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Causal Models

v

A causal structure over a set of variables V' is a DAG over V.

A causal model consists of a causal structure, a set of functions
x; = fi(paj, uj) for each Xj e V, and a distribution p(u;) for each U;.

The functions are also called structural equations, which is different from
algebraic equations since the equality sign should be read as an assignment
or determination, i.e. it is asymmetric.

For now, the error, noise or disturbance terms U; are assumed to be
independent one of another. They may be seen as representing
unmodeled or unobserved causes.

Note that fi(paj, u;) and p(u;) together define a conditional distribution
p(xi|pai). Then, a causal model defines a distribution over V:

p(v) =T p(xilpai).

A causal model can be obtained from knowledge of the physics behind the
phenomenon being modeled, from interventional experiments such as
randomized control trials, or from passive observations.



Causal Models

DAG Parameter values for the conditional probability distributions
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IC Algorithm

> A distribution p is stable or faithful or isomorphic wrt a DAG D when
X1,Y|Ziff X1pY|Z.

> In other words, the independences in p are structural and not formed by
incidental parameter equalities. The unstable distributions have measure
zero when the parameters are chosen at random.

> A pattern is a mixed graph that represents an equivalence class of DAGs:

> It contains the edge A — B if the edge is in every member of the class, and
> the edge A- B if A— B is in some members and A < B in some others.

Inductive causation (IC) algorithm
Input: A distribution p over V that is stable wrt some DAG D
Output: The pattern G corresponding to the equivalence class of D

Let G be a complete undirected graph
For each pair of nodes A,B e V
If AL,B|Sas for some Sag € V, then delete the edge A- B from G
For each pair nodes A,Be V st A-Bisnotin G
If A Co— Bisin G and C ¢ Sag, then add the orientations A—- C«~ Bto G
Orient as many edges in G as possible without creating inmoralities or directed cycles

> The algorithm'’s steps can be systematized and optimized.
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Figure 2: Hasse diagram of the space of Markov equivalence classes of Bayesian network
structures over three variables.



Projections

> A latent structure L is a causal structure over V u U st V are observable
and U are latent. The variables in U are not necessarily independent
anymore.

> Note that L induces a distribution over V:
p(v) = > T T p(xilpar).
Ui

> It may be convenient to work with the projection of L onto V.

Projection algorithm
Input: A latent structure L over V u U
Output: The projection G of L over V

Let G be the empty graph over V
For each pair of nodes A, B e V
If L has a directed path from A to B st every internal node is in U,
then add the edge A - B to G
If L has a divergent path between A and B st every internal node is in U,
then add the edge A< B to G

> The separation criterion for DAGs can be extended to projections: Simply,
redefine the term collider as follows.
> A node B in a path p is a collider when A—> B« Cor A— B < C or
A < B < C is a subpath of p.

> Interestingly, L and G represent the same independence model over V.
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IC* algorithm
Input: A distribution p over V that is stable wrt the projection of some latent structure L
Output: A marked pattern G of the projection of L over V

0. Let G be a complete undirected graph
1. For each pair of nodes A;Be V
If AL,B|Sap for some Sag € V, then delete the edge A - B from G
2. For each pair nodes A;BeV st A-Bisnotin G
If Aoo C oo Bisin G and C ¢ Sag, then add the arrowheads Ao> C << B to G
3. Add as many arrowheads and marks to G as possible according to the following rules:
3.1. If G has a marked directed path from A to B and A — B,
then add the arrowhead A B to G
32 If A> C— Bisin G and Ae— Bis not in G,
then add the arrowhead C — B to G and mark the edge with *

> Every x-marked directed edge in G corresponds to a directed path in L,
i.e. genuine causation.

> Every unmarked directed edge in G corresponds to a directed or divergent
path in L, i.e. potential causation.

> Every bidirected edge in G corresponds to a divergent path in L, i.e.
spurious association.

» Undirected edges in G correspond to undetermined relationships.

> The algorithm'’s steps can be systematized and optimized.

> There exist more sophisticated algorithms that allow even selection bias.
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Figure 2.3 Graphs constructed by the IC* algorithm. (a) Underlying structure. (b) After step 1. (c)
After step 2. (d) Output of IC*.
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Figure 2.4 Latent structures equivalent to those of Figure 2.3(a).



Restricted Causal Models

> Let X ~ Fx, where Fx is a continuous CDF. Then, Y = Fx(x) ~ U(0,1).

> Proof:

Fy(y) =p(Y <y)=p(Fx(x) <y) = p(X < Fx'(y)) = Fx(Fx'(y)) = y.

» Useful for sampling random variables (a.k.a. inverse CDF method): Let
Y ~ U(0,1) and let Fx be a continuous CDF. Then, X = Fx'(y) ~ Fx.
> Any joint probability distribution p(x,y) admits causal models in both
directions, i.e.
X =Y :x=1fx(ux) and y = fy (x, uy) with X1 Uy.

Y > X:y=1fy(uy) and x = fx(y, ux) with Y 1 Ux.

» Proof: Let Fy(y) = p(Y < y|X =x) and let fy(x,uy) = F;‘lx(uY) where
Uy ~ U(0,1) and X 1 Uy.

> So, there is no chance of identifying the true causal model from
observations alone unless further assumptions are made.



Restricted Causal Models

> Assume that p(x,y) admits the causal model
y =ax+ uy with X L Uy
where the random variables are continuous. Then,
x = By + ux with Y 1 Ux

iff X and Uy are Gaussian.
> In other words, identifiability for linear non-Gaussian models is possible.

Figure 4.1: Joint density over X and Y for an identifiable example. The blue line is the
function corresponding to the forward model Y := 0.5-X + Ny, with uniformly distributed
X and Ny; the gray area indicates the support of the density of (X,Y). Theorem 4.2 states
that there cannot be any valid backward model since the distribution of (X,Ny) is non-
Gaussian. The red line characterized by (b,c) is the least square fit minimizing E[X —
bY —c]. This is not a valid backward model X = bY + ¢ + Ny since the resulting noise
Nx would not be independent of Y (the size of the support of Nx would differ for different
values of ).
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> Assume that p(x,y) admits the causal model
y = fy(x) + uy with X1 Uy
where the random variables are continuous. Then, p(x,y) does not admit

in general a model of the same form in the backward direction.

> In other words, identifiability for non-linear additive models is possible in
general, i.e. for all but some “rare” or “non-generic” or “fine-tuned” cases.

> The precise characterization is rather technical. Exception: When X and
Uy are Gaussian, p(x,y) admits the backward model iff fy is linear.

> Assume that p(x,y) admits the causal model
y =gy (fy(x) + uy) with X 1 Uy

where the random variables are continuous. Then, p(x,y) does not admit
in general a model of the same form in the backward direction.

> In other words, identifiability for post-nonlinear models is possible in
general.



RESIT Algorithm

Regression with subsequent independence test (RESIT) algorithm

Input: A sample from p(x,y)
Output: The non-linear additive model X — Y or Y — X or nothing

Perform a non-linear regression from Y on X to write y = t?y(x) + Oy
Perform the hypothesis test Hp : X 1 Oy
Repeat the two steps above exchanging the roles of X and Y
If Hp is accepted in one direction and rejected in the other,
then infer the former as the causal direction

X Residuals of regr. X on ¥
Figure 4.5: We n a sample from the underlying distribution and perform a linear
regression in the directions X — ¥ (left) and ¥ — X (right). The fitted functions are shown
in the top row, the corresponding residuals are shown in the bottom row. Only the direction
X =¥ yields independent residuals; see also Figure 4.1




RESIT Algorithm

Regression with subsequent independence test (RESIT) algorithm

Input: A sample from a distribution p(xi,...,x,) that is generated by a non-linear
additive model that is faithful to a DAG G

Output: The DAG G (in the large sample limit and using a consistent regression
method and independence test)

S={1,...,n}
m =]
// Phase 1: Determine a topological order by identifying a sink node, i.e.
// a node whose residual is independent of the rest of the nodes
Repeat
For ke S do
Regress Xx on Xs\ (k)
Measure the dependence between the residuals and Xs. (1}
Let k* be the k with the weakest dependence
S=5~{k"}
Pagx+ =S
m=[k*,m]
Until S=9o
// Phase 2: Remove superfluous edges without violating the sink condition, i.e.
// the residual of a node is independent of its predecessors or non-descendants
For ke {2,...,n} do
For £ € Par () do
Regress Xr(x) on Xpaﬂ(k>\{[}
If the residuals are independent of X (1._1), then remove ¢ from Pa )

> Note that the noise variables are jointly independent (cf. IC* algorithm).



Score Based Algorithms

> Choose a DAG G with maximum posterior probability given some data
di.n (a.k.a. Bayesian score), i.e.

p(G|d1:N) = p(d1N|G)p(G)/P(d1N) o< p(le‘G)p(G)

where p(di:n|G) is the marginal likelihood of di.v given G, p(G) is a prior
probability distribution over DAGs, and p(di:n) is a normalization
constant.

> Moreover,

p(din|G) = fp(dl;N\eG,G)p(edc)deG

where p(di:n|fc, G) is the likelihood function of di.n given G and 6¢, and
p(0¢|G) is a prior probability distribution over the parameter values of G.

> For discrete variables X; of cardinality k;, and assuming that
p(06|G) = I1; T1; p(Ox;1pa,=i|G) and p(Oy,pa;=j1G) ~ Dirichlet(cuju, - . . , cujjk; ),
we have that

(o (i + Ny
p(din|G) = TTT] r(a,-i : /)vj) I ( o Q)

where ajj = 3, i, Nijk is the number of instances in di.ny where X; = k
and Pa; =j, and Nj = ¥, Nij.



Score Based Algorithms

» Two DAGs are called Markov equivalent if they represent the same set of
separations.

> The marginal likelihood is the same for Markov equivalent DAGs iff
Qjjk = ap’(ijk)

where « is the user-defined imaginary sample size and p’(ijk) is a prior
probability distribution, e.g. p’(ijk) = 1/(ki [Tx,cps, ke)-

> Under the Dirichlet parameter prior assumption and when N — oo, we get
the Bayesian information criterion (BIC):

log N
2

log p(ch.n|G) = log p(chn|fg ", G) - dim(G)

where " are the maximum likelihood estimates of the parameters (i.e.,
proportions in di.ny), and dim(G) is the dimension or number of free
parameters of G, i.e. ;(ki — 1) [1x,eps, ke-

» Similar results exist for Gaussian random variables.



Score Based Algorithms

» Number of DAGs with 1-12 nodes: 1, 3, 25, 543, 29281, 3781503,
1138779265, 783702329343, 1213442454842881, 4175098976430598143,
31603459396418917607425, 521939651343829405020504063

> Then, an exhaustive search is prohibitive and, thus, a heuristic search must
be performed instead.

Hill-climbing
Input: A sample dy.y from a distribution p(v)
Output: A DAG G over V

Let G be the empty DAG
Repeat until no change occurs
Add, remove or reverse any edge in G that improves the Bayesian score the most

> The log Bayesian score is decomposable if log p(G) is so, i.e.

log p(Glchn) = 3 (X, Pai, chin)

and, thus, adding, removing or reversing a edge in G implies recomputing
only one or two factors.

> Unfortunately, hill-climbing is not asymptotically correct.

» Note that the noise variables are jointly independent (cf. IC* algorithm).
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