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Linear-Gaussian Causal Models

> Assume that
Xi = fi(Paf, Ui) = Eaikxk + uj
k

where U ~ N(0,X) st £; =0 if X; < X is not in the causal structure G,
i.e. U,'J_pUj‘Q.

» Note that V ~ N (0, (I —a)'=(/ -a)™).

> Assume without loss of generality that the variables are standardized to

have zero mean and unit variance (it simplifies some expressions such as
expectations and path analysis).

» The normality assumption may be explained via the central limit theorem
by letting U; represent the sum of many iid unobserved microprocesses.

> The linearity assumption promotes interpretability by allowing to annotate
G with the path coefficients a.

X=Uy

Z=aX+ Uy

W =bX +cZ+ Uy
Y=dZ +eW+ Uy




Linear-Gaussian Causal Models
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Figure 1. (a) Model with latent variables (Q; and Q) shown
explicitly (b) Same model with latent variables summarized
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Linear-Gaussian Causal Models

X=Uy

Z=aX+ Uy
W=bX+cZ+ Uy
Y=dZ +eW+ Uy

> By modifying the appropriate equations,
CDE(Z,Y) = E[Y|do(z+1,w)]-E[Y|do(z,w)] = d(z+1)+ew—dz—ew = d.

> Note that NDE(Z,Y) = CDE(Z,Y) =DE(Z,Y) because the value at
which W is fixed is irrelevant.
> Note also that

%E[Hdo(z, w)] =d.



Linear-Gaussian Causal Models

» TE(Z,Y) = sum of the products of the path coefficients of the edges on
every directed path from Z to Y. In the example

X = Uy
Z=aX+U;
W=5bX+cZ+Uy
Y=dZ+eW+ Uy

we have that
Y=dZ+eW+Uy = dZ+e(bX+cZ+Uw)+Uy = (d+ec)Z+ebX+ Uy +elUw

and, thus, an increase of one unit in Z will increase Y by d + ec units.

> Note that DE(z+1,z,Y)=-DE(z,z+1,Y) and, thus, TE(z+1,2,Y) =
IE(z+1,2,Y)-DE(z,z+1,Y)=1E(z+1,z,Y)+ DE(z+1,z,Y).

> Then, IE(Z,Y) = sum of the products of the path coefficients of the
edges on every directed path from Z to Y with the exception of Z — Y.

> Note that TE({Z1,...,Zm},{Y1,..., Ya}) = (X721 TE(Z;, Y}))j=1,...n-
Hence, we assume singletons hereinafter.



Multiple Linear Regression

» Linear regression: Predict E[Y|x] where Y is the response or dependent
variable and x is a value of the explanatory or independent variable X.
Assume that Y|x ~ N'(u(x),0°) and E[Y|x] = u(x) = Bo + Bxx. ltis

known that 5
oxy
= =—E[Y|x] = 5~
Bx = ryx I [Ylx] 2
> Multiple linear regression: Predict E[Y|x1,...,xn] under the assumption

that Y|xi,...,xo ~ N(u(xt,...,xn),0°) and
E[Y|x1,. .y %n] = (X1, .., %n) = Bo + Bix1 + -+ + Bnxn. It is known that
TYX;- X1, Xim1,Xix15---Xn

1o}
Bi = 1YX; Xy, X1, Xig1y0 Xn = I E[Y|xi,...,xa] = p
! Xi- X153 Xim15Xig 150 Xn

» Note that Y|xi,...,x, ~ N (u(x1,...,xn),02) is equivalent to
y = Bo+ Bixt + -+ + Baxn + € where € ~ N'(0,02).



Multiple Linear Regression

» Consider some samples {(xi1, ..., X, i) }~;. The maximum likelihood
estimates of the regression coefficients can be obtained by maximizing
the function

PGt x))) = [TV Gl ) = TT e 70

where Mi = /J,(X,'l, e ,X,‘n) = ﬁo + ﬂlx,-l + .-+ ﬁnX,',,.

> This is equivalent to minimizing the function
1 N N
—Inp({yiH{(xi1s-. ., Xin)}) = Z ﬁ(}’i i)+ 5 Ino? + > In2mw

which implies that ML estimates coincide with the least squares estimates
obtained by minimizing the function

2
2 (yi— i)™
» The LS minimization problem can be solved analytically as
B=(x"x)"x"y

where B = (Bo, ... ,/3’,,)T, x=(1,%1,. .., %)y, and y = (y1,...,yn) "



Single-Door Criterion

» The path coefficient a associated with the edge X - Y (i.e., DE(X,Y))
is identifiable if there exists a set of variables Z st

> Z contains no descendants of Y, and

> Z blocks every path between X and Y with the exception of X — Y.
Moreover, a coincides with the regression coefficient ryx.z (which is
obtained by regressing Y on X and Z).

> Proof: Consider the regression equation y = ax + bz + ¢, and let Z = 0.
Then, y = ax + €. Consider the structural equation
y =ax+vy(pay \ x) + uy, and let pay \ x =0. Then, y = ax + uy. Since
X — Y is the only path between X and Y that is not blocked by Z, the
regression and the structural equations coincide and, thus, a = a = ryx.z.

> In a causal structure with no latent variables, every path coefficient is
identifiable by taking Z = Pay \ X.



Back-Door Criterion

> The path coefficient « cannot be identified by the single-door criterion in

A,

but TE(X,Y) is identifiable.
» TE(X,Y) is identifiable if there exists a set of variables Z st
» Z contains no descendants of X, and
> Z blocks every path between X and Y that contains an arrow into X.
Moreover, TE(X,Y') coincides with the regression coefficient ryx.z.

> Proof: Consider the regression equation y = ax + bz + ¢, and let Z = 0.
Then, y = ax + €. Since Z blocks all the back-door paths from X to Y, the
only unblocked paths are the directed ones and, thus, the regression and
the total effect equations coincide and, thus, TE(X,Y) = a = ryx.z.



Back-Door Criterion

> The back-door criterion does not subsume the single-door criterion:
TE(Z,Y) cannot be identified by the back-door criterion in

but TE(Z,Y) = afB and, thus, it can be identified by two applications of
the single-door criterion, since a = ryx.z and 8 = rxz.

> The single- and back-door criteria are special cases of a more general
result: The partial effect of X on Y due to some directed paths from X
to Y can be identified as ryx.z if Z blocks all the other paths between X
and Y.



Instrumental Variables

> The path coefficient « cannot be identified by the methods above in

but 8=rxz and TE(Z,Y) = aB = ryz and, thus, a = ryz/rxz. The
variable Z is called instrumental variable. Recall that this effect was
unidentifiable in the nonparametric model.

> Intuitively, Z is an instrumental variable if Z causes Y and all correlation
between Z and Y is mediated by X.



Instrumental Variables

> A variable Z is a conditional instrumental variable given a set W for the
path coefficient o associated with the edge X — Y if

> X is a descendant of Z,
> W contains no descendants of Y, and
> W blocks every path between Z and Y that does not contain X — Y.

Then, o = ryz.W/rxz.W.
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Is Z an instrument given W ? (a) Yes. (b) No. (c) Yes.

> Recall that « is not identifiable for non-parametric causal models.
However, it is identifiable for linear-Gaussian causal models. So,
do-calculus is sound but not complete for linear-Gaussian causal models.



Path Analysis

> The covariance (= correlation or regression coefficient in a standardized
model) between two variables X and Y can be expressed as the sum of
the products of the path coefficients and error covariances of the edges
on every unblocked path between X and Y.

> This results in a system of equations that may allow to compute the path
coefficients.

i
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7/5

7

T, 14 —Relations hetseen wetbully depression
B, wisrd welocity (1), radiation (), and teme
perature (7 a3 sssumed for direct apalysis,
Six equations can be formed, expressing the six known correlations in
terms of the unknown path coeflicients. A seventh equation represents
the complete determination of B by W, R, T, and 0.

(1} w028 w4 e+ bs)+ub.
(2) rme= B =wb+ b5+ u.

3) rm= s9=1lc+bs) I+ us.
0z=c+bs.
Fur= 47=¢

(7) F 4w+ 4+ 2wt(c + bs) + 210ub+ 2uts =1,

> Pearl's work owes much to path analysis (Wright, 1921), e.g. the model
identifiability result in the last slide builds on Wright's equations.



Selection Bias

Figure 2 Path diagram depicting an intermediate variable (2) and its proxy (W). Conditioning on W would distort the
regression of Y on X.
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Figure 4  Conditioning on Z, a descendant of Y, biases the regression of Y on X.

> In standardized models, ryx.z = “X-"F72X
X

> Path analysis in Figure 2: ryx.w = % taf=TE(X,Y).

> Path analysis in Figure 4: ryx.z = % ta=TE(X,Y).

> Selection bias: Samples are preferentially selected depending on the values
of some variables in the model (e.g., Z =z in Figure 4, and W = w in
Figure 2 which is a proxy of Z = z).

> It is like new paths get unblocked through the latent variables (e.g.,
X—>Z<«<Uz—-Z- Y inFigure 2, and X - Y « Uy - Y in Figure 4,
a.k.a. virtual colliders).

> Note that the back-door criterion warns against these adjustments.



Model Identifiability

> If a causal model has no bow (i.e., no subgraph of the form A - B < A),
then the model is identifiable with probability almost 1. In other words,
the matrices o and X can be determined uniquely from the population
covariance matrix (I —a) "X (/- o)™

> This criterion subsumes the single-door criterion for model identification.

» Consider the bow causal model

X =Ux

y =ax + uy
with Ux L Uy|@. Then, path analysis implies that oxy = a + oy, v, , which
implies that the model (i.e., &) is unidentifiable.

> Model unidentifiability does not necessarily imply unidentifiability of every
causal effect, as shown in previous examples. Therefore, the single-door
criterion may still be useful when the model is not identifiable.



Summary

» Linear-Gaussian Causal Models
> Multiple Linear Regression

> Single-Door Criterion

» Back-Door Criterion

> Instrumental Variables

> Path Analysis

> Selection Bias

> Model Identifiability

Thank you



