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Representations of Interventions
▸ Intervening on a variable Xi ∈ V aims to modify the natural causal

mechanism of Xi . For simplicity, we only consider interventions that set Xi

to a fixed value x ′i , and denote it as do(x ′i ) or x̂ ′i .
▸ Assume that the causal model at hand consists of a DAG G over V and a

set of structural equations xi = fi(pai ,ui) for all Xi ∈ V together with a set
of distributions p(ui) or, alternatively, a set of conditional distributions
p(xi ∣pai) for all Xi ∈ V .

▸ The result of an intervention can be represented by modifying the given
causal model:
▸ Delete the equation corresponding to Xi .▸ Replace xi with x ′i in the remaining equations.
▸ Delete from G the directed edges into Xi .

▸ Or, alternatively, by conditioning in an augmented causal model of the
given one:
▸ Augment G with the edge Fi → Xi .▸ Let Pa′i = Pa ∪ Fi . Redefine

p(xi ∣pa′i ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p(xi ∣pai) if Fi = idle
1 if Fi = do(x ′i ) and xi = x ′i
0 otherwise.

▸ Let p′ be the distribution corresponding to the augmented G with an
arbitrary prior on Fi . Condition on Fi = do(x ′i ), i.e.

p(v ∣do(x ′i )) = p′(v ∣Fi = do(x ′i )).
▸ The above can be extended to multiple interventions.
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Truncated Factorization
▸ Either representation of an intervention results in a truncated factorization

p(v ∣do(x ′i )) = {
∏j≠i p(xj ∣paj) if xi = x ′i
0 otherwise.

▸ Note that

∏
j≠i

p(xj ∣paj) = p(v)/p(x ′i ∣pai) = p(v)p(pai)/p(x
′

i ,pai)

= p(v ∖ {x ′i } ∖ pai ∣x
′

i ,pai)p(pai).

▸ Adjustment for direct causes: Let Xi ,Y ∈ V st Y ∉ Pai . Then,

p(y ∣do(x ′i )) =∑
pai

p(y ∣x ′i ,pai)p(pai).

▸ The goal of the above is to eliminate spurious (i.e., non-causal)
correlations between cause and effect.

▸ Note that if Y is not a descendant of Xi , then Y ⊥GXi ∣Pai and thus, as
expected,

p(y ∣do(x ′i )) =∑
pai

p(y ∣x ′i ,pai)p(pai) =∑
pai

p(y ∣pai)p(pai) = p(y).

▸ Things get more complicated when some variables in Pai are unobserved,
since it prevents estimation of p(y ∣x ′i ,pai) and p(pai). This requires
dropping the assumption that the error terms Ui are independent.
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Truncated Factorization

Drug Recovery

Gender Drug=1 Drug=0
Gender=1 81/87 recovered 234/270 recovered
Gender=0 192/263 recovered 55/80 recovered

▸ Average causal effect:

E[R ∣do(D = 1)]−E[R ∣do(D = 0)] = p(R = 1∣do(D = 1))−p(R = 1∣do(D = 0))

which can also be interpreted as the fraction of the population that
recovers if everyone takes the drug compared to when no one takes the
drug. Moreover, adjusting for the direct causes gives

p(R = 1∣do(D = 1)) = p(R = 1∣D = 1,G = 1)p(G = 1) + p(R = 1∣D = 1,G = 0)p(G = 0)

= (81/87)(87 + 270)/700 + (192/263)(263 + 80)/700 = 0.832

p(R = 1∣do(D = 0)) = p(R = 1∣D = 0,G = 1)p(G = 1) + p(R = 1∣D = 0,G = 0)p(G = 0)

= (234/270)(87 + 270)/700 + (55/80)(263 + 80)/700 = 0.7818
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Truncated Factorization
▸ Plan evaluation is relevant in fields such as health management, economic

policy making or robot motion planning. Say Zk represents the process
state at time tk (e.g., temperature), Xk stands for some control variables
(e.g., chemicals), and Y is the process outcome (e.g., product quality).

▸ Factorization:
p(y , z1, . . . , zn, x1, . . . , xn)

= p(y ∣z1, . . . , zn, x1, . . . , xn)∏
k

p(xk ∣xk−1, zk , zk−1)∏
k

p(zk ∣zk−1, xk−1).

▸ Plan evaluation, i.e. the plan is a set of actions do(x ′k):

p∗(y) = p(y ∣do(x ′1), . . . ,do(x
′

n))

= ∑
z1,...,zn

p(y ∣z1, . . . , zn, x
′

1, . . . , x
′

n)∏
k

p(zk ∣zk−1, x
′

k−1).
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Causal Effect Identifiability

▸ Given a causal structure which may include unobserved variables, the
causal effect p(y ∣do(x ′i )) is identifiable if it can be computed uniquely
from any positive probability distribution over the observed variables.

▸ Positivity ensures that the effect is well defined.

▸ Therefore, p(y ∣do(x ′i )) is identifiable if Y , Xi , and Pai are observed, i.e.
measured. The effect is computed by adjusting for the parents.

▸ p(y ∣do(x ′i )) is not identifiable in the bow graph:

X Y ≡ X Y

U

▸ Proof: We construct two causal models M1 and M2 st p1(x , y) = p2(x , y)
but p1(y ∣do(x

′
)) ≠ p2(y ∣do(x

′
)). Specifically, let X , Y and U be binary,

and take

M1 M2

u = Uniform(0,1) u = Uniform(0,1)
x = u x = u
y = XOR(x ,u) y = 0.
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Back-Door Criterion

▸ A set of variables Z satisfies the back-door criterion wrt an ordered pair
of sets of variables (X ,Y ) in a causal structure G which may include
unobserved variables if
▸ Z contains no descendants of X , and
▸ Z blocks every path between X and Y that contains an arrow into X .

▸ If Z satisfies the back-door criterion wrt (X ,Y ), then

p(y ∣do(x)) =∑
z

p(y ∣x , z)p(z).

▸ The role of Z is to block only the paths entering X through the back-door.
Several such sets Z may exist but some may be preferred, e.g. due to their
size. Note that Z = PaX always satisfies the criterion (what we called
adjustment for the direct causes) but it may include latent variables.
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Back-Door Criterion

▸ Proof: Augment G with the edges Fi → Xi for all Xi ∈ X . Call the result
G ′. Note that Y ⊥G ′FX ∣X ∪ Z and, thus, the intervention FX = do(x)
cannot be distinguished from the observation X = x , i.e.

p(y ∣z , x ,FX = do(x)) = p(y ∣z , x ,FX = idle) = p(y ∣z , x).

Moreover, note that Z ⊥G ′FX ∣∅ since Z are non-descendants of FX .

Therefore,

p(y ∣do(x)) = p′(y ∣Fx) =∑
z

p′(y ∣z ,Fx)p
′

(z ∣Fx) =∑
z

p′(y ∣z , x ,Fx)p
′

(z ∣Fx)

=∑
z

p′(y ∣z , x)p′(z)

where adding x in the third equality is licensed by the fact that
Fx (≡ FX = do(x)) implies X = x .
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Front-Door Criterion

▸ A set of variables Z satisfies the front-door criterion wrt an ordered pair
of sets of variables (X ,Y ) in a causal structure G which may include
unobserved variables if
▸ Z blocks all the directed paths from X to Y ,
▸ there is no unblocked back-door path from X to Z , and
▸ all the back-door paths from Z to Y are blocked by X .

▸ Note that Figure 3.5 is Figure 3.4 with U = {X1, . . . ,X5}. Note that the
back-door criterion does not help here.

▸ If Z satisfies the front-door criterion wrt (X ,Y ), then

p(y ∣do(x)) =∑
z

p(z ∣x)∑
x′

p(y ∣x ′, z)p(x ′).
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Front-Door Criterion

▸ Proof: Since ∅ satisfies the back-door criterion wrt (X ,Z), then
p(z ∣do(x)) = p(z ∣x). Since X satisfies the back-door criterion wrt (Z ,Y ),
then

p(y ∣do(z)) =∑
x′

p(y ∣x ′, z)p(x ′)

and Y ⊥G ′FZ ∣X ∪ Z .

Finally, combine the previous results via

p(y ∣do(x)) =∑
z

p(y ∣do(x), z)p(z ∣do(x)) =∑
z

p(y ∣do(x),do(z))p(z ∣do(x))

=∑
z

p(y ∣do(z))p(z ∣do(x))

where the last equality follows from the fact that Z blocks all the directed
paths from X to Y .
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Front-Door Criterion

▸ The effect of smoking on lung cancer: Non-identifiable vs identifiable.
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do-Calculus

▸ Three rules whose repeated application together with standard probability
manipulations, aims to transform a causal effect into an expression that
only involves observational quantities:
▸ Rule 1 (insertion/deletion of observations)

p(y ∣do(x),zzz,w) = p(y ∣do(x),w) if Y ⊥G ′Z ∣X ∪W ∣∣X
where the antecedent is satisfied if Y ⊥Z ∣X ∪W holds in the graph resulting
from intervening on X in G ′, i.e. delete all the (bi)directed edges into X
from the original causal structure augmented with the edges FV → V .

▸ Rule 2 (intervention/observation exchange)

p(y ∣do(x),do(z)do(z)do(z),w) = p(y ∣do(x),zzz,w) if Y ⊥G ′FZ ∣X ∪W ∪ Z ∣∣X .

▸ Rule 3 (insertion/deletion of interventions)

p(y ∣do(x),do(z)do(z)do(z),w) = p(y ∣do(x),w) if Y ⊥G ′FZ ∣X ∪W ∣∣X .

▸ The rules are sound and complete.

▸ There is a sound and complete algorithm to apply the rules.
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do-Calculus

▸ Proof:
▸ In rule 2, simply note that Y ⊥G ′FZ ∣X ∪W ∪ Z ∣∣X implies that the

intervention FZ = do(z) cannot be distinguished from the observation Z = z.

Alternatively, note that no (X ∪W )-open path from Y to FZ can reach Z
through one of its parents. So, the unblocked paths from FZ to Y leave Z
through its children. For these paths, intervening or observing is the same.

▸ In rule 3, simply note that Y ⊥G ′FZ ∣X ∪W ∣∣X implies that the intervention
FZ = do(z) is irrelevant for the causal effect at hand.

Alternatively, note that no (X ∪W )-open path from Z to Y can leave Z
through one its children. For the rest of unblocked paths, intervening on Z
is irrelevant.

▸ Rule 1 follows from rules 2 and 3.
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do-Calculus
▸ Alternative formulation:

▸ Rule 1 (insertion/deletion of observations)

p(y ∣do(x),zzz,w) = p(y ∣do(x),w) if Y ⊥G
X
Z ∣X ∪W

G
X

is G after deleting all the (bi)directed edges into X , i.e. simulate do(x).
▸ Rule 2 (intervention/observation exchange)

p(y ∣do(x),do(z)do(z)do(z),w) = p(y ∣do(x),zzz,w) if Y ⊥G
XZ

Z ∣X ∪W
G
XZ

is G after deleting all the (bi)directed edges into X and all the directed

edges out of Z .
▸ Rule 3 (insertion/deletion of interventions)

p(y ∣do(x),do(z)do(z)do(z),w) = p(y ∣do(x),w) if Y ⊥G
X Z(W)

Z ∣X ∪W
where Z(W ) are the nodes in Z that are not ancestors of W in G

X
.
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Causal Effect Identifiability

▸ Given X ∈ V and Y ⊆ V , p(y ∣do(x)) is identifiable if there is no bidirected
path between X and any of its children on the directed paths from X to Y .
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Surrogate Experiments
▸ Assume that we cannot identify p(y ∣do(x)) by the previous methods or by

randomizing X .
▸ Assume that we can randomize a surrogate variable Z , e.g. Y = heart

condition, X = cholesterol levels, and Z = diet.
▸ Then, p(y ∣do(x)) is identifiable whenever

▸ X blocks all the directed paths from Z to Y , and
▸ p(y ∣do(x)) is identifiable in G

Z
.

▸ In the cholesterol example, the conditions above require that diet (Z) has
no direct effect on heart condition (Y ), and cholesterol level (X ) and heart
condition are not confounded unless we can neutralize the confounding.

▸ See Figures 3.9 (e) and (h) for some examples. In Figure 3.9 (e), for
instance, we have that

p(y ∣do(x)) = p(y ∣x ,do(z)).

So if Figure 3.9 (e) is the causal graph in our cholesterol example, then we
should hold the diet constant for the individuals in the population (do(z))
and, afterwards, estimate the distribution of heart disease (Y ) given
cholesterol level (X ).

▸ Note that there is no need to randomize Z , just set it to an arbitrary
constant.

▸ Proof: p(y ∣do(x)) = p(y ∣do(x),do(z)) by rule 3, because Y ⊥G
X Z

Z ∣X .
Moreover, p(y ∣do(x),do(z)) is the causal effect of X on Y in a model
governed by GZ , which is identifiable.
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