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Lecture 1: Causal Models and Learning Algorithms
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Causal Models

▸ A causal structure over a set of variables V is a DAG over V .

▸ A causal model consists of a causal structure, a set of functions
xi = fi(pai ,ui) for each Xi ∈ V , and a distribution p(ui) for each Ui .

▸ The functions are also called structural equations, which is different from
algebraic equations since the equality sign should be read as an assignment
or determination, i.e. it is asymmetric.

▸ For now, the error, noise or disturbance terms Ui are assumed to be
independent one of another. They may be seen as representing
unmodeled or unobserved causes.

▸ Note that fi(pai ,ui) and p(ui) together define a conditional distribution
p(xi ∣pai). Then, a causal model defines a distribution over V :

p(v) =∏
i

p(xi ∣pai).

▸ A causal model can be obtained from knowledge of the physics behind the
phenomenon being modeled, from interventional experiments such as
randomized control trials, or from passive observations.
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Causal Models

DAG Parameter values for the conditional probability distributions

Sprinkler Rain

Wet Grass Wet Street

p(s) = (0.3,0.7) = (θs0 , θs1)
p(r) = (0.5,0.5) = (θr0 , θr1)
p(wg ∣r0, s0) = (0.1,0.9) = (θwg0 ∣r0,s0 , θwg1 ∣r0,s0)
p(wg ∣r0, s1) = (0.7,0.3) = (θwg0 ∣r0,s1 , θwg1 ∣r0,s1)
p(wg ∣r1, s0) = (0.8,0.2) = (θwg0 ∣r1,s0 , θwg1 ∣r1,s0)
p(wg ∣r1, s1) = (0.9,0.1) = (θwg0 ∣r1,s1 , θwg1 ∣r1,s1)
p(ws ∣r0) = (0.1,0.9) = (θws0 ∣r0 , θws1 ∣r0)
p(ws ∣r1) = (0.7,0.3) = (θws0 ∣r1 , θws1 ∣r1)

p(s, r ,wg ,ws) = p(s)p(r)p(wg ∣s, r)p(ws ∣r)
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IC Algorithm

▸ A distribution p is stable or faithful or isomorphic wrt a DAG D when
X ⊥pY ∣Z iff X ⊥DY ∣Z .

▸ In other words, the independences in p are structural and not formed by
incidental parameter equalities. The unstable distributions have measure
zero when the parameters are chosen at random.

▸ A pattern is a mixed graph that represents an equivalence class of DAGs:
▸ It contains the edge A→ B if the edge is in every member of the class, and
▸ the edge A −B if A→ B is in some members and A← B in some others.

Inductive causation (IC) algorithm
Input: A distribution p over V that is stable wrt some DAG D
Output: The pattern G corresponding to the equivalence class of D

Let G be a complete undirected graph
For each pair of nodes A,B ∈ V

If A⊥pB ∣SAB for some SAB ⊆ V , then delete the edge A −B from G
For each pair nodes A,B ∈ V st A −B is not in G

If A⊸ C ⊸B is in G and C ∉ SAB , then add the orientations A→ C ← B to G
Orient as many edges in G as possible without creating inmoralities or directed cycles

▸ The algorithm’s steps can be systematized and optimized.
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IC Algorithm
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Projections
▸ A latent structure L is a causal structure over V ∪U st V are observable

and U are latent. The variables in U are not necessarily independent
anymore.

▸ Note that L induces a distribution over V :

p(v) = ∑
U

∏
i

p(xi ∣pai).

▸ It may be convenient to work with the projection of L onto V .

Projection algorithm
Input: A latent structure L over V ∪U
Output: The projection G of L over V

Let G be the empty graph over V
For each pair of nodes A,B ∈ V

If L has a directed path from A to B st every internal node is in U,
then add the edge A→ B to G
If L has a divergent path between A and B st every internal node is in U,
then add the edge A↔ B to G

▸ The separation criterion for DAGs can be extended to projections: Simply,
redefine the term collider as follows.
▸ A node B in a path ρ is a collider when A→ B ← C or A→ B ↔ C or

A↔ B ↔ C is a subpath of ρ.

▸ Interestingly, L and G represent the same independence model over V .
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IC∗ Algorithm
IC∗ algorithm
Input: A distribution p over V that is stable wrt the projection of some latent structure L
Output: A marked pattern G of the projection of L over V

0. Let G be a complete undirected graph
1. For each pair of nodes A,B ∈ V

If A⊥pB ∣SAB for some SAB ⊆ V , then delete the edge A −B from G
2. For each pair nodes A,B ∈ V st A −B is not in G

If A ⊸⊸ C ⊸⊸ B is in G and C ∉ SAB , then add the arrowheads A ←⊸C ←⊸ B to G
3. Add as many arrowheads and marks to G as possible according to the following rules:

3.1. If G has a marked directed path from A to B and A ⊸B,
then add the arrowhead A ←⊸B to G

3.2. If A ←⊸C ⊸ B is in G and A ⊸⊸ B is not in G ,
then add the arrowhead C → B to G and mark the edge with ∗

▸ Every ∗-marked directed edge in G corresponds to a directed path in L,
i.e. genuine causation.

▸ Every unmarked directed edge in G corresponds to a directed or divergent
path in L, i.e. potential causation.

▸ Every bidirected edge in G corresponds to a divergent path in L, i.e.
spurious association.

▸ Undirected edges in G correspond to undetermined relationships.
▸ The algorithm’s steps can be systematized and optimized.
▸ There exist more sophisticated algorithms that allow even selection bias.
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IC∗ Algorithm
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Restricted Causal Models

▸ Let X ∼ FX , where FX is a continuous CDF. Then, Y = FX (x) ∼ U(0,1).

▸ Proof:

FY (y) = p(Y ≤ y) = p(FX (x) ≤ y) = p(X ≤ F−1
X (y)) = FX (F

−1
X (y)) = y .

▸ Useful for sampling random variables (a.k.a. inverse CDF method): Let
Y ∼ U(0,1) and let FX be a continuous CDF. Then, X = F−1

X (y) ∼ FX .

▸ Any joint probability distribution p(x , y) admits causal models in both
directions, i.e.

X → Y ∶ x = fX (uX ) and y = fY (x ,uY ) with X ⊥UY .

Y → X ∶ y = fY (uY ) and x = fX (y ,uX ) with Y ⊥UX .

▸ Proof: Let FY ∣x(y) = p(Y ≤ y ∣X = x) and let fY (x ,uY ) = F−1
Y ∣x(uY ) where

UY ∼ U(0,1) and X ⊥UY .

▸ So, there is no chance of identifying the true causal model from
observations alone unless further assumptions are made.
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Restricted Causal Models
▸ Assume that p(x , y) admits the causal model

y = αx + uY with X ⊥UY

where the random variables are continuous. Then,

x = βy + uX with Y ⊥UX

iff X and UY are Gaussian.

▸ In other words, identifiability for linear non-Gaussian models is possible.
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Restricted Causal Models

▸ Assume that p(x , y) admits the causal model

y = fY (x) + uY with X ⊥UY

where the random variables are continuous. Then, p(x , y) does not admit
in general a model of the same form in the backward direction.

▸ In other words, identifiability for non-linear additive models is possible in
general, i.e. for all but some “rare” or “non-generic” or “fine-tuned” cases.

▸ The precise characterization is rather technical. Exception: When X and
UY are Gaussian, p(x , y) admits the backward model iff fY is linear.

▸ Assume that p(x , y) admits the causal model

y = gY (fY (x) + uY ) with X ⊥UY

where the random variables are continuous. Then, p(x , y) does not admit
in general a model of the same form in the backward direction.

▸ In other words, identifiability for post-nonlinear models is possible in
general.
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RESIT Algorithm

Regression with subsequent independence test (RESIT) algorithm
Input: A sample from p(x , y)
Output: The non-linear additive model X → Y or Y → X or nothing

Perform a non-linear regression from Y on X to write y = f̂Y (x) + ûY
Perform the hypothesis test H0 ∶ X ⊥ÛY

Repeat the two steps above exchanging the roles of X and Y
If H0 is accepted in one direction and rejected in the other,

then infer the former as the causal direction
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RESIT Algorithm
Regression with subsequent independence test (RESIT) algorithm
Input: A sample from a distribution p(x1, . . . , xn) that is generated by a non-linear
additive model that is faithful to a DAG G
Output: The DAG G (in the large sample limit and using a consistent regression
method and independence test)

S = {1, . . . ,n}
π = []

// Phase 1: Determine a topological order by identifying a sink node, i.e.
// a node whose residual is independent of the rest of the nodes
Repeat

For k ∈ S do
Regress Xk on XS∖{k}

Measure the dependence between the residuals and XS∖{k}

Let k∗ be the k with the weakest dependence
S = S ∖ {k∗}
Pak∗ = S
π = [k∗, π]

Until S = ∅

// Phase 2: Remove superfluous edges without violating the sink condition, i.e.
// the residual of a node is independent of its predecessors or non-descendants

For k ∈ {2, . . . ,n} do
For ` ∈ Paπ(k) do

Regress Xπ(k) on XPaπ(k)∖{`}
If the residuals are independent of Xπ(1∶k−1), then remove ` from Paπ(k)

▸ Note that the noise variables are jointly independent (cf. IC∗ algorithm).
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Score Based Algorithms

▸ Choose a DAG G with maximum posterior probability given some data
d1∶N (a.k.a. Bayesian score), i.e.

p(G ∣d1∶N) = p(d1∶N ∣G)p(G)/P(d1∶N) ∝ p(d1∶N ∣G)p(G)

where p(d1∶N ∣G) is the marginal likelihood of d1∶N given G , p(G) is a prior
probability distribution over DAGs, and p(d1∶N) is a normalization
constant.

▸ Moreover,

p(d1∶N ∣G) = ∫ p(d1∶N ∣θG ,G)p(θG ∣G)dθG

where p(d1∶N ∣θG ,G) is the likelihood function of d1∶N given G and θG , and
p(θG ∣G) is a prior probability distribution over the parameter values of G .

▸ For discrete variables Xi of cardinality ki , and assuming that
p(θG ∣G) = ∏i ∏j p(θxi ∣pai=j ∣G) and p(θxi ∣pai=j ∣G) ∼ Dirichlet(αij1, . . . , αijki ),
we have that

p(d1∶N ∣G) =∏
i

∏
j

Γ(αij)

Γ(αij +Nij)
∏
k

Γ(αijk +Nijk)

Γ(αijk)

where αij = ∑k αijk , Nijk is the number of instances in d1∶N where Xi = k
and Pai = j , and Nij = ∑k Nijk .
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Score Based Algorithms

▸ Two DAGs are called Markov equivalent if they represent the same set of
separations.

▸ The marginal likelihood is the same for Markov equivalent DAGs iff

αijk = αp
′

(ijk)

where α is the user-defined imaginary sample size and p′(ijk) is a prior
probability distribution, e.g. p′(ijk) = 1/(ki ∏X`∈Pai

k`).

▸ Under the Dirichlet parameter prior assumption and when N →∞, we get
the Bayesian information criterion (BIC):

log p(d1∶N ∣G) ≈ log p(d1∶N ∣θ
ML
G ,G) −

logN

2
dim(G)

where θML
G are the maximum likelihood estimates of the parameters (i.e.,

proportions in d1∶N), and dim(G) is the dimension or number of free
parameters of G , i.e. ∑i(ki − 1)∏X`∈Pai

k`.

▸ Similar results exist for Gaussian random variables.
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Score Based Algorithms
▸ Number of DAGs with 1-12 nodes: 1, 3, 25, 543, 29281, 3781503,

1138779265, 783702329343, 1213442454842881, 4175098976430598143,
31603459396418917607425, 521939651343829405020504063

▸ Then, an exhaustive search is prohibitive and, thus, a heuristic search must
be performed instead.

Hill-climbing
Input: A sample d1∶N from a distribution p(v)
Output: A DAG G over V

Let G be the empty DAG
Repeat until no change occurs

Add, remove or reverse any edge in G that improves the Bayesian score the most

▸ The log Bayesian score is decomposable if log p(G) is so, i.e.

log p(G ∣d1∶N) = ∑
i

f (Xi ,Pai ,d1∶N)

and, thus, adding, removing or reversing a edge in G implies recomputing
only one or two factors.

▸ Unfortunately, hill-climbing is not asymptotically correct.

▸ Note that the noise variables are jointly independent (cf. IC∗ algorithm).



19/19

Summary

▸ Causal Models

▸ IC Algorithm

▸ Projections

▸ IC∗ Algorithm

▸ Restricted Causal Models

▸ RESIT Algorithm

▸ Score Based Algorithms

Thank you


