
On Expressiveness of the Chain Graph Interpretations

Dag Sonntag, Jose M. Peña

ADIT, IDA, Linköping University, Sweden
dag.sonntag@liu.se, jose.m.pena@liu.se

Abstract

In this article we study the expressiveness of the different chain graph inter-
pretations. Chain graphs is a class of probabilistic graphical models that can
contain two types of edges, representing different types of relationships between
the variables in question. Chain graphs is also a superclass of directed acyclic
graphs, i.e. Bayesian networks, and can thereby represent systems more accu-
rately than this less expressive class of models. Today there do however exist
several different ways of interpreting chain graphs and what conditional indepen-
dences they encode, giving rise to different so called chain graph interpretations.
Previous research has approximated the number of representable independence
models for the Lauritzen-Wermuth-Frydenberg and the multivariate regression
chain graph interpretations using an MCMC based approach. In this article
we use a similar approach to approximate the number of models representable
by the latest chain graph interpretation in research, the Andersson-Madigan-
Perlman interpretation. Moreover we summarize and compare the different
chain graph interpretations with each other. Our results confirm previous re-
sults that directed acyclic graphs only can represent a small fraction of the
models representable by chain graphs, even for a low number of nodes. The
results also show that the Andersson-Madigan-Perlman and multivariate re-
gression interpretations can represent about the same amount of models and
twice the amount of models compared to the Lauritzen-Wermuth-Frydenberg
interpretation. However, at the same time almost all models representable by
the latter interpretation can only be represented by that interpretation while
the former two have a large intersection in terms of representable models.

Keywords: Chain graphs, Lauritzen-Wermuth-Frydenberg interpretation,

Andersson-Madigan-Perlman interpretation, multivariate regression interpretation, MCMC

sampling, expressibility of probabilistic graphical models.

1. Introduction

Chain graphs (CGs) are probabilistic graphical models (PGMs) [8] that ex-
tend the formalism of directed acyclic graphs (DAGs) [13], i.e. Bayesian net-
works, with an additional, non-directed, edge. The directed edge works similarly
as in DAGs when it comes to representing independences while the non-directed

Preprint submitted to Elsevier July 22, 2015

edge can be interpreted in different ways, giving rise to different so called CG
interpretations. This means that CGs can represent every independence model
representable by any DAG while the opposite does not hold. The most re-
searched CG interpretations are the Lauritzen-Wermuth-Frydenberg (LWF) in-
terpretation [6, 9], the Andersson-Madigan-Perlman (AMP) interpretation [1]
and the multivariate regression (MVR) interpretation [3, 4]. Each interpreta-
tion has its own way of determining conditional independences in a CG and it
can be noted that no interpretation subsumes another in terms of representable
independence models [5, 16].

The question of how much more expressive CGs are compared to DAGs, i.e.
how many more independence models that can be represented by CGs compared
to those representable by DAGs, has recently been studied for CGs of the LWF
interpretation (LWF CGs) and the MVR interpretation (MVR CGs) [11, 17].
The results from these studies show that the ratio of the number of DAG models
(independence models representable by DAGs) compared to the number of CG
models (independence models representable by CGs) decreases exponentially as
the number of nodes in the graphs increases.

In this article we carry out a similar study for CGs of the AMP interpretation
(AMP CGs) and conclude the research of expressiveness of independence mod-
els for the three CG interpretations. This allows us to summarize the method
for approximating the number of CG models as well as the results we have
seen for the different CG interpretations for up to 20 nodes. We also compare
the three CG interpretations with each other, as well as to DAGs, in terms of
representable independence models and number of graphs per Markov equiv-
alence class. Finally we also compare the three CG interpretations to their
non-directed subclasses which are undirected graphs (UGs) [13], i.e. Markov
networks, for the LWF and AMP CGs respectively bidirected graphs (BDs) [3],
i.e. covariance graphs, for MVR CGs.

Measuring the number of representable independence models should in prin-
ciple be easy to do. We only have to enumerate every possible CG and check
whether it is the unique representative of the Markov equivalence class, i.e.,
CG model, for the CG interpretation we study. The problem here is however
that since both the number of CGs and CG models grows superexponentially
as the number of nodes in the graphs increases, it is infeasible to enumerate all
of them for more than five nodes. Hence we instead use a Markov chain Monte
Carlo (MCMC) approach that allows us approximate the ratio of CG models
to DAG models for each interpretation. Then, since we know the number of
DAG models from previous research [11, 17], we can calculate the number of
CG models for the different CG interpretations.

The MCMC approach consists of creating a Markov chain whose states are
all possible CG models for a given number of nodes and whose stationary dis-
tribution is the uniform distribution over these models. What CG models are
possible depends on what CG interpretation we study. By transitioning through
this Markov chain, CG models can then be sampled from approximately the uni-
form distribution over all CG models of the CG interpretation in question. For
each of these CG models it is then possible to be check whether the represented

2

independence model also can be represented as a DAG, and hence to calculate
the ratio of CG models to DAG models. The CG model samples also allows us
to calculate other ratios, such as whether the independence model can be rep-
resented by some other CG interpretation. Moreover we make the CG models
publicly available online and it is our intent that they can be used for further
studies in the field. This can for example be when evaluating CG learning al-
gorithms to get more accurate evaluations than what is achieved today when
randomly generated CGs are used instead of randomly generated CG models
[10, 12].

The rest of the article is organised as follows. In the next section we dis-
cuss the theory of the general MCMC sampling algorithm used for all the CG
interpretations. This is followed by Section 3 where we define how this general
algorithm is implemented for the AMP CG interpretation. The implementa-
tions for the LWF and MVR interpretations can be found in their appropriate
articles [11, 17]. In Section 4 we then present the results we can calculate from
using the sampling algorithm and in Section 5 we have a short conclusion. The
article also has an Appendix containing the proofs for the theorems presented in
Section 3 as well as a notation section necessary for these proofs. Note that the
article itself contains no notation section since the terms used are common in the
probabilistic graphical model community. However, if some term is unfamiliar
to the reader all terms used are properly defined in the Appendix.

2. The Markov Chain Monte Carlo Approach

In this section we cover the general theory behind the MCMC sampling ap-
proach used in this article. Note that we only cover the theory of the MCMC
sampling method very briefly and for a more complete introduction of the sam-
pling method we instead refer the reader to the work by Häggström [7].

The MCMC sampling approach consists of creating a Markov chain whose
unique stationary distribution is the desired distribution and then sample this
Markov chain after a number of transitions. The Markov chain is defined by
a set of operators that allows us to transition from one state to another. It
can then be shown that if the set of operators have certain properties and the
number of transitions goes to infinity then all states are visited according to the
stationary distribution [7]. Moreover, in practice it has also been shown that
the number of transitions can be relatively low and a good approximation of
the stationary distribution can still be achieved.

In our case the possible states of the Markov chain are all possible indepen-
dence models representable by CGs, i.e. CG models, of the interpretation we
study and the stationary distribution is the uniform distribution. These are then
represented by the appropriate unique graphical representatives, i.e. the largest
chain graphs (LCG) [6] for LWF CGs, the largest deflagged graphs (LDG) [15]
for AMP CGs and essential MVR CGs [17] for MVR CGs. The operators, seen
in Table 1, then add and remove certain edges in these graphical representatives,
allowing the MCMC sampling algorithm to transition between all possible CG
models. If the resulting graph is not a unique graphical representative of the

3

Table 1: Operators used for MCMC sampling for the different CG interpretations. See the
corresponding articles for proper definitions for the LWF [11] and MVR [17] CG interpretations
and Section 3 for the AMP CG interpretation.

LWF AMP MVR

Add directed edge Add directed edge Add directed edge

Remove directed edge Remove directed edge Remove directed edge

Add undirected edge Add undirected edge Add undirected edge

Remove undirected edge Remove undirected edge Remove undirected edge

Add immorality Add two directed edges Add bidirected edge

Remove immorality Remove two directed edges Remove bidirected edge

No change Add V-collider

Remove V-collider

appropriate type, such as a LCG in the case of LWF CGs, the operator is not
applied.

As noted in the description of Table 1 only the titles of the operations are
presented and the reader is referred to the corresponding article or section for a
proper description. We can however note that most of the operations work by
adding or removing edges between any ordered set of nodes in the graph. This
also holds for the “Add immorality” and “Remove immorality” operators for
LWF CGs which basically adds respectively removes two directed edges from
the LCG. Hence, an example of a Markov chain for the AMP CG interpretation,
with two nodes x and y, would contain two states since there exists two LDGs:
x−y and x y (i.e. no edge between them). The possible operators in each
state would be add respectively remove x→y, y←x, x−y and y−x. However,
only two such operations would be valid for any possible state (remove x−y and
remove y−x for the state x−y respectively add x−y and add y−x for the state
x y). All other operators would simply result in no change.

If we look at the whole sampling process the procedure follows as described
in Algorithm 1. It starts with the empty graph and then performs a set number
of transitions before it samples the current state, i.e. the current model. This
is referred to as the burn-in phase and is included to remove any bias caused
by the choice of initial state (the empty graph in our case). This process is
then essentially repeated until the chosen number of samples have been sam-
pled. However, to additionally ensure that the initial state does not bias the
sampling the previous sample is chosen as starting point for the next sample. It
can be noted that the sampling method described here corresponds to MCMC
sampling using thinning and not the more common MCMC sampling method
(not using thinning) where each state is sampled after the burn-in phase. Using
the common approach is however not possible since the large set of possible
states, and the long distances between some states with the chosen operators,
would require an infeasible large amount of CGs to be sampled.

To ensure that the stationary distribution of the Markov chain is the uni-
form distribution of all possible CG models we have to prove that the operators
fulfill the following properties [7]: aperiodicity, irreducibility and reversibility.

4

Input: A CG interpretation I, a set of graphical operators O that fulfills
the aperiodicity, irreducibility and reversibility properties, a number of
variables n, the desired number of samples k and the number of burn-in
transitions l.
Output: A set of graphs sampled from the uniform distribution over all
CG models with n nodes of interpretation I.

1 Let S be the empty set of graphs.
2 Let G be the empty graph with n nodes.
3 Repeat k times:
4 Repeat for l iterations:
5 Choose uniformly an operator o from O.
6 If o(G)1 is a unique graphical representative in the CG interpretation

I:
7 Let G = o(G).
8 Copy G into S.
9 Return S.

1 o(G) is the resulting graph from applying operator o onto the graph G.
Algorithm 1: General MCMC sampling algorithm

Aperiodicity, i.e. that the Markov chain does not end up in the same state
periodically, and irreducibility, i.e. that any state can be reached from any
other state using only the defined operators, proves that the Markov chain has
a unique stationary distribution. Reversibility, i.e. that the probability of tran-
sitioning from any state A to any other state B is the same as for transitioning
from B to A, then proves that this distribution also is the uniform distribution.
The operators of the LWF and MVR CG interpretations are proven to fullfill
these properties in their corresponding articles [11, 17] while for the operators of
the AMP CG interpretation the properties are shown hold in the next section.

3. MCMC Operators for the AMP CG Interpretation

In this section we define the operators used for the AMP CG interpretation
and prove that they fulfill the aperiodicity, reversibility and irreducibility prop-
erties for LDGs with at least two nodes. The reason why we chose to use LDGs
as the unique graphical representation, and not the AMP essential graphs [2],
is two-fold. First, and most important, that the structure of the LDGs allowed
for irreducibility to be proven using only add and remove edge operators, i.e.
without using an add V-collider operation which is required for the MVR CG
interpretation [17]. Secondly that, although no formal proof of complexity has
been given, the algorithm for testing if a graph is an LDG [15] appears to be
faster than the corresponding algorithm for AMP essential graphs [2]. This
even though the algorithm described for testing if a graph G is an LDG consists
of first checking if G is an AMP CG, then finding the LDG H of the Markov
equivalence class of G and finally checking if G and H have the same structure.
To find the LDG of the Markov equivalence class of G the algorithm defined by
Roverato and Studený was used [15].

5

The operators used to create the Markov chain for the AMP CG interpre-
tation are defined in Definition 1 and it follows from Theorems 1, 2 and 3 that
they fulfill the aperiodicity, reversibility and irreducibility properties for LDGs
with at least two nodes.

Definition 1. Markov Chain Operators
Choose uniformly and perform one of the following six operators to transition

from an LDG G to the next LDG H in the Markov chain.

• Add directed edge. Choose two nodes x, y in G uniformly and with
replacement. If x is not adjacent of y in G and G∪ {x→y} is an LDG let
H = G ∪ {x→y}, otherwise let H = G.

• Remove directed edge. Choose two nodes x, y in G uniformly and with
replacement. If x→y is in G and G\{x→y} is an LDG let H = G\{x→y},
otherwise let H = G.

• Add undirected edge. Choose two nodes x, y in G uniformly and with
replacement. If x is not adjacent of y in G and G ∪ {x−y} is an LDG let
H = G ∪ {x−y}, otherwise let H = G.

• Remove undirected edge. Choose two nodes x, y in G uniformly and
with replacement. If x−y is in G and G \ {x−y} is an LDG let H =
G \ {x−y}, otherwise let H = G.

• Add two directed edges. Choose four nodes x, y, z, w in G uniformly
and with replacement. If x is not adjacent of y in G, z is not adjacent
of w in G and G ∪ {x→y, z→w} is an LDG let H = G ∪ {x→y, z→w},
otherwise let H = G. Note that y might be equal to w in this operation.

• Remove two directed edges. Choose four nodes x, y, z, w in G uni-
formly and with replacement. If x→y and z→w are inG andG \ {x→y, z→w}
is an LDG let H = G \ {x→y, z→w}, otherwise let H = G. Note that y
might be equal to w in this operation.

Theorem 1. The operators in Definition 1 fulfill the aperiodicity property when
G contains at least two nodes.

Theorem 2. The operators in Definition 1 fulfill the reversibility property for
the uniform distribution.

Theorem 3. Given an LDG G any other LDG H can be reached using the
operators described in Definition 1 such that all intermediate graphs are LDGs.

Finally we also have to prove what the conditions are for when the indepen-
dence model of an LDG can be represented as a DAG respectively an UG.

Theorem 4. Given an LDG G there exists a DAG H such that G and H
represent the same independence model iff G contains no flags and G contains
no chordless undirected cycles.1

1See Appendix A for definitions of flags and chordless undirected cycles.

6

Theorem 5. Given an LDG G there exists an UG H such that G and H
represent the same independence model iff G contains no directed edges.

4. Results

Using the MCMC approach described in Section 2 we were able to sample
CG models uniformly for each CG interpretation for up to 20 nodes. For each
number of nodes and CG interpretation 105 models were sampled with 105 tran-
sitions between each sample. The implementation was carried out in C++, run
on an Intel Core i5 processor and it took approximately one week to complete
the sampling of all sample sets per CG interpretation. Moreover we also enu-
merated all CG models for up to five nodes, for each interpretation, to allow a
comparison between the approximated and exact values. The sampled graphs
and code are available for public access at
http : //www.ida.liu.se/divisions/adit/data/graphs/CGSamplingResources.

From the sampled graphs we could then calculate the ratio of CG models
whose independence models could be represented by DAGs, UGs and BGs as
well as some other CG interpretation for the LWF, AMP and MVR CG inter-
pretation. The results are shown in Tables 2, 3, 4, 5 and 6 and are discussed
in Sections 4.1, 4.2 and 4.3. Before we look into these results we will however
shortly discuss the validity of the approximated uniform distributions. We have
in our work not been able to calculate the variance in the results due to the sam-
pling process since this would take several months in calculation time. However,
there are several indicators suggesting that the models are sampled from almost
uniform distributions. First, that the calculated ratios, as well as the number
of the different types of edges, have clear smooth trends as the number of nodes
increases. Secondly we have also seen, although no formal variance have been
calculated, that different runs of the MCMC sampling approach gives no sig-
nificant difference in the results for up to 20 nodes. For more than 20 nodes
we could however see that this was no longer true and the ratios could differ
significantly for a certain number of nodes when the algorithm was run multi-
ple times. Hence this indicates that the MCMC sampling approach does not
sample from the uniform distribution if it is run with more than 20 nodes and
the described parameters, i.e. the number of sampled models and transitions
between each sample.

4.1. Ratios of CG Models Representable as Subclasses

When it comes to the results we can start with Table 2 where the ratio of the
number of DAG models compared to number of CG models are shown for the
different interpretations. We can note that the approximation seems to be very
accurate for up to five nodes but for more than five nodes we do not have any
exact values to compare the approximations to. We can however plot the ratios
of the number of DAG models compared to the number of CG models in a graph
with logarithmic scale, as seen in Figure 1. This allows us to see that the ratios
seem to be linear in the logarithmic scale and hence follow exponential equations.

7

Table 2: Exact and approximate ratios of CG models whose independence models can be
represented as DAGs.

NODES EXACT APPROXIMATE

LWF AMP MVR LWF AMP MVR

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 0.9250 0.8393 0.8259 0.9327 0.8392 0.8235

5 0.7624 0.6113 0.5905 0.7646 0.6136 0.5900

6 0.5829 0.4382 0.4099

7 0.4179 0.3058 0.2868

8 0.2860 0.2067 0.1951

9 0.1924 0.1407 0.1307

10 0.1286 0.0948 0.0866

11 0.0831 0.0616 0.0565

12 0.0554 0.0403 0.0377

13 0.0349 0.0257 0.0239

14 0.0237 0.0155 0.0159

15 0.0152 0.0108 0.0098

16 0.0096 0.0066 0.0064

17 0.0062 0.0045 0.0049

18 0.0038 0.0028 0.0027

19 0.0027 0.0018 0.0019

20 0.0017 0.0010 0.0011

The equations can be found to be RLWF = 9.1 ∗ 0.654n,RAMP = 7.2 ∗ 0.645n

and RMVR = 6.2∗0.653n, where n is the number of nodes and R the ratio of the
subscripted interpretation. This means that the ratios decreases exponentially
as the number of nodes increases for all three CG interpretations.

We can also compare the number of CG models for the different interpreta-
tions to the number of models of their non-directed subclasses, i.e. UGs for LWF
and AMP CGs respectively BGs for MVR CGs. The exact and approximate
ratios of these comparisons are shown in Table 3. Here we can note that the
amount of independence models representable by these subclasses are almost
non-existent in comparison to the number of CG models for models of 10 or
more nodes. Moreover, since the ratios decreases so quickly, we have not been
able to find any equations describing the ratios given the number of nodes.

4.2. Ratios of the Number of CGs per CG model and Approximate number of
Representable Models

Another interesting ratio that can be studied is the average number of CGs
per CG model seen in Table 4. This ratio can be calculated using the equation

#CGs

#CGmodels
=

#CGs

#DAGs
∗ #DAGs

#DAGmodels
∗ #DAGmodels

#CGmodels
(1)

where #CGmodels represents the number of CG models of a certain interpreta-
tion and so on. The ratio #CGs

#DAGs can then be found using the iterative equations

by Robinsson [14] and Steinsky [18] while #DAGs
#DAGmodels can be found in previous

studies for DAG models [11]. Finally we can also get the ratio #DAGmodels
#CGmodels from

8

Figure 1: The ratios (displayed with a logarithmic scale) of the number of DAG models
compared to the number of CG models for different number of nodes for the different CG
interpretations.

Table 3: Exact and approximate ratios of LWF, AMP respectively MVR CG models whose
independence models can be represented as UGs respectively BGs.

NODES EXACT APPROXIMATE

LWF AMP MVR LWF AMP MVR

2 1 1 1 1 1 1

3 0.7273 0.7273 0.7273 0.7188 0.7275 0.7255

4 0.3200 0.2857 0.2857 0.3122 0.2839 0.2855

5 0.0889 0.0689 0.0689 0.0809 0.0632 0.0697

6 0.0165 0.0112 0.0124

7 0.0032 0.0019 0.0019

8 0.0003 0.0002 0.0003

9 0.0002 0.0000 0.0000

10 0.0000 0.0000 0.0000

Table 2. If we study the values in Table 4 we can see that the average number
of CGs per CG model appear to converge to approximately 26 for the LWF
CG interpretation respectively 17 for the AMP and MVR CG interpretations.
This corresponds well with what we have seen for DAGs, although in that case
the convergence was around 4 DAGs per DAG model [11]. The means that
traversing the space of CG models when learning CG structures is considerably
more efficient than traversing the space of all CGs. However, at the same time,
it also means that this efficiency does not scale as the number of nodes in the
graphs increases.

Finally, in Table 5, we can also see the number of CG models for the different
CG interpretations. These numbers follows directly from the number of CGs
per CG model, shown in Table 4, and the equations for calculating the number
of CGs for a given number of nodes defined by Steinsky [18]. We can here see

9

Table 4: Exact and approximate numbers of CGs per CG model.

NODES EXACT APPROXIMATE

LWF AMP MVR LWF AMP MVR

2 2 2 2 1.97 1.97 1.97

3 4.55 4.55 4.55 4.47 4.47 4.47

4 8.44 7.54 7.54 8.61 7.75 7.60

5 12.38 9.59 9.59 12.61 10.12 9.73

6 15.80 11.87 11.11

7 18.05 13.21 12.39

8 20.20 14.59 13.77

9 20.97 15.34 14.25

10 22.61 16.66 15.23

11 23.14 17.16 15.74

12 23.66 17.22 16.09

13 22.88 16.85 15.64

14 24.64 16.10 16.54

15 25.63 18.20 16.60

16 24.87 17.15 16.63

17 24.94 18.37 19.67

18 24.24 17.89 16.94

19 26.51 17.38 18.96

20 26.26 16.29 17.72

that the AMP and MVR CG interpretations can represent approximately the
same amount of independence models, while the LWF CGs only can represent
about 65% of this amount. Hence the AMP and MVR interpretations are the
most expressive CG interpretations, in terms of the number of representable
independence models, while the LWF interpretation falls behind. The ratio
between them does however appear to be constant as the number of nodes in
the models increases.

4.3. Intersections between the CG Interpretations in terms of Representable In-
dependence Models

In Table 2 we saw the ratio of CG models whose independence model could
be represented by DAGs. The different CG interpretations do however not only
intersect in terms of representable independence models over this subclass. For
example there exist UGs whose independence models are representable as both
AMP CGs and LWF CGs, but not as DAGs. The graphical conditions for when
the independence model of a CG of one interpretation can be represented by an-
other interpretation have been defined and proven correct [1, 16] . Hence, using
the sampled CG models we can estimate the size of the different intersections.
The results of this are shown in Table 6 where the number of independence
models in an intersection is compared to the number of all representable models
for the relevant CG interpretations. The ratios are also illustrated in Figure 2
to allow the reader a better view of how the spaces of the intersections and rep-
resentable independence models change as the number of nodes in the models
increases. We can here see that almost all independence models representable by

10

Table 5: Exact and approximate numbers of CG models representable for the different CG
interpretations.

NODES EXACT APPROXIMATE

LWF AMP MVR LWF AMP MVR

2 2 2 2 2.03 2.03 2.03

3 11 11 11 11 11 11

4 200 224 224 196 218 222

5 11519 14869 14866 11313 14097 14662

6 1.83 E+6 2.43 E+6 2.60 E+6

7 7.57 E+8 1.03 E+9 1.10 E+9

8 7.31 E+11 1.01 E+12 1.07 E+12

9 1.71 E+15 2.34 E+15 2.52 E+15

10 8.57 E+18 1.16 E+19 1.27 E+19

11 9.95 E+22 1.34 E+23 1.46 E+23

12 2.53 E+27 3.47 E+27 3.71 E+27

13 1.47 E+32 1.99 E+32 2.15 E+32

14 1.65 E+37 2.52 E+37 2.46 E+37

15 4.11 E+42 5.79 E+42 6.35 E+42

16 2.34 E+48 3.40 E+48 3.50 E+48

17 2.75 E+54 3.73 E+54 3.48 E+54

18 7.04 E+60 9.53 E+60 1.01 E+61

19 3.38 E+67 5.16 E+67 4.73 E+67

20 3.78 E+74 6.09 E+74 5.60 E+74

LWF CGs only can be represented by this interpretation while the intersection
between the AMP and MVR CGs is quite large (25% for 20 nodes).

5. Conclusion

In this article we have presented an approach for sampling AMP CG models
from the approximately uniform distribution of AMP CG models for up to 20
nodes. This has allowed us to finalize the research of expressibility, in terms
of the number of representable independence models, for the different CG in-
terpretations that exist in research today. We have presented relevant ratios,
such as the ratio of independence models representable by CGs that also can be
represented by DAGs, for the different CG interpretations for up to 20 nodes.
Moreover, we have been able compare the different CG interpretations with
each other as well as calculate how large their intersections approximately are
in terms of representable independence models. Finally we have also been able
to determine how the relevant ratios and intersections changes as the number of
nodes in the models increases, i.e. whether they follow exponential equations,
linear equations or remain constant.

The results presented confirm previous results that DAGs only can represent
a fraction of the independence models representable by CGs with more than 10
nodes and that the ratio decreases exponentially as the number of nodes in-
creases. New results are however that AMP CGs and MVR CGs can represent
approximately the same number of independence models while LWF CGs can
represent approximately 35% less models than the other two CG interpreta-

11

Table 6: Exact and approximate ratios of CG models that intersect between the different CG
interpretations.

NODES Ratio of LWF Ratio of AMP Ratio of MVR

representable as representable as representable as

AMP MVR LWF MVR LWF AMP

2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 0.9327 0.9327 0.8392 0.9300 0.8235 0.9126

5 0.7744 0.7646 0.6215 0.8303 0.5900 0.7984

6 0.5997 0.5829 0.4507 0.7519 0.4099 0.7033

7 0.4344 0.4179 0.3178 0.6845 0.2868 0.6419

8 0.2987 0.2860 0.2159 0.6346 0.1951 0.5990

9 0.2011 0.1924 0.1470 0.5914 0.1307 0.5495

10 0.1344 0.1286 0.0990 0.5432 0.0866 0.4966

11 0.0866 0.0831 0.0642 0.5027 0.0565 0.4613

12 0.0580 0.0554 0.0422 0.4688 0.0377 0.4382

13 0.0365 0.0349 0.0269 0.4352 0.0239 0.4040

14 0.0248 0.0237 0.0162 0.3982 0.0159 0.4092

15 0.0158 0.0152 0.0112 0.3718 0.0098 0.3390

16 0.0101 0.0096 0.0069 0.3453 0.0064 0.3349

17 0.0063 0.0062 0.0047 0.3164 0.0049 0.3387

18 0.0040 0.0038 0.0030 0.2928 0.0027 0.2772

19 0.0028 0.0027 0.0019 0.2759 0.0019 0.3011

20 0.0018 0.0017 0.0011 0.2507 0.0011 0.2726

tions. At the same time almost all independence models representable by LWF
CGs can only be represented by this CG interpretation, while the AMP and
MVR CG interpretations have a large intersection in terms of representable in-
dependence models (25% for 20 nodes). In addition to this we have also been
able to approximate the average number of CGs per CG model for the differ-
ent interpretations. The results show that the average number converges to
approximately 17 for the AMP and MVR CG interpretations respectively 26
for LWF CG interpretation. This corresponds well with previous research for
DAGs, although in that case the ratio converged to approximately 4 DAGs per
DAG model [11].

Moreover, with the presented sampling method for AMP CG models sam-
pling methods for CG models of all CG interpretations are now available [11, 17].
This opens up for MCMC based structure learning algorithms for the different
CG interpretations that traverses the space of CG models instead of the space
of CGs. More importantly it also opens up for further studies on what indepen-
dence models and systems the different CG interpretations can represent, which
is an important question where the answer is still unclear.

Appendix A

In this appendix we prove the theorems in Section 3. First we do however
define the necessary notation. Note that although we also define the notation for
LWF and MVR CGs this appendix is focused on the AMP CG interpretation.

12

Figure 2: The intersections of representable independence models for the different CG inter-
pretations for different number of nodes in the models. In the figures the space of independence
models representable by DAGs have size 1 and all other spaces are relative to this. For exam-
ple, LWF CGs can represent 31% more independence models than DAGs for 5 nodes while all
independence models representable by both LWF and AMP CGs, including the DAGs, only
are 4% more than those represetable by DAGs.

Hence, for proper examples of the terms used regarding LWF and MVR CGs
the reader is referred to articles handling these interpretations [6, 9, 16].

Notation

All graphs are defined over a finite set of variables V . If a graph G contains
an edge between two nodes v1 and v2, we denote with v1→v2 a directed edge,
with v1←→v2 a bidirected edge and with v1−v2 an undirected edge. A set of nodes
is said to be complete if there exist edges between all pairs of nodes in the set.

The parents of a set of nodes X of G is the set paG(X) = {v1|v1→v2 is in G,
v1 /∈ X and v2 ∈ X}. The children of X is the set chG(X) = {v1|v2→v1 is in
G, v1 /∈ X and v2 ∈ X}. The spouses of X is the set spG(X) = {v1|v1←→v2 is in
G, v1 /∈ X and v2 ∈ X}. The neighbours of X is the set nbG(X) = {v1|v1−v2 is
in G, v1 /∈ X and v2 ∈ X}. The boundary of X is the set bdG(X) = paG(X) ∪
nbG(X) ∪ spG(X). The adjacents of X is the set adG(X) = bdG(X) ∪ chG(X).

A route from a node v1 to a node vn in G is a sequence of nodes v1, . . . , vn

13

such that vi ∈ adG(vi+1) for all 1 ≤ i < n. A section of a route is a maximal
(w.r.t. set inclusion) non-empty set of nodes b1, . . . , bn such that the route
contains the subpath b1−b2− . . .−bn. It is called a collider section if b1, . . . , bn
together with the two neighbouring nodes in the route, a and c, form the subpath
a→b1−b2− . . .−bn←c. For any other configuration the section is a non-collider
section. A path is a route containing only distinct nodes. The length of a path
is the number of edges in the path. A path is descending if vi ∈ bdG(vi+1) for
all 1 ≤ i < n. A path is called a cycle if vn = v1. A cycle is called a semi-
directed cycle if it is descending and vi→vi+1 is in G for some 1 ≤ i < n. A
path π = v1, . . . , vn is minimal if there exists no other path π2 between v1 and
vn such that π2 ⊂ π holds. The descendants of a set of nodes X of G is the
set deG(X) = {vn| there is a descending path from v1 to vn in G, v1 ∈ X and
vn /∈ X}. A path is strictly descending if vi ∈ paG(vi+1) for all 1 ≤ i < n. The
strict descendants of a set of nodes X of G is the set sdeG(X) = {vn| there is a
strict descending path from v1 to vn in G, v1 ∈ X and vn /∈ X}. The ancestors
(resp. strict ancestors) of X form the set anG(X) = {v1|vn ∈ deG(v1), v1 /∈
X, vn ∈ X} (resp. sanG(X) = {v1|vn ∈ sdeG(v1), v1 /∈ X, vn ∈ X}).

A directed acyclic graph (DAG), i.e. a Bayesian network, is a graph con-
taining only directed edges and no semi-directed cycles while an undirected
graph (UG), i.e. a Markov network (respectively a bidirected graph (BG), i.e.
a covariance graph) is a graph containing only undirected edges (respectively
bidirected edges). A CG under the Lauritzen-Wermuth-Frydenberg (LWF) in-
terpretation, denoted LWF CG, contains only directed and undirected edges but
no semi-directed cycles. Likewise a CG under the Andersson-Madigan-Perlman
(AMP) interpretation, denoted AMP CG, is a graph containing only directed
and undirected edges but no semi-directed cycles. A CG under the multivari-
ate regression (MVR) interpretation, denoted MVR CG, is a graph containing
only directed and bidirected edges but no semi-directed cycles. A connectivity
component C in a LWF CG or an AMP CG (respectively MVR CG) is a max-
imal (with respect to set inclusion) set of nodes such that there exists a path
between every pair of nodes in C containing only undirected edges (respectively
bidirected edges). We denote the set of all connectivity components in a CG G
by cc(G) and the component to which a set of nodes X belong in G by coG(X).
A subgraph of G is a subset of nodes and edges in G. A subgraph of G induced
by a set of its nodes X is the graph over X that has all and only the edges
in G whose both ends are in X. With the skeleton of a graph G we mean a
graph with the same adjacencies as G but where all edges have been replaced
by undirected edges.

To illustrate these concepts we can study the AMP CG G with five nodes
shown in Figure 3a. In the graph we can for example see that the only child
of x is y and that p is a neighbour of q. p is also a strict descendant of x due
to the strictly descending path x→y→p, while q is not. q is however in the
descendants of x together with y and p. x is therefore an ancestor of all nodes
except itself and z. We can also see that G contains no semi-directed cycles
since it contains no cycle at all. Moreover we can see that G contains four
connectivity components: {x}, {y}, {z} and {p, q}. In Figure 3b we can see a

14

x

y z

p q

y

p q

x

y z

p q

(a) An AMP CG G (b) The subgraph of G induced by
{y, p, q}

(c) An LDG H

Figure 3: Three different AMP CGs

subgraph of G with the nodes y, p and q. This is also the induced subgraph of
G with these nodes since it contains all edges between the nodes y, p and q in
G.

Let X, Y and Z denote three disjoint subsets of V . We say that X is
conditionally independent from Y given Z if the value of X does not influence
the value of Y when the values of the variables in Z are known, i.e. pr(X,Y |Z) =
pr(X|Z)pr(Y |Z) holds and pr(Z) > 0. When it comes to graphs we say that
X is separated from Y given Z denoted as X⊥GY |Z if the following criterion is
met: If G is a LWF CG then X and Y are separated given Z iff there exists no
route between X and Y such that every node in a non-collider section on the
route is not in Z and some node in every collider section on the route is in Z or
anG(Z). If G is a MVR CG or BG then X and Y are separated given Z iff there
exists no d-connecting path between X and Y . A path is said to be d-connecting
iff every non-collider on the path is not in Z and every collider on the path is in
Z or sanG(Z). A node b is said to be a collider in a MVR CG or BG G between
two nodes a and c on a path if one of the following configurations exists in G:
a→b←c, a→b←→c,a←→b←c or a←→b←→c. For any other configuration the node b
is a non-collider. If G is an AMP CG, DAG or UG X and Y are separated given
Z iff there exists no S-open route between X and Y . A route is said to be S-open
iff every non-head-no-tail node on the route is not in Z and every head-no-tail
node on the route is in Z or sanG(Z). A node b is said to be a head-no-tail in
an AMP CG, DAG or UG G between two nodes a and c on a route if one of
the following configurations exists in G: a→b←c, a→b−c or a−b←c. Moreover
G is also said to contain a triplex ({a, c}, b) iff one such configuration exists in
G and a and c are not adjacent in G. A triplex ({a, c}, b) is said to be a flag
(respectively a collider) in an AMP CG or DAG G iff G contains one following
subgraphs induced by a, b and c: a→b−c or a−b←c (respectively a→b←c). If
an AMP CG G is said to contain a biflag we mean that G contains the induced
subgraph a→b−c←d where a and d might be adjacent, for four nodes a, b, c
and d. Given a graph G we mean with G ∪ {a→b} the graph H with the same
structure as G but where H also contains the directed edge a→b in addition to
any other edges in G. Similarly we mean with G \ {a→b} the graph H with the
same structure as G but where H does not contain the directed edge a→b. Note
that if G did not contain the directed edge a→b then H is not a valid graph.

15

To illustrate these concepts we can once again look at the graph G shown
in Figure 3a. G contains no colliders but two flags, y→p−q and z→q−p, that
together form the biflag y→p−q←z. This means that y⊥Gq holds but that
y⊥Gq|p does not hold since p is a head-no-tail node on the route y→p−q.

The independence model M induced by a graph G, denoted as I(G), is the
set of separation statements X⊥GY |Z that hold in G. We say that two graphs
G and H are Markov equivalent or that they are in the same Markov equivalence
class iff I(G) = I(H). Moreover we say that G and H belong to the same strong
Markov equivalent class iff I(G) = I(H) and G and H contain the same flags.
By saying that an independence model is perfectly represented in a graph G we
mean that I(G) contains all and only the independences in the independence
model.

An AMP CG model (respectively DAG model, UG model, BG model, LWF
CG model or MVR CG model) is an independence model representable by an
AMP CG (respectively DAG, UG, BG, LWF CG or MVR CG). AMP CG models
do today have two possible unique graphical representations, largest deflagged
graphs (LDGs) [15] and AMP essential graphs [2]. In this article we will only
use LDGs. An LDG is the AMP CG of a Markov equivalence class that has the
minimum number of flags while at the same time contains the maximum number
of undirected edges for that strong Markov equivalence class. LWF CG models
only have one unique graphical representation, the largest chain graphs (LCGs)
[6]. A LCG is the LWF CG of a Markov equivalence class with the maximum
number of undirected edges. Similarly MVR CG models only have one unique
graphical representation, the essential MVR CGs [17]. An essential MVR CG of
a Markov equivalence class is a graph with the same skeleton as every MVR CG
in that Markov equivalence class and which contain an arrowhead on an edge
iff that arrowhead exists in every MVR CG in the Markov equivalence class.
Hence these graphs might contain three types of edges, directed, undirected
and bidirected, and are therefore not strictly chain graphs.

For AMP CGs there exists a set of operations that allows for changing the
structure of edges within an AMP CG without altering the Markov equivalence
class it belongs to. In this article we use the feasible split operation [16] and
the legal merging [15] operation. A split is said to be feasible for a connectivity
component C of an AMP CG G iff it can be divided into two disjoint non-
empty sets U and L such that U ∪ L = C and if replacing all undirected edges
between U and L with directed edges oriented towards L results in an AMP
CG H such that I(G) = I(H). It has been shown that such a split is possible
iff the following conditions hold in G: [16] (1) ∀vi ∈ neG(L) ∩ U,L ⊆ neG(vi),
(2) neG(L) ∩ U is complete and (3) ∀vj ∈ L, paG(neG(L) ∩ U) ⊆ paG(vj).

A merging is on the other hand said to be legal for two connectivity compo-
nents U and L in an AMP CG G, such that U ∈ paG(L), iff replacing all directed
edges between U and L with undirected edges results in an AMP CG H such
that G and H belong to the same strong Markov equivalence class. It has been
shown that such a merging is possible in G iff the following conditions hold [15]:
(1) paG(L) ∩ U is complete in G, (2) ∀vj ∈ paG(L) ∩ U, paG(L) \ U = paG(vj)
and (3) ∀vi ∈ L, paG(L) = paG(vi). Note that a legal merging is not the reverse

16

operator of a feasible split since a feasible split handles Markov equivalence
classes, while a legal merging handles strong Markov equivalence classes.

If we once again look at the CGs in Figure 3 we can see that G, shown in
Figure 3a, and H, shown in Figure 3c, are Markov equivalent since I(G) = I(H).
Moreover we can note that G and H must belong to the same strong Markov
equivalence class since they contain the same flags. This means that G cannot
be an LDG since H is larger than G, i.e. contains more undirected edges.
In G it exists no feasible split, but one legal merging which is the merging of
the connectivity components {x} and {y} that results in a CG with the same
structure as H. In H it does on the other hand exist no legal merging but one
feasible split which is the split of the connectivity component {x, y} into either
x→y or y→x. We can finally note that this feasible split would result in no
additional flags and hence, since no legal mergings are possible in H, that H
must be an LDG.

Proofs for Theorems in Section 3

Theorem 1. The operators in Definition 1 fulfill the aperiodicity property when
G contains at least two nodes.

Proof. To prove this we need to show that there exists at least one operator
such that H is equal to G, and at least one operator such that it is not, for any
possible G with at least two nodes. The latter follows directly from Theorem
3 since there exist more than one possible state when G contains at least two
nodes. To see that the former must hold note that if the add directed edge
operation results in an LDG for some nodes x and y in an LDG G, then clearly
the remove directed edge x→y operation must result in an LDG H equal to G
for that G.

Theorem 2. The operators in Definition 1 fulfill the reversibility property for
the uniform distribution.

Proof. Since the desired distribution for the Markov chain is the uniform dis-
tribution proving that reversibility holds for the operators simplifies to proving
that symmetry holds for them. This means that we need to show that for any
LDG G the probability to transition to any LDG H is equal to the probability to
transition from H to G. Here it is simple to see that each operator has a reverse
operator such as remove directed edge for add directed edge etc. and that the
“forward” operator and “reverse” operator are chosen with equal probability for
a certain set of nodes. Moreover, with the exception of add respectively remove
undirected edge operator, we can also see that if H is G with one operator per-
formed upon it, such that H 6= G, then clearly there can exist no other operator
that transition G to H. For the add respectively remove undirected edge oper-
ator we can see that two operators transforms an LDG G into the same H, i.e.
add x−y respectively add y−x, but that there also exist two reverse operators
that transforms H into G. Hence the operators fulfill the symmetry property
and thereby the reversibility property.

17

Theorem 3. Given an LDG G any other LDG H can be reached using the
operators described in Definition 1 such that all intermediate graphs are LDGs.

Proof. To show that the theorem hold we must prove prove that any LDG H can
be reached from the empty graph G∅ since we, due to the reversibility property,
then also know that G∅ can be reached from H (or G). A procedure to reach
H from G∅ is detailed in Algorithm 2 and its correctness follows from Theorem
7.

Theorem 4. Given an LDG G there exists a DAG H such that G and H
represent the same independence model iff G contains no flags and G contains
no chordless undirected cycles.

Proof. Since H is a DAG and DAGs is a subclass of AMP CGs we know that for
I(G) = I(H) to hold H must be in the same Markov equivalence class as G if it
is interpreted as an AMP CG. However, since G is an LDG and contains a flag
we know that that flag must exist in every AMP CG in the Markov equivalence
class of G. Hence I(G) = I(H) cannot hold if G contains a flag. Moreover it
is also well known that the independence model of an UG containing chordless
cycles cannot be represented as a DAG. On the other hand, if G contains no
flag and no chordless undirected cycles, then clearly all triplexes in G must
be unshielded colliders. Hence, together with the fact that G cannot contain
semi-directed cycles, we can orient all undirected edges in G to directed edges
without creating any semi-directed cycles as shown by Koller and Friedman [8,
Theorem 4.13]. This means that the resulting graph must be a DAG H such
that I(G) = I(H).

Theorem 5. Given an LDG G there exists an UG H such that G and H
represent the same independence model iff G contains no directed edges.

Proof. This follows directly from the fact that G contains a triplex iff it also
contains a directed edge and UGs cannot represent any triplexes. It is also clear
that if G contains no directed edges than it can only contain undirected edges
and hence be interpreted as an UG.

Theorem 6. An AMP CG G is an LDG iff no legal merging is possible in G
and there exists no sequence of feasible splits of G such that the resulting graph
H contains fewer flags than G.

Proof. From the definition of an LDG it directly follows that G is not an LDG
if a legal merging exists for G or if there exists another AMP CG H with fewer
flags than G such that I(H) = I(G). To see that G must be an LDG if the
conditions are fulfilled we can note that the maximally oriented AMP CG can
be reached by iteratively repeating feasible splits onto G [16, Theorem 4]. This
graph must contain the minimum number of flags for any AMP CG in the
Markov equivalence class of G, and hence belong to the same strong Markov
equivalence class as the LDG of the Markov equivalence class of G. From the
maximally oriented AMP CG it has then been shown that the LDG can be
reached by iteratively applying legal mergings [15, Proposition 16].

18

Given an LDG H the following algorithm constructs G from the the
empty graph using the operators in Definition 1 such that G = H when
the algorithm terminates and all intermediate graphs are LDGs.

1 Let G be the empty graph containing no nodes.
2 Repeat until G = H:
3 Let C be a connectivity component in H such that the subgraphs of G

and H induced by anH(C) have the same structure. Also let HC be the
subgraph of H induced by C and the nodes in G.

4 If all nodes in C have the same set of parents in H:
5 Perform the steps shown in Algorithm 3 with C = C,G = G and

H = HC .
6 Else: (when all nodes in C do not have the same set of parents)
7 Perform the steps shown in Algorithm 4 with C = C,G = G and

H = HC .
8 Restart the loop in line 2.

Algorithm 2: Construction Algorithm

Below follows one of the main contributions of this paper, i.e. an algorithm
that shows that the operators in Definition 1 can be used to reach any LDG
with the given number of nodes. The proof of the algorithms correctness, and
the algorithm itself, is however quite long and split into several theorems and
subalgorithms each handling different parts of it. Moreover, due to the algo-
rithms complexity, an example illustrating how it works is included in the end
of the appendix.

Theorem 7. Algorithm 2 is correct, i.e. defines a valid sequence of opera-
tions such that any LDG H can be reached from the empty graph such that all
intermediate graphs are LDGs.

Proof. To prove this theorem we need to show that all intermediate graphs are
LDGs and that G = H when the algorithm terminates.

As can be seen in Algorithm 2 each iteration of the loop in line 2 consists
of taking one connectivity component C and add it to G until G and H have
the same structure. C is chosen in such a way, in line 3, that the subgraphs of
G and H induced by the anH(C) have the same structure. After each iteration
we then know, as shown by Lemmas 8 and 10, that the subgraphs of G and H
induced by anG(C) ∪ C have the same structure.

To see that we can add the connectivity components this way it is enough to
note that neither the conditions for when a split is feasible nor the conditions
for when a merging is legal takes the children or descendants of C respectively L
into consideration. This means that when we check if a connectivity component
fulfills the criteria for an LDG we only look at the connectivity component itself
and its ancestors. In turn this also means that an LDG G can only be an LDG
if ∀C ∈ cc(G) the subgraphs induced by C ∪ anG(C) are LDGs. Moreover,
this also means that when adding new directed edges to, or undirected edges
within, a component C chosen in line 3 in a graph G, we only have to check if
a sequence of splits, that removes some flag, is feasible in C and not the whole

19

Given an LDG H with a component C, such that ∀vi ∈ C
paH(vi) = paH(C) and chH(C) = ∅, and an LDG G, such that
G = H \ C, the following algorithm transforms G into H using the
operators in Definition 1 such that all intermediate graphs are LDGs.

1 Add the nodes of C to G.
2 Repeat for all nodes x ∈ C:
3 Apply the first applicable line until paG(x) = paH(x):
4 If there exist two nodes y, z ∈ paH(x) \ paG(x) such that y /∈ adH(z)

then add y→x, z→x to G with the add two directed edges operation.
5 If there exist two nodes y, z ∈ paH(x) such that z ∈ paG(x),

y /∈ paG(x) and y /∈ adH(z) then add y→x to G with the add directed
edge operation.

6 If there exist a node y ∈ paH(x) \ paG(x) such that G ∪ {y→x} is an
LDG then add y→x to G with the add directed edge operation.

7 For any two nodes x and y in C such that x−y is in H but not in G, add
x−y to G.

Algorithm 3: Component addition algorithm for when ∀vi ∈ C pa(vi) =
pa(C)

graph G. This is because we already know that the subgraph of G induced by
the ancestors of C must be an LDG. Similarly we only have to consider C and
its parent components when we check if some mergings are legal in G.

Finally, assuming that for each C chosen in line 3 the subgraphs of G and H
induced by C ∪anH(C) have the same structure after the iteration, it is easy to
see that the loop must terminate when G = H due to the top down structure
of components in H.

Corollary 1. Given an LDG H and an LDG G such that G = H \ C where
C is a connectivity component such that chH(C) = ∅, it is sufficient to check
whether a sequence of splits is feasible in C or a merging legal for the nodes in
C ∪ paG(C) for determining whether G is an LDG when edges in H are added
to G.

Lemma 8. Algorithm 3 is correct, i.e. transforms an LDG G into an LDG H,
if G = H \ C and C is a component in H such that all nodes in C have the
same parents and chH(C) = ∅, using the operators in Definition 1 such that all
intermediate graphs are LDGs.

Proof. First note that C does not contain any flags. This means, together
with corollary 1, that for a condition for a legal merging of C and some parent
component to fail, the same condition must fail for every node in C, regardless
of its neighbours in C.

From this it follows that we can add the parents to each node x ∈ C, chosen
in line 2, independently of the other nodes in C and that any merging must
be illegal due to the parents of x when paG(x) = paH(x). To see that all
intermediate graphs are LDGs when the parents of x in H are added to x in G
we can study the loop in line 3 and the graph altering lines 4, 5 and 6. First note

20

that no mergings can be legal. For lines 4 and 5 this follows directly from the fact
that parents added by these lines are part of unshielded colliders, and hence no
merging can be legal between C and some parent component of C. For line 6 it
does on the other hand follow from the condition that the resulting graph must
be an LDG. To see that paG(x) = paH(x) must hold when line 6 is no longer
applicable assume the contrary, i.e. that the set S = paH(x) \ paG(x) is non-
empty. We then know that ∀si ∈ S paH(x) ⊆ adH(si) must hold, or line 4 or 5
would have been applicable. Moreover we know that ∀si ∈ S paH(si) ⊆ paH(x)
and deH(si)∩ paG(x) = ∅ must hold or the graph G∪{si→x} must be an LDG
and hence that line 6 would be applicable. This does however mean that there
exists a node y ∈ S such that deH(y) ∩ S = ∅ holds and hence for which the
merging U = coH(y) and L = C is legal in H which is a contradiction. Hence we
must have that the loop in line 3 is executed such that all intermediate graphs
are LDGs and ∀x ∈ C paG(x) = paH(x) holds afterwards.

For line 7 we can note that no flag removing sequence of splits can exist in
C since all nodes in C have the same parents. Hence each undirected edge can
be added independently without taking the structure of C into consideration
while no mergings are legal as described above.

Before we continue with the last part of the proof of irreducibility we will
first define the terms subcomponent, subcomponentorder, strong edge and strong
undirected path and make some conclusions about these terms. Let the sub-
components of a connectivity component C, in an AMP CG H, be the different
components that are subsets of C in the maximally oriented AMP CG H ′ of
H, i.e. H where all feasible splits have been performed, iteratively. This means
that H and H ′ belong to the same strong Markov equivalence class and have the
same structure, with the exception that H ′ might have directed edges where H
have undirected edges. We thereby know that a component C in H can consist
of several subcomponents in H ′ and denote these subsets of nodes C1, C2, ..., Cn.
We also define an order of these subcomponents such that Ck must have a lower
order than Cl if Ck is an ancestor of Cl in H ′. In short this means that the
subcomponent with lowest order has no parents in C in H ′.

With the term strong edge in an LDG G we mean an edge that must exist
in every AMP CG in the Markov equivalence class of G. For example, if an
undirected edge x−y is strong in an AMP CG G, then there exists no sequence
of feasible splits in G that orients this edge into x→y or y→x. With strong
undirected path we mean a path of strong undirected edges.

Lemma 9. Given an LDG H with a component C, such that ∃vi ∈ C for which
paH(vi) 6= paH(C) and chH(C) = ∅, let H ′ be the maximally oriented AMP CG
of H and C1 the subcomponent of C in H ′ with the lowest order. The following
statements must then hold:

1. No splits are feasible within the subcomponents of C.

2. All nodes in C \ C1 must be strict descendants of C1 in H ′.

21

3. For every node ck ∈ C\C1 that is a strict descendant of some node cl ∈ C1

it must hold that paH(cl) = paH(ck).

4. Every set of parents that exists to some node in C must also exist to some
node in C1.

5. C1 must be unique, i.e. consists of the same set of nodes no matter how
H is split.

6. ∀ck ∈ Ci, i 6= 1, paH(ck) = paH(nbH(ck)).

Proof. Each statement is proved separately:
(1): This follows directly from the way subcomponents are defined.
(2): To see this note that for a split to be feasible the adjacent nodes of

L in U must be adjacent of all nodes in L. This means that if there exists
a subcomponent Ci such that ∃ck ∈ Ci, ck ∈ nbH(C1), ck ∈ chH′(C1) then
any node in C1 ∩ nbH(Ci) must be a parent of all nodes in Ci. This in turn
means that if there exists a subcomponent Cj such that ∃cl ∈ Cj , cl ∈ nbH(Ci),
cl ∈ chH′(Ci) then any node in Ci ∩ nbH(Cj) must be a parent of all nodes in
Cj . From this it then iteratively follows that all nodes in C \C1 must be strict
descendants of C1 in H ′.

(3) First we will show that for every node ck ∈ C \ C1 that is a strict
descendant of some node cl ∈ C1 it must hold that paH(ck) ⊆ paH(cl). To see
this assume the contrary and that ck is a node for which the statement does not
hold. A feasible split must then have been performed when H was transformed
into H ′ such that ck belonged to L and some node cm belonged to U , such that
paH(cm) ⊆ paH(cl) and paH(ck) 6⊆ paH(cm) hold. This do however lead to
a contradiction since such a feasible split would remove a flag from H, which
is not possible since H is an LDG. Secondly we will show that for every node
ck ∈ C \ C1 that is a strict descendant of some node cl ∈ C1 it must hold that
paH(cl) ⊆ paH(ck). To see this assume the contrary and that ck is a node for
which the statement does not hold. Then a split must have been performed
when H was transformed into H ′ such that ck belonged to L and some node cm
belonged to U , such that paH(cl) ⊆ paH(cm) and paH(cm) 6⊆ paH(ck) . We can
then see that condition 3 for a feasible split is not fulfilled which contradicts
that H and H ′ are in the same Markov equivalence class. Hence we have that
for every node ck ∈ C \ C1 that is a strict descendant of some node cl ∈ C1 it
must hold that paH(cl) = paH(ck).

(4) This follows directly from (3).
(5) This follows directly from (4) and that ∃vi ∈ C for which paH(vi) 6=

paH(C).
(6) To see this note that all nodes ck for which there exists a path to cl ∈ C1

in the subgraph of H induced by (C \ C1) ∪ cl must be strict descendants of
cl in H ′. This follows from (2) and that for a split to be feasible all nodes in
U ∩nbH(L) must be adjacent of all nodes in L. Together with (3) it then follows
that the statement must hold.

22

Given an LDG H with a component C, such that ∃vi ∈ C for which
paH(vi) 6= paH(C) and chH(C) = ∅, and an LDG G, such that
G = H \ C, the following algorithm transforms G into H using the
operators in Definition 1 such that all intermediate graphs are LDGs.

1 Add the nodes in C to G.
2 Let H ′ be the maximally oriented AMP CG of H and C1 the

subcomponent with lowest order.
3 Let A and B be two empty sets of nodes. Let the nodes in C have an

ordering that is updated as nodes are added to the sets A and B and
where the order of a node vi is defined as follows: If vi ∈ A then its order
is the size of A when it was added to A. If vi ∈ B but vi /∈ A, then its
order is |C| plus the size of A when it was added to B. If it is in neither
set let it have a higher order than any node in A or B.

4 If H ′ contains an induced subgraph of the form p→x−y←q then:
5 Add first x−y and then both p→x and q→y at once to G. Add both x

and y to A.
6 Else we know that H ′ must contain an induced subgraph of the form
y−x−z such that ∃p ∈ paH(x) and p /∈ paH(z).

7 Add y−x, x−z and p→x to G sequentially. Add x to A and y and z to
B.

8 For each node ai ∈ A and parent pj ∈ paH(ai) such that pj /∈ paG(ai)
and pj is not a parent of all nodes in A ∪B in H, add pj→ai to G.

9 Repeat until line 10 is no longer applicable:
10 If there exist two nodes x ∈ A and y ∈ nbH′(x) ∩ C1 such that either

∃p ∈ paH(x) \ paH(y) or ∃z ∈ nbH′(y) ∩ C1 \ nbH′(x) hold then choose
x and y in this way but also choose y (and the corresponding x) so that
y has the highest possible order:

11 If ∃p ∈ paH(x) \ paH(y): Add p→x to G if it is not in G, then add
x−y to G if it is not in G. Add y to A if does not already belong to A.

12 Else (when ∃z ∈ nbH′(y) \ nbH′(x)): Add x−y and y−z to G
(sequentially) if they are not already in G. Add y to A and z to B if
they not already belong to these sets.

13 For each node ai ∈ A and parent pj ∈ paH(ai) such that pj /∈ paG(ai)
and pj is not a parent of all nodes in A ∪B in H, add pj→ai to G.

14 For any two nodes x and y in A such that x−y is in H but not in G, add
x−y to G.

15 Repeat until A = C:
16 Let ai be the node with highest order in A such that ∃cj ∈ nbH(ai) \A

and add ai−cj to G and cj to A.
17 Repeat until ∀ai ∈ A paH(ai) = paG(ai):
18 Let x be the node with lowest order in A such that paH(x) 6= paG(x).

Apply the first applicable line until paG(x) = paH(x):
19 If there exist two nodes y, z ∈ paH(x) \ paG(x) such that y /∈ adH(z)

then add y→x, z→x to G with the add two directed edges operation.
20 If there exist two nodes y, z ∈ paH(x) such that z ∈ paG(x),

y /∈ paG(x) and y /∈ adH(z) then add y→x to G with the add directed
edge operation.

21 If there exist a node y ∈ paH(x) \ paG(x) such that G ∪ {y→x} is an
LDG then add y→x to G with the add directed edge operation.

22 For any two nodes x and y in A such that x−y is in H but not in G, add
x−y to G.

Algorithm 4: Component addition algorithm for when ∃vi ∈ C pa(vi) 6=
pa(C)

23

Lemma 10. Algorithm 4 is correct, i.e. transforms an LDG G into an LDG
H, if G = H \ C and C is a component in H such that all nodes in C do not
have the same parents and chH(C) = ∅, using the operators in Definition 1 such
that all intermediate graphs are LDGs.

Proof. The algorithm can then be seen to consist of three different phases where
in each phase nodes in C are added to the set of nodes A. When a node x is
added A, some edges in H, with x as an endpoint, are also added to G such that
x becomes adjacent of some previously added node in A. We will show that by
adding nodes as described in Algorithm 4 a structure is constructed that fulfills
certain properties such as for example that flag removing sequences of splits are
not feasible and mergings are not legal in G. In the first phase, lines 4 to 8, an
initial structure which fulfills these properties is identified in H and added to
G. In the second phase, lines 9 to 13, this structure is extended with the nodes
in C1, i.e. the subcomponent of C in the maximally oriented AMP CG H ′ of
H with lowest order. In the third and last phase the remaining nodes in C are
connected to the structure where after the remaining edges in H also are added
to G. We can note that it is enough to show that there exists no flag removing
sequence of feasible splits within C in G and that no merging is legal between
C and some parent component of C in G when determining whether G is an
LDG as described in Corollary 1.

Phase 1, lines 4 to 8:
To see that one of the induced subgraphs shown in line 4 respectively 6 must
exist in C1 in H ′ assume the contrary. Since all nodes in C do not have the
same parents we know, together with (4) in Lemma 9, that all nodes in C1

do not have the same parents. This means that there must exist two nodes
x, y ∈ C1 such that ∃p ∈ paH(x) \ paH(y). Let L consist of all nodes in C1

that have the parent p and U of all nodes that do not. We then know that
∀ck ∈ U ∩ nbH′(L) L ∈ nbH′(ck) holds or the induced subgraph described in
line 6 must exist in H ′. Similarly we know that U ∩nbH′(L) must be complete.
Finally we also know that ∀cl ∈ L paH′(nbH′(cl)∩U) ⊆ paH′(cl) or the induced
subgraph described in line 4 must exist in H ′. This does however mean that a
split, with the described U and L is feasible in C1 in H ′ which is a contradiction
to (2) in Lemma 9. We can also note that the intermediate graphs for lines 5
and 7 are LDGs since no splits are feasible (and no mergings possible) when C
has not yet received any parents in G. Once it has received parents through
lines 5 or 7 it is easy to see that all parents are part of flags that cannot be
removed with some feasible split. We can also note that the undirected edges
in C in the resulting G are strong.

In line 8 additional parents are then added to the nodes in A. Note however
that all these parents must be parts of flags in G, and hence, since the undirected
edges in C in G are strong, cannot be part of a legal merging.

Phase 2, lines 9 to 13:
In this phase the remaining nodes in C1 are added to A. We can here note
that from (2) and (3) in Lemma 9 it follows that any flag over some node in
C must be over some node in C1. Moreover, any collider over some node in C

24

must also exist over a node in C1. This means that whatever prevents a legal
merging of C and any of its parent components also must be preventing a legal
merging between C1 and its parent components in the subgraph of H induced
by anH(C) ∪ C1. Hence, since no split can be feasible in C1, the subgraph of
H induced by anH(C) ∪ C1 must be a LDG. From this it follows that we can
add C1 to G first, and then consider the remaining nodes in C separately.

Below we shown that the nodes in C1 are added in such a way that an
undirected path exists between the initial node(s) in A and the now added
nodes. We also show that any undirected edge in this path must be strong if
any of its endnodes have at least one parent. This prevents any sequence of
feasible splits to be flag removing. Moreover, we show that any added parent to
any node in C1 must be part of a flag, preventing any merging to be legal. To
do this we will however first need to make some observations about the loop in
line 9 and the structure of C in G during this loop:

(a) When the loop terminates it must hold that A = C1. This follows from
(2) in Lemma 9, i.e. that no splits are feasible in C1. Hence, for every non-
empty subset of nodes Vi ⊂ C1 at least one of the conditions for a feasible
split with U = Vi and L = C1 \ Vi must fail. If we study the conditions for a
feasible split we can note that this can be for two reasons. Either there exist
two nodes cl ∈ Vi and ck /∈ Vi such that cl−ck is in H ′ and paH′(cl) 6⊆ paH′(ck)
or there exist two nodes cl ∈ Vi and ck /∈ Vi such that cl−ck is in H ′ and
nbH′(ck) 6⊆ nbH′(cl). Hence the conditions for line 10 must be fulfilled for any
A ⊂ C1.

(b) The only nodes in C that can have parents are those in A. This follows
directly from how parents are added in the loop.

(c) The only nodes in C that can have any neighbours are those in A and B
and A ∪B ⊆ C1.

(d) All parents of C must be part of flags. Hence no mergings can be legal.
This follows from that a parent only is added to a node x in G if it is not a
parent of some node in G for which there exists an undirected path to x in G.

(e) When the loop terminates all nodes in C1 must have the same parents in
G and H with the exception of the parents that are parents of all nodes in C.
This follows from the way that parents are added in line 13 and (4) in Lemma
9.

(f) A strong undirected path must exist between any two nodes in C1 after
the loop in line 9 terminates. This follows directly from that no split is feasible
in C1 in H ′.

(g) For any edge x−y added in lines 11 or 12, with the x and y described
for those lines, that edge must be strong for the current G and all future G
if either paG(x) 6= ∅ or paG(y) 6= ∅. To see this assume the contrary and
first assume that there exists a feasible split with x ∈ U and y ∈ L. Clearly
paG(x) ⊆ paG(y) must then hold, which contradicts that the condition for line
11 is fulfilled. For line 12 the edge x−y can obviously not be split directly
into x→y since neG(y) 6⊆ neG(x). We can however imagine that there exists a
sequence of splits that orients y−z into y→z, thereby making the split of x−y
into x→y feasible. This would then require that paG(x) ⊆ paG(y), or the split

25

would not be feasible. This together with the assumption that paG(x) 6= ∅ and
paG(y) 6= ∅ means that paG(y) 6= ∅. Moreover, this means that y must belong
to A, since only nodes in A in C have parents in G. In turn this means that
we can now restart this part of the proof with the edge y−z instead and see
why it cannot be feasible split. It then follows that for every edge there has to
exist some other edge that would have to be split before the current edge for
which the condition that either paG(x) 6= ∅ or paG(y) 6= ∅ must hold. To see
that no split is feasible with x in L and y ∈ U note that this would require y to
be adjacent of all nodes in A∪B in G which in turn would require A = C1 due
to order in which nodes are chosen as y in line 10. For a split to be feasible it
would also have to hold that ∀ai ∈ A∪B paG(y) ⊆ paG(ai), and, since A = C1,
that all nodes in C1 have the same parents in G and H with the exception of the
parents that are parents of all nodes in C as discussed in (e). This is however
a contradiction since the same split then would be feasible in H ′.

With these observations we can now see that line 11 can be performed and
that the intermediate graphs must be LDGs. p→x can be added since all edges
w−x in G for all nodes w ∈ nbG(x) must be strong after x has received p as
a parent as described in (g). That x−y also is strong follows from (g). For
line 12 we can note that a split is feasible of x−y to x→y when only x−y have
been added to G. Such a split does however not remove any flag. Later, when
y−z has been added we also know that the resulting graph must be an LDG as
described in (e).

For line 13 we can note that any added parent must be part of a flag in G
and hence no legal mergings can be possible. Moreover it follows from (g) that
no sequence of feasible splits can remove a flag.

Phase 3, lines 14 to 22:
That line 14 must result in LDGs follows from the fact that a strong undirected
path must exist between any two nodes in C1 as described in (f) and that this
path cannot be made weak by adding additional undirected edges that exist in
H. Hence, after line 14 the subgraphs of H and G induced by C1 must have
the same structure. Note however that C1 might have some parents in H that
do not exist in G, but only if those parents are parents of all nodes in C as
described in (e). These last parents are handled in the loop in line 17.

The loop in line 15 then creates several tree structures, each with a root node
in C1, that extends A to consist of all nodes in C. Note that any two nodes ci
and cj must belong to the same tree structure if there exists an undirected path
between ci and cj in the subgraph of H induced by C \ C1. That no sequence
of feasible splits, that removes a flag, can exist in G follows from the fact that
only nodes in C1 can have parents and no node not in C1 can be adjacent of all
nodes in C1 in G before line 22.

In the loop in line 17 the parents of the nodes in C are added to G. We
can now note that in each subtree all nodes must have the same parents as
shown in (6) in Lemma 9. Moreover the parents are added from the root and
outwards, adding the parents to the leafs last. This gives that no edge x−y,
such that x has a lower order than y, can be oriented into x→y or y→x by a
sequence of feasible splits that removes a flag from G. If both x, y ∈ C1 this

26

follows from (f). If x /∈ C1 or y /∈ C1 orienting the edge to x→y through a
feasible split cannot be flag removing since y only has a parent if x has the
same parent. Nor can it exist any feasible split that orients the edge to y→x
since ∃z ∈ nbG(x) \ nbG(y). Moreover, once both x and y has received their
parents it must hold that paG(x) = paG(y) as shown in (3) in Lemma 9 and
hence any sequence of feasible splits cannot be flag removing. That no mergings
are legal before the last node receives its parents follows from that all parents
are part of flags. When the last node x, with the highest order in C, receives
its parents we can also note that no mergings can be legal. For lines 19 and
20 this follows directly from the fact that every parent added by these lines
are part of unshielded colliders, and hence no merging can be legal between
C and some parent component of C. For line 21 it does on the other hand
follow from the condition that the resulting graph must be an LDG. To see that
paG(x) = paH(x) must hold when the loop in line 17 terminates assume the
contrary, i.e. that there exists a node y ∈ paH(x) \ paG(x). We then know that
paH(x) ⊆ adH(y) must hold, or lines 19 or 20 would have been applicable. We
also know that paH(y) ⊆ paH(x) and ∀vi ∈ C y ∈ paH(vi) hold, or the graph
G∪{y→x}must be an LDG. This does however also mean that a merging is legal
in H, since ∀ai ∈ anH(x) ∪ C \ x bdG(ai) = bdH(ai), which is a contradiction.
Hence we must have that ∀vi ∈ C paH(vi) = paG(vi) when line 22 is reached.

Finally in line 22 the remaining undirected edges can be added to G since
all nodes adjacent in C in H but not in G have the same set of parents. Hence
no sequence of feasible splits can be flag removing.

An Example Illustrating Algorithm 2

In this subsection we show an example of how Algorithm 2 recreates an LDG
H from the empty graph such that all intermediate graphs are LDGs using the
operators from Definition 1. The LDG H that is to be constructed is shown in
Figure 4.

v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

Figure 4: An example LDG H.

The algorithm starts by, in line 3, selecting one connectivity component C
in H such that the subgraph of G and H induced by anG(C) have the same
structure. Since G contains no nodes at this time, we can note that this only
holds for the components {v1, v2} and {v3}. Let us choose to start with {v3}.

27

v1 v2 v3

v1 v2 v3

v4 v5 v6 v7

(a) G after the first two connectivity compo-
nents have been added to G.

(b) G when the third component is being added
to G.

v1 v2 v3

v4 v5 v6 v7

v1 v2 v3

v4 v5 v6 v7

v8 v9 v10

(c) G when the third connectivity components
have been added to G.

(d) G when the last component of H is being
added to G.

Figure 5: Intermediate LDGs G during the construction process.

Since paH(v3) = ∅ we then know that the condition in line 4 is fulfilled and
hence that line 5 is performed. Looking in Algorithm 3 we can then note that
only line 1 is applicable, since C in this case only contains one node with no
parents.

For the second iteration of Algorithm 2 we note that the component {v1, v2}
must be chosen as C, since this is the only component which fulfills the condi-
tion in line 3. Once again we have that paH(C) = ∅ and hence that line 5 is
performed. In Algorithm 3 line 1 is performed as before but this time line 7
is also applied for the edge v1−v2. However, since paH(C) = ∅ lines 2 to 6 is
not applicable. The resulting graph after this iteration of the loop in line 2 in
Algorithm 1 is then shown in Figure 5a.

For the third iteration the component {v4, v5, v6, v7} must be chosen as C
in line 3. In this case the condition in line 4 is not fulfilled, and hence line 6 is
performed in Algorithm 2. In Algorithm 4 we can then see that line 1 must be
performed, adding the nodes in C to G. We can also note that C1 must only
contain the nodes {v4, v5, v6} since a split, with U = {v4, v5, v6} and L = {v7},
is feasible in H although not flag removing. In phase 1 of Algorithm 4 we can
then see that the condition in line 4 is fulfilled for the biflag v1→v4−v5←v2.
This means that in line 5 v4−v5 is first added whereafter v1→v4 and v5←v2 are
added by the add two directed edges operator. We can in line 8 then also note
that the parent v3 is not added to v4 or v5 since it is a parent of all nodes in
A (i.e. v4 and v5). In phase 2 the node v6 is the only remaining node in C1

and hence must be chosen as y in line 10 together with v5 as x. It also fulfills
the condition for this since v2 ∈ paH(v5) \ paH(v6). This means that line 11 is

28

performed adding the edge v5−v6 to G. Once again we can note that v3 is not
added as parent in line 13 since it is a parent of all nodes in A (v4, v5 and v6).
The resulting graph is seen in Figure 5b. Since line 10 in Algorithm 4 is not
applicable for any other node in C1 phase 3 now starts where the edge v6−v7 is
added to G in line 16. After this A = C and the parents of C are to be added in
the loop in line 17. This is done by first adding v3→v4 to G and then the edges
v3→v5, v3→v6 and v3→v7 sequentially. For the first two edges this is done in
line 20 due to the unshielded colliders with v1 respectively v2 while for the last
two edges this is done in line 21. We can then note that line 22 is not applicable
for any edge in H and that G have the structure shown in Figure 5c when the
third iteration of line 2 in Algorithm 2 finishes.

For the fourth and last iteration of the loop in line 2 in Algorithm 2 we see
that C must be chosen as {v8, v9, v10}. In this case the condition in line 4 is
fulfilled, meaning that line 5 is performed and that Algorithm 3 is executed.
This in turn means that line 1 in Algorithm 3 first is applied, adding the nodes
in C to G. After this one of the nodes in C is chosen as x in line 2, let’s
say v8, and the parents in H is added to this node in G. In this case this is
done in line 4 since v4 and v6 form an unshielded collider over v8. This process
is then repeated for all nodes in C, resulting in the LDG seen in Figure 5d.
Finally the last two undirected edges of C are also added sequentially in line 7
of Algorithm 3 whereafter G and H have the same structure, and the loop in
line 2 in Algorithm 2 terminates.

Acknowledgments

This work is funded by the Swedish Research Council (ref. 2010-4808).

[1] S. A. Andersson, D. Madigan, and M. D. Perlman. An Alternative Markov
Property for Chain Graphs. Scandinavian Journal of Statistics, 28:33–85,
2001.

[2] S. A. Andersson and M. D. Perlman. Characterizing Markov Equivalence
Classes For AMP Chain Graph Models. The Annals of Statistics, 34:939–
972, 2006.

[3] D. R. Cox and N. Wermuth. Linear Dependencies Represented by Chain
Graphs. Statistical Science, 8:204–218, 1993.

[4] D. R. Cox and N. Wermuth. Multivariate Dependencies: Models, Analysis
and Interpretation. Chapman and Hall, 1996.

[5] M. Drton. Discrete Chain Graph Models. Bernoulli, 15:736–753, 2009.

[6] M. Frydenberg. The Chain Graph Markov Property. Scandinavian Journal
of Statistics, 17:333–353, 1990.

[7] O. Häggström. Finite Markov Chains and Algorithmic Applications. Camp-
bridge University Press, 2002.

29

[8] D. Koller and N. Friedman. Probabilistic Graphcal Models. MIT Press,
2009.

[9] S. L. Lauritzen and N. Wermuth. Graphical Models for Association Be-
tween Variables, Some of Which are Qualitative and Some Quantitative.
The Annals of Statistics, 17:31–57, 1989.

[10] Z. Ma, X. Xie, and Z. Geng. Structural Learning of Chain Graphs via
Decomposition. Journal of Machine Learning Research, 9:2847–2880, 2008.

[11] J. M. Peña. Approximate Counting of Graphical Models Via MCMC. In
Proceedings of the 11th International Conference on Artificial Intelligence
and Statistics, pages 352–359, 2007.

[12] J. M. Peña, D. Sonntag, and J. Nielsen. An Inclusion Optimal Algorithm for
Chain Graph Structure Learning. In Proceedings of the 17th International
Conference on Artificial Intelligence and Statistics, pages 778–786, 2014.

[13] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

[14] R. W. Robinson. Counting Labeled Acyclic Digraphs. New Directions in
the Theory of Graphs, pages 239–273, 1973.

[15] A. Roverato and M. Studený. A Graphical Representation of Equivalence
Classes of AMP Chain Graphs. Journal of Machine Learning Research,
7:1045–1078, 2006.

[16] D. Sonntag and J. M. Peña. Chain Graph Interpretations and Their Rela-
tions. International Journal of Approximate Reasoning, 58:39–56, 2014.

[17] D. Sonntag, J. M. Peña, and M. Gómez-Olmedo. Approximate Count-
ing of Graphical Models Via MCMC Revisited. International Journal of
Intelligent Systems, 30:384–420, 2015.

[18] B. Steinsky. Enumeration of Labelled Chain Graphs and Labelled Essential
Directed Acyclic Graphs. Discrete Mathematics, 270:266–277, 2003.

30

