . , xin)

N
i=1, and yyy = (y1, . . . , yN)

T .
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Single-Door Criterion

▸ The path coefficient α associated with the edge X → Y (i.e., DE(X ,Y ))
is identifiable if there exists a set of variables Z st
▸ Z contains no descendants of Y , and
▸ Z blocks every path between X and Y with the exception of X → Y .

Moreover, α coincides with the regression coefficient rYX ⋅Z (which is
obtained by regressing Y on X and Z).

▸ Proof: Consider the regression equation y = ax + bz + ε, and let Z = 0.
Then, y = ax + ε. Consider the structural equation
y = αx + γ(paY ∖ x) + uY , and let paY ∖ x = 0. Then, y = αx + uY . Since
X → Y is the only path between X and Y that is not blocked by Z , the
regression and the structural equations coincide and, thus, α = a = rYX ⋅Z .

▸ In a causal structure with no latent variables, every path coefficient is
identifiable by taking Z = PaY ∖X .
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Back-Door Criterion

▸ The path coefficient α cannot be identified by the single-door criterion in

but TE(X ,Y ) is identifiable.
▸ TE(X ,Y ) is identifiable if there exists a set of variables Z st

▸ Z contains no descendants of X , and
▸ Z blocks every path between X and Y that contains an arrow into X .

Moreover, TE(X ,Y ) coincides with the regression coefficient rYX ⋅Z .

▸ Proof: Consider the regression equation y = ax + bz + ε, and let Z = 0.
Then, y = ax + ε. Since Z blocks all the back-door paths from X to Y , the
only unblocked paths are the directed ones and, thus, the regression and
the total effect equations coincide and, thus, TE(X ,Y ) = a = rYX ⋅Z .
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Back-Door Criterion

▸ The back-door criterion does not subsume the single-door criterion:
TE(Z ,Y ) cannot be identified by the back-door criterion in

but TE(Z ,Y ) = αβ and, thus, it can be identified by two applications of
the single-door criterion, since α = rYX ⋅Z and β = rXZ .

▸ The single- and back-door criteria are special cases of a more general
result: The partial effect of X on Y due to some directed paths from X
to Y can be identified as rYX ⋅Z if Z blocks all the other paths between X
and Y .
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Instrumental Variables

▸ The path coefficient α cannot be identified by the methods above in

but β = rXZ and TE(Z ,Y ) = αβ = rYZ and, thus, α = rYZ /rXZ . The
variable Z is called instrumental variable. Recall that this effect was
unidentifiable in the nonparametric model.

▸ Intuitively, Z is an instrumental variable if Z causes Y and all correlation
between Z and Y is mediated by X .
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Instrumental Variables

▸ A variable Z is a conditional instrumental variable given a set W for the
path coefficient α associated with the edge X → Y if
▸ X is a descendant of Z ,
▸ W contains no descendants of Y , and
▸ W blocks every path between Z and Y that does not contain X → Y .

Then, α = rYZ ⋅W /rXZ ⋅W .

▸ Recall that α is not identifiable for non-parametric causal models.
However, it is identifiable for linear-Gaussian causal models. So,
do-calculus is sound but not complete for linear-Gaussian causal models.
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Path Analysis
▸ The covariance (= correlation or regression coefficient in a standardized

model) between two variables X and Y can be expressed as the sum of
the products of the path coefficients and error covariances of the edges
on every unblocked path between X and Y .

▸ This results in a system of equations that may allow to compute the path
coefficients.

▸ Pearl’s work owes much to path analysis (Wright, 1921), e.g. the model
identifiability result in the last slide builds on Wright’s equations.
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Selection Bias

▸ In standardized models, rYX ⋅Z =
rYX−rYZ rZX

1−r2
ZX

.

▸ Path analysis in Figure 2: rYX ⋅W =
αβ−βγ2α
1−α2γ2

≠ αβ = TE(X ,Y ).

▸ Path analysis in Figure 4: rYX ⋅Z = α−αδ2
1−α2δ2

≠ α = TE(X ,Y ).

▸ Selection bias: Samples are preferentially selected depending on the values
of some variables in the model (e.g., Z = z in Figure 4, and W = w in
Figure 2 which is a proxy of Z = z).

▸ It is like new paths get unblocked through the latent variables (e.g.,
X → Z ← UZ → Z → Y in Figure 2, and X → Y ← UY → Y in Figure 4,
a.k.a. virtual colliders).

▸ Note that the back-door criterion warns against these adjustments.
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Model Identifiability

▸ If a causal model has no bow (i.e., no subgraph of the form A→ B ↔ A),
then the model is identifiable with probability almost 1. In other words,
the matrices α and Σ can be determined uniquely from the population
covariance matrix (I − α)−1Σ(I − α)−1.

▸ This criterion subsumes the single-door criterion for model identification.

▸ Consider the bow causal model

x = uX

y = αx + uY

with UX /⊥UY ∣∅. Then, path analysis implies that σXY = α + σUXUY
, which

implies that the model (i.e., α) is unidentifiable.

▸ Model unidentifiability does not necessarily imply unidentifiability of every
causal effect, as shown in previous examples. Therefore, the single-door
criterion may still be useful when the model is not identifiable.
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