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Abstract

In this paper we study how different theoretical concepts of Bayesian net-
works have been extended to chain graphs. Today there exist mainly three
different interpretations of chain graphs in the literature. These are the
Lauritzen-Wermuth-Frydenberg, the Andersson-Madigan-Perlman and the
multivariate regression interpretations. The different chain graph interpre-
tations have been studied independently and over time different theoretical
concepts have been extended from Bayesian networks to also work for the
different chain graph interpretations. This has however led to confusion re-
garding what concepts exist for what interpretation.

In this article we do therefore study some of these concepts and how
they have been extended to chain graphs as well as what results have been
achieved so far. More importantly we do also identify when the concepts
have not been extended and contribute within these areas. Specifically we
study the following theoretical concepts: Unique representations of indepen-
dence models, the split and merging operators, the conditions for when an
independence model representable by one chain graph interpretation can be
represented by another chain graph interpretation and finally the extension
of Meek’s conjecture to chain graphs. With our new results we give a co-
herent overview of how each of these concepts is extended for each of the
different chain graph interpretations.

Keywords: Chain graphs, Lauritzen-Wermuth-Frydenberg interpretation, Andersson-
Madigan-Perlman interpretation, multivariate regression interpretation.
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1. Introduction

Chain graphs (CGs) are hybrid graphs with two types of edges represent-
ing different types of relationships between the random variables of interest.
These are the directed edges representing asymmetric relationships and a
secondary type of edge representing symmetric relationships. Hence CGs ex-
tend Pearl’s classical interpretation of directed and acyclic graphs (DAGs),
i.e. Bayesian networks (BNs). However, there exist three different interpre-
tations of CGs in research. These are the Lauritzen-Wermuth-Frydenberg
(LWF) interpretation presented by Lauritzen, Wermuth and Frydenberg in
the late eighties [9, 11], the Andersson-Madigan-Perlman (AMP) interpre-
tation presented by Anderson, Madigan and Perlman in 2001 [2] and the
multivariate regression (MVR) interpretation presented by Cox and Wer-
muth in the nineties [6, 7]. A fourth interpretation of CGs can also be found
in a study by Drton [8] but this interpretation has not been further studied
and will not be discussed in this paper.

Each interpretation has a different separation criterion and does therefore
represent different independence models. Many papers have studied these
independence models and extended many theoretical concepts regarding in-
dependence models from BNs to also work for CGs. Most of these papers
have however only looked at one interpretation at a time, which has led to
an incoherent picture of what theoretical concepts exist for the different CG
interpretations. Moreover, this has caused research on some concepts to be
missing.

In this paper we do therefore look into some of these concepts and study
how they are extended to the different CG interpretations to give a coherent
overview of the research performed. More importantly, we do also identify
where the concepts have not yet been extended to certain CG interpretations
and contribute in different ways within these areas. Specifically we look into
four areas that in different ways connect to the independence models of CGs.
The first area is what unique representations exist for the different inde-
pendence models representable by the different CG interpretations. Having
such unique representations is important since there might exist multiple
CGs representing the same independence model even for the same CG inter-
pretation. The second area concerns the feasible split and feasible merging
operators. These operators are used for altering the structure of a CG with-
out altering which Markov equivalence class it belongs to. The third area we
look into is what the conditions are for when an independence model rep-
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resented by one CG interpretation also can be represented by another CG
interpretation. This is important since it allows us to see when the different
CG interpretations overlap in terms of representable independence models.
The fourth and final area concerns Meek’s conjecture and whether it can be
extended to the different CG interpretations. Meek’s conjecture states that
given two DAGs G and H, s.t. the independence model represented by G
includes the independence model represented by H, we can transform G into
H through a sequence of operations s.t. the independence model represented
by G includes the independence model of H for all intermediate DAGs G.
The operations consist in adding a single directed edge to G, or replacing G
with a Markov equivalent DAG. The validity of the conjecture was proven by
Chickering in 2002 [4] and has allowed several learning algorithms for DAGs
to be constructed.

Our contribution, in addition to a study of previous research in the area,
is then the following definitions, examples and algorithms, together with their
proofs of correctness, that previously have been missing:

� The definitions of the feasible split and feasible merging operators for
AMP CGs and proof that for any two Markov equivalent AMP CGs
G and H there exists a sequence of feasible splits and mergings that
transforms G into H.

� An example showing there are no unique representatives of equivalence
classes of MVR CGs that are MVR CGs.

� An algorithm that from any AMP CG G outputs the Markov equivalent
AMP essential CG H.

� The necessary and sufficient conditions for when an independence model
represented by a MVR CG can be perfectly represented by a CG in an-
other interpretation and vice versa.

� An example that proves that Meek’s conjecture does not hold for MVR
CGs.

The remainder of the article is organized as follows. In the next section we
present the notation we use throughout the article. In Section 3 we discuss
the unique representations and in Section 4 we define the feasible split and
merging operators. Section 5 contains the necessary and sufficient conditions
for when an independence model represented by a CG in one interpretation
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can be perfectly represented by a CG in another interpretation. In Section
6 we then discuss Meek’s conjecture and prove that this does not hold for
MVR CGs. Finally we do a short summary and conclusion in Section 7.

To improve readability of the article we have chosen to move most of
the theorems, lemmas and proofs to appendices. The article does therefore
include three appendices, Appendix A, B and C, that contain the theorems,
lemmas and proofs of Sections 3, 4 and 5 respectively.

2. Notation

All graphs are defined over a finite set of discrete or continuous random
variables V . If a graph G contains an edge between two nodes V1 and V2, we
denote with V1→V2 a directed edge, with V1←→V2 a bidirected edge and with
V1−V2 an undirected edge. By V1 ←⊸V2 we mean that either V1→V2 or V1←→V2
is in G. By V1⊸V2 we mean that either V1→V2 or V1 −V2 is in G. By V1 ⊸⊸V2
we mean that there exists an edge between V1 and V2 in G while we with
V1⋯V2 mean that there might or might not exist an edge between V1 and V2.
By a non-directed edge we mean either a bidirected edge or an undirected
edge. A set of nodes is said to be complete if there exist edges between all
pairs of nodes in the set.

The parents of a set of nodes X of G is the set paG(X) = {V1∣V1→V2 is in
G, V1 ∉X and V2 ∈X}. The children of X is the set chG(X) = {V1∣V2→V1 is in
G, V1 ∉X and V2 ∈X}. The spouses of X is the set spG(X) = {V1∣V1←→V2 is in
G, V1 ∉X and V2 ∈X}. The neighbours of X is the set nbG(X) = {V1∣V1−V2 is
in G, V1 ∉X and V2 ∈X}. The boundary of X is the set bdG(X) = paG(X)∪
nbG(X)∪spG(X). The adjacents of X is the set adG(X) = bdG(X)∪chG(X).

To exemplify these concepts we can study the graph G with five nodes
shown in Figure 1a. In the graph we can see two bidirected edges, one
between B and D and one between D and E. Hence we know the spouses of
D are B and E. G also contains two directed edges between A and B and B
and E and we can see that E is the only child of B and B is the only child of
A. Finally G also contains one undirected edge between C and D and hence
C is a neighbour of D. All and all this means that the boundary of B is A
and D while the adjacents of B also contains E in addition to A and D.

A route from a node V1 to a node Vn in G is a sequence of nodes V1, . . . , Vn
s.t. Vi ∈ adG(Vi+1) for all 1 ≤ i < n. A section of a route is a maximal (w.r.t.
set inclusion) non-empty set of nodes B1, . . . ,Bn s.t. the route contains
the subpath B1−B2− . . .−Bn. It is called a collider section if B1, . . . ,Bn
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(a) A graph G. (b) A subgraph of G over {B,D,E}. (c) A subgraph of G induced by
{B,D,E}.

Figure 1: Three different graphs.

together with the two neighbouring nodes in the route, A and C, form the
subpath A→B1−B2− . . .−Bn←C. For any other configuration the section is
a non-collider section. A path is a route containing only distinct nodes. The
length of a path is the number of edges in the path. A path is descending
if Vi ∈ bdG(Vi+1) for all 1 ≤ i < n. A path is called a cycle if Vn = V1. A
cycle is called a semi-directed cycle if it is descending and Vi→Vi+1 is in G
for some 1 ≤ i < n. A path π = V1, . . . , Vn is minimal if there exists no other
path π2 between V1 and Vn s.t. π2 ⊂ π holds. The descendants of a set of
nodes X of G is the set deG(X) = {Vn∣ there is a descending path from V1 to
Vn in G, V1 ∈ X and Vn ∉ X}. A path is strictly descending if Vi ∈ paG(Vi+1)
for all 1 ≤ i < n. The strict descendants of a set of nodes X of G is the
set sdeG(X) = {Vn∣ there is a strict descending path from V1 to Vn in G,
V1 ∈ X and Vn ∉ X}. The ancestors (resp. strict ancestors) of X form the
set anG(X) = {V1∣Vn ∈ deG(V1), V1 ∉ X,Vn ∈ X} (resp. sanG(X) = {V1∣Vn ∈
sdeG(V1), V1 ∉X,Vn ∈X}).

To exemplify these concepts we can once again look at the graph G in
Figure 1a. We can here see two paths between B and C, B←→D−C and
B→E←→D−C, and that the latter of these is descending while the former is
not. We can also see that the former is minimal while the latter is not since
it contains one extra node E. An example of a route between B and C that
is not a path is B←→D←→E←B←→D−C. We can see that G contains one cycle
B←→D←→E←B that is semi-directed. Moreover we can see that E is a strict
descendant of A due to the strictly descending path A→B→E, while D is
not. D is however in the descendants of A together with B,C and E. A is
therefore an ancestor of all variables except itself.

A Bayesian network (BN) is a directed acyclic graph (DAG) and contains
only directed edges and no semi-directed cycles. A CG under the Lauritzen-
Wermuth-Frydenberg (LWF) interpretation, denoted LWF CG, contains only
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directed and undirected edges but no semi-directed cycles. Likewise a CG
under the Andersson-Madigan-Perlman (AMP) interpretation, denoted AMP
CG, is a graph containing only directed and undirected edges but no semi-
directed cycles. A CG under the multivariate regression (MVR) interpreta-
tion, denoted MVR CG, is a graph containing only directed and bidirected
edges but no semi-directed cycles. A connectivity component C in a LWF
CG or an AMP CG (resp. MVR CG) is a maximal (w.r.t. set inclusion) set
of nodes s.t. there exists a path between every pair of nodes in C containing
only undirected edges (resp. bidirected edges). We denote the set of all con-
nectivity components in a CG G by cc(G) and the component to which a set
of nodes X belong in G by coG(X). A subgraph of G is a subset of nodes and
edges in G. A subgraph of G induced by a set of its nodes X is the graph
over X that has all and only the edges in G whose both ends are in X. A
bidirected flag is an induced subgraph of the form X←→Y←→Z in a MVR CG.
With the skeleton of a graph G we mean a graph with the same adjacencies
as G but where all edges have been replaced by undirected edges. With the
moral closure graph of a component C in a LWF CG G, denoted (Gcl(C))m,
we mean the subgraph of G induced by C ∪ paG(C) where every edge has
been made undirected and every pair of nodes in paG(C) have been made
adjacent with undirected edges.

If we go back to our example in Figure 1 we can see that the graph in
Figure 1b is a subgraph of G over the variables B, D and E while the graph
in Figure 1c is a subgraph induced by the same variables. We can also see
that G is not a CG of any of the interpretations since it contains a semi-
directed cycle. An example of a LWF CG or an AMP CG H is instead
shown in Figure 2a while an example of a MVR CG F is shown in Figure
2b. We can here see that H contains three connectivity components {A},
{B} and {C,D} and that F contains two connectivity components {A} and
{B,C,D}. An example of a bidirected flag is shown in F with the induced
subgraph C←→D←→B while we can see the moral closure of the component
{C,D} in H in Figure 2c.
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(a) A LWF or AMP CG H. (b) A MVR CG F . (c) The moral closure of (Hcl(coH(C)))
m.

Figure 2: Three different CGs.

A k-biflag is an induced subgraph of either a LWF CG or AMP CG of the
forms shown in Figure 3. Note that the induced subgraphs only are k-biflags
if k ≥ 3 (resp. k ≥ 2) for the configuration seen in Figure 3a (resp. 3b).
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(a) A k-biflag when k ≥ 3. (b) A k-biflag when k ≥ 2.

Figure 3: The possible forms of k-biflags.

Let X, Y and Z denote three disjoint subsets of V . We say that X is
conditionally independent from Y given Z in a probability distribution p if the
value of X does not influence the value of Y when the values of the variables
in Z are known, i.e. p(X,Y ∣Z) = p(X ∣Z)p(Y ∣Z) holds and p(Z) > 0. We
denote this by X⊥⊥pY ∣Z. When it comes to graphs we say that X is separated
from Y given Z denoted as X⊥⊥GY ∣Z if the following criterion is met: If G
is a LWF CG then X and Y are separated given Z iff there exists no route
between X and Y s.t. every node in a non-collider section on the route is not
in Z and some node in every collider section on the route is in Z or anG(Z).
If G is an AMP CG then X and Y are separated given Z iff there exists
no S-open route between X and Y . A route is said to be S-open iff every
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non-head-no-tail node on the route is not in Z and every head-no-tail node
on the route is in Z or sanG(Z). A node B is said to be a head-no-tail in an
AMP CG G between two nodes A and C on a route if one of the following
configurations exist in G: A→B←C, A→B−C or A−B←C. Moreover G is
also said to contain a triplex ({A,C},B) iff one such configuration exists in
G and A and C are not adjacent in G. A triplex ({A,C},B) is said to be a
flag in an AMP CG G iff G contains one of the following subgraphs induced
by A,B and C: A→B−C or A−B←C. If G is a MVR CG then X and Y are
separated given Z iff there exists no d-connecting path between X and Y .
A path is said to be d-connecting iff every non-collider on the path is not in
Z and every collider on the path is in Z or sanG(Z). A node B is said to
be a collider in a MVR CG G between two nodes A and C on a path if one
of the following configurations exists in G: A→B←C, A→B←→C,A←→B←C or
A←→B←→C. For any other configuration the node B is a non-collider.

To exemplify these concepts we can look at the CGs in Figure 2. If we
interpret the graph H in Figure 2a as a LWF CG we can see that the route
A→C−D←B contains one section that also is a collider section on that route.
Hence we know that A⊥⊥HB∣∅ must hold, while A/⊥⊥HB∣C also must hold since
the collider section then contains a node in the given set Z. Similarly we can
see that A/⊥⊥HD∣∅ also must hold since the route A→C−D does not contain
any collider section. If we on the other hand interpret the CG H as an AMP
CG we can see that A⊥⊥HB∣∅ holds as before but that A /⊥⊥HB∣C does not
hold. This is because the route A→C−D←B contains two head-no-tail nodes,
C in A→C−D and D in C−D←B, while only C is in the given set Z. Hence
the route is not S-open. Here we can also note that A⊥⊥HD∣∅ holds since the
route between A and D contains a head-no-tail node. If we finally look at
the MVR CG F in Figure 2b we can note that A⊥⊥FB∣∅ holds as before and
that A/⊥⊥FB∣C does not hold, since the path between A and B contains two
colliders, C and D.

The independence model M induced by a graph G, denoted as I(G) or
IPGM−class(G), is the set of separation statements X⊥⊥GY ∣Z that hold in G
according to the interpretation to which G belongs or the subscripted PGM-
class. We say that two graphs G and H are Markov equivalent (under the
same interpretation) or that they are in the same Markov equivalence class
iff I(G) = I(H). Moreover we say that G and H belong to the same strong
Markov equivalent class iff I(G) = I(H) and G and H contain the same flags.
Given a probability distribution p we say that p is Markovian with respect
to a graph G when X⊥⊥p Y ∣Z if X⊥⊥GY ∣Z for all X, Y and Z disjoint subsets
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of V . Given two independence models M and N , we denote by M ⊆ N that
if X⊥⊥MY ∣Z then X⊥⊥NY ∣Z for every X, Y and Z.

An independence model can also have certain properties. LetX, Y , Z and
W be four disjoint subsets of V . We say that M is a graphoid if it satisfies
the following properties: Symmetry X⊥⊥MY ∣Z ⇒ Y⊥⊥MX ∣Z, decomposition
X⊥⊥MY ∪W ∣Z ⇒X⊥⊥MY ∣Z, weak union X⊥⊥MY ∪W ∣Z ⇒ X⊥⊥MY ∣Z ∪W ,
contraction X ⊥⊥MY ∣Z ∪ W ∧ X⊥⊥MW ∣Z⇒X⊥⊥MY ∪W ∣Z, and intersection
X⊥⊥MY ∣Z ∪W ∧X⊥⊥MW ∣Z ∪ Y ⇒ X⊥⊥MY ∪W ∣Z. An independence model
M is also said to fulfill the composition property iff X⊥⊥MY ∣Z ∧X⊥⊥MW ∣Z ⇒
X⊥⊥MY ∪W ∣Z. Finally we do also say that p is faithful to G when X⊥⊥pY ∣Z
iff X⊥⊥GY ∣Z for all X, Y and Z disjoint subsets of V .

To illustrate the last concepts we can look at the MVR CG J and the
independence models in Figure 4. In Figure 4b we can see the independences
that hold in J and hence the independence model of J . We can also see
another independence model in Figure 4c and note that I(J) ⊆M and hence
that M includes the independence model represented by J . Finally we can
also see that both independence models fulfills the graphoid properties and
composition property.

A

B

C
A⊥⊥JC ∣∅
C⊥⊥JA∣∅

A⊥⊥MC ∣∅
C⊥⊥MA∣∅
A⊥⊥MC ∣B
C⊥⊥MA∣B

(a) A MVR CG J . (b) The independence model of J . (c) Another independence model M .

Figure 4: Example of independence models.

3. Unique representations

Just like many other probabilistic graphical model classes there might
exist multiple CGs, in the same CG interpretation, that represent the same
independence model. Sometimes it can however be desirable to have a unique
graphical representation of the different representable independence mod-
els in a certain CG interpretation similarly as we have essential graphs for
DAGs. Hence such unique representations have been presented by different
researchers for the different interpretations. For LWF CGs these are called
the largest chain graphs (LCGs) [9]. For AMP CGs we have two different
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unique representations, the largest deflagged graphs [17] and the AMP es-
sential graphs [3] while for MVR CGs we have the essential MVR CGs [19].
All of these have been proven to be unique for the interpretation and Markov
equivalence class they represent [3, 9, 17, 19].

Definition 1. Largest CG [9]
A LWF CG G∗ is said to be the largest CG of its Markov equivalence class
if it contains the maximal number of undirected edges for any LWF CG in
that Markov equivalence class.

Definition 2. Largest deflagged graph [17]
An AMP CG G∗ is said to be the largest deflagged graph of its Markov
equivalence class iff there exists no other AMP CG H s.t. I(G∗) = I(H)
and either H contains fewer flags than G∗ or G∗ and H belong to the same
strong Markov equivalence class but H contains more undirected edges.

Definition 3. AMP essential graph [3]
An AMP CG G∗ is said to be the AMP essential graph of its Markov equiv-
alence class iff for every directed edge A→B that exists in G∗ there exists no
AMP CG H s.t. I(G∗) = I(H) and A←B is in H.

Definition 4. Essential MVR CG [19]
A graph G∗ is said to be the essential MVR CG of a MVR CG G if it has
the same skeleton as G and contains all and only the arrowheads common to
every MVR CG in the Markov equivalence class of G.

One thing that can be noted here is that while any largest CG is a LWF
CG and any largest deflagged graph or AMP essential graph are AMP CGs,
an essential MVR CG does not need to be a MVR CG. Instead these graphs
can contain three types of edges, undirected, directed and bidirected, and
although the separation criterion defined for these graphs is close to that
of MVR CGs [19], this is of course unfortunate. It can however be shown
that no unique representation that is a MVR CG can exist for a Markov
equivalence class of MVR CGs unless we assume some ordering of the nodes.
To see this consider a system with three variables X,Y and Z for which the
independence model only contains the conditional independence X⊥⊥Z ∣Y and
assume the contrary, i.e. that there exists a MVR CG with some unique
property representing the independence model. In Figure 5 we can see the
five MVR CGs representing our independence model. It can now be seen
that our unique representative cannot have any bidirected edges, since we
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cannot distinguish between the MVR CGs shown in Figure 5b and 5c unless
we assume an ordering of the nodes. Hence we can only have directed edges,
but as can be seen the three remaining MVR CGs, shown in Figure 5a, 5d and
5e, all contain the same number of directed edges. Moreover, it is impossible
to distinguish between the MVR CGs in Figure 5d and 5e unless we assume
an ordering of the nodes. One could then imagine that we could somehow
define the unique representation to contain the shortest descending path,
but such an idea can easily be proven not to work for a system containing
only two nodes, and no conditional independences. Hence we cannot find
any representative in the Markov equivalence class with some distinguished
structural property. This in turn means that we must go outside the class
of MVR CGs to have a unique graph representing this Markov equivalence
class.

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

(a) (b) (c) (d) (e)

Figure 5: MVR CGs representing the independence X⊥⊥Z ∣Y .

To be able to identify if a graph is of a certain unique representation
all the representations have been characterized [3, 17, 19, 21]. In addition
to this there exist algorithms that, given a CG in a certain interpretation,
outputs the unique representation of that interpretation. However, while the
algorithms for the largest CGs [12, 21], the largest deflagged graphs [17] and
the essential MVR CGs [19] have been proven to be correct, it does not,
to the authors knowledge, exist any such proof for the algorithm of AMP
essential graphs. Hence we present another algorithm, shown in Algorithm
1, that from an AMP CG G outputs the Markov equivalent AMP essential
graph G∗ and prove its correctness in Appendix A. The algorithm uses the
notion of blocked edges. By a block on an edge X−Y towards Y , represented
as XxY , we mean that the edge can not be replaced by a directed edge
X→Y in the final step of the algorithm. The definition of a circle on an edge
is in the algorithm also extended to include such an edge ending. Hence, by
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X⊸Y we mean any of the edges X→Y,X−Y or XxY and with X ⊸⊸Y we
mean any edge between X and Y , blocked or otherwise. The algorithm also
uses a set of rules shown in Figure 6. A rule is applicable if the antecedent
is satisfied for an induced subgraph of G. When a rule is applied one (or
two) of the non-blocked edge ends are replaced with a block as shown in the
consequent of the rule while the rest of the edge ends are kept the same.

Input: An AMP CG G.
Output: The AMP essential graph G∗ Markov equivalent of G.

1 For each ordered pair of non-adjacent nodes A and B in G
2 Set SAB = SBA = S s.t. A⊥⊥GB∣S
3 Let G∗ denote the undirected graph that has the same adjacencies as G
4 Apply the rules R1-R4 to G∗ while possible
5 Replace every edge A−B in every cycle in G∗ that is of length greater than three, chordless,

and without blocks with AzxB
6 Apply the rules R2-R4 to G∗ while possible
7 Replace every edge AzB (respectively AzxB) in G∗ with A→B (respectively A−B)

Algorithm 1: Algorithm for constructing the AMP essential graph for an AMP

CG G with its corresponding rules shown in Figure 6.

R1 A B C ⇒ A B C

∧B ∉ SAC

R2 A B C ⇒ A B C

∧B ∈ SAC

R3
A ... B

⇒
A ... B

R4

C

A B

D

⇒

C

A B

D

∧A ∈ SBC

Figure 6: The rules for Algorithm 1 with the antecedent on the left hand side and the
consequent on the right hand side.
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We can note some things about the algorithm. In line 2, any possible
S fulfilling the requirements will do. For instance, if coG(A) = coG(B) then
S = paG(A ∪ nbG(A)) ∪ nbG(A), otherwise S = paG(A) [14, Lemma 2]. Also
note that, in line 5, a cycle with no blocks means that the ends of the edges
in the cycle have no blocks. The third thing worth mentioning is that the
rule R1 is not used in line 6, because it will never fire after its repeated
application in line 4. Finally, note that G∗ may have edges without blocks
after line 6.

4. Feasible splits and mergings

Today there exist mainly two operators, the feasible split and the feasible
merging, for changing the structure of a CG without changing the Markov
equivalence class it belongs to, i.e. the represented independence model.
More specifically the feasible merging operator defines the conditions for
when the directed edges between two adjacent chain components in a CG G
can be replaced by the non-directed edges in that CG interpretation without
altering the represented independence model of G. The feasible split operator
does the reverse, i.e. defines the conditions for when the non-directed edges
between two connected sets, U and L, of nodes in G can be replaced by
directed edges oriented from U towards L. An important property of the
operators is that for any two Markov equivalent CGs G and H of the same
interpretation there exists a sequence of feasible splits and mergings that
transforms G into H.

The operators have been used in previous research in various ways such
as proving theorems [18], finding the largest chain graph for a certain LWF
CG [20] or exploring the Markov equivalence class in structure learning algo-
rithms [16]. For the LWF and MVR CG interpretations these operators and
their conditions have already been proven to be correct [18, 20] and hence
the definitions are only repeated here. The conditions for a feasible split and
feasible merging for the AMP CG interpretation have however not yet been
presented, and hence we present these operators here and prove that they
are sound in Appendix B. In the appendix we do also prove that for any two
AMP CGs G and H of the same Markov equivalence class there must exist a
sequence of feasible splits and mergings such that G is transformed into H.
Note that the feasible merging operator here does not correspond to the le-
gal merging presented in the deflagging procedure for AMP CGs by Roverato
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and Studený [17]. Their operation was applied to strong equivalence classes,
not the more general Markov equivalence classes discussed here.

Definition 5. Feasible split for LWF CGs [20]
A connectivity component C of CG G under the LWF interpretation can be
feasibly split into two disjoint sets U and L s.t. U ∪L = C by replacing every
undirected edge between U and L with a directed edge oriented towards L
iff:
1. ∀A ∈ nbG(L) ∩U, paG(L) ⊆ paG(A)
2. nbG(L) ∩U is complete

Definition 6. Feasible merging for LWF CGs [20]
Let U and L denote two connectivity components of G. A merging between
the two components, performed by replacing every edge X→Y with X−Y
s.t. X ∈ U and Y ∈ L, is feasible iff:
1. ∀A ∈ paG(L) ∩U, paG(L) ∖U ⊆ paG(A)
2. paG(L) ∩U is complete

Definition 7. Feasible split for MVR CGs [18]
A connectivity component C of CG G under the MVR interpretation can be
feasible split into two disjoint sets U and L s.t. U ∪L = C by replacing every
bidirected edge between U and L with a directed edge oriented towards L iff:
1. ∀A ∈ spG(U) ∩L, U ⊆ spG(A) holds
2. ∀A ∈ spG(U) ∩L, paG(U) ⊆ paG(A) holds
3. ∀B ∈ spG(L) ∩U , spG(B) ∩L is a complete set

Definition 8. Feasible merging for MVR CGs [18]
Let U and L denote two connectivity components of G. A merging between
the two components, performed by replacing every edge X→Y with X←→Y
s.t. X ∈ U and Y ∈ L, is feasible iff:
1 For all A ∈ chG(U) ∩L, paG(U) ∪U ⊆ paG(A) holds
2 For all B ∈ paG(L) ∩U , chG(B) ∩L is a complete set
3 deG(U) ∩ paG(L) = ∅
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Definition 9. Feasible split for AMP CGs
A connectivity component C of CG G under the AMP interpretation can be
feasibly split into two disjoint sets U and L s.t. U ∪L = C by replacing every
undirected edge between U and L with a directed edge oriented towards L
iff:
1. ∀A ∈ nbG(L) ∩U,L ⊆ nbG(A)
2. nbG(L) ∩U is complete
3. ∀B ∈ L, paG(nbG(L) ∩U) ⊆ paG(B)

Definition 10. Feasible merging for AMP CGs
Let U and L denote two connectivity components of G. A merging between
the two components, performed by replacing every edge X→Y with X−Y
s.t. X ∈ U and Y ∈ L, is feasible iff:
1. ∀A ∈ paG(L) ∩U,L ⊆ chG(A)
2. paG(L) ∩U is complete
3. ∀B ∈ L, paG(paG(L) ∩U) ⊆ paG(B)
4. deG(U) ∩ paG(L) = ∅

Lemma 1. A CG G in the AMP interpretation is in the same Markov equiv-
alence class before and after a feasible split.

Lemma 2. A CG G in the AMP interpretation is in the same Markov equiv-
alence class before and after a feasible merging.

Theorem 3. Given two AMP CGs G and H in the same Markov equivalence
class there exists a sequence of feasible splits and mergings that transforms
G into H.

With these operators we can now define maximally oriented CGs which
is a term used in Section 5 and various proofs in Appendix C.

Definition 11. Maximally oriented CG
A CG G (under any interpretation) is maximally oriented iff no feasible split
can be performed on G.

A maximally oriented CG can be obtained from any member of its Markov
equivalence class by performing feasible splits until no more feasible splits can
be performed.
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Theorem 4. A CG in the AMP or MVR interpretation has the minimal set
of non-directed edges for its Markov equivalence class iff no feasible split is
possible.

The following theorem shows that for the AMP and MVR CG interpre-
tation there may exist several maximally oriented CGs in a given Markov
equivalence class but all of them share the same non-directed edges.

Theorem 5. For any Markov equivalence class of CGs in the AMP or MVR
CG interpretation, there exists a unique minimal (w.r.t. inclusion) set of
non-directed edges that is shared by all members of the class.

For the AMP interpretation the correctness of Theorems 4 and 5 follow
directly from Lemma 13. For the MVR CG interpretation the proofs are
given previously by Sonntag and Peña [18, Theorem 1 and Theorem 2]. To
see that the theorems do not hold for the LWF CG interpretation consider
the LWF CGs X→Y→Z−W←X and X→Y −Z←W←X. No split is feasible
in either CG and even though they represent the same independence model
they do not have the same set of undirected edges.

5. Translations between interpretations

As noted in the introduction most papers that have studied CGs and the
independence models they represent have studied the different CG interpre-
tations independently. There are few exceptions to this, such as the study of
discrete CG models by Drton [8] and the study of CGs representing Gaussian
distributions by Wermuth et al. [23].

Therefore it has not really been studied what differences and similari-
ties that exist between the different interpretations in terms of representable
independence models. Andersson et al. made a small study of this when
they presented their new (AMP) interpretation and managed to show when
the independence model of a CG in the AMP interpretation could be repre-
sented perfectly by a CG in the LWF interpretation [2]. They did however
not show when the opposite held and did not do any comparison with CGs
in the MVR interpretation. Similarly, Wermuth and Sadeghi presented the
conditions for when the independence model of a CG in the MVR interpreta-
tion could be represented by a CG in the LWF or AMP interpretation when
they introduced regression graphs [22]. The conditions stated were however
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only necessary and sufficient if the two CGs contained the same connectivity
components and not the more general case when the CGs can take any form.

In this section we therefore identify the necessary and sufficient conditions
for when a CG in one interpretation can be perfectly translated into a CG in
another interpretation. By translate, we mean that the independence model
represented by a CG in one interpretation can be represented perfectly by
a CG in another interpretation. A summary of these results is presented in
Table 1 while the actual theorems and their proofs are shown in Appendix
C.

LWF AMP MVR

LWF - ?
(Gcl(K))m is chordal for

all K ∈ cc(G).

AMP
G contains no k-biflag

where k ≥ 2 [2]
-

G′ does not contain any
induced subgraph of the

form X−Y −Z

MVR
G′ contains no
bidirected edge

G′ contains no
bidirected flag

-

Table 1: Given a CG G in the interpretation denoted in the row, and a maximally oriented
CG G′ in the Markov equivalence class of G, there exists a CG H in the interpretation
denoted in the column s.t. G and H are Markov equivalent iff the condition in the
intersecting cell is fulfilled.

From the table two things can be noted. First that the conditions given
in the table may include a maximally oriented CG G′ in the same Markov
equivalence class as G. This is done for several reasons. First, such a graph
is easy and computationally simple to find. Secondly, this allows the proofs
to be based on the idea that no feasible split is possible for the interpreta-
tion in mind. Third and last, the search space of CGs is smaller and more
assumptions can be made on the CG. This in turn allows for more efficient
algorithms when calculating if the condition holds for some CG. The second
note that can be made is that there still does not exist any necessary and
sufficient condition for when a translation of a LWF CG G into an AMP CG
H is possible. Andersson et al. gave a necessary condition but also showed
that this condition was not sufficient [2]. We have managed to prove the ne-
cessity of more elaborate conditions but still been unable to prove sufficiency
for these. Hence this condition is left for future work.

To exemplify the conditions we can look at the CGs shown in Figure
7. We can here see that the LWF CG G shown in Figure 7a contains five
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components, {A}, {B}, {C,D} and {E}. To see if G is transferable to the
MVR CG interpretation we can now check whether the moral closure for
each component is chordal or not. It is then clear that the moral closure
of the component containing E has the structure B−D−E−B and hence is
chordal. However, if we look at the moral closure of the component contain-
ing C and D it has the structure A−C−D−B−A which is a non-chordal cycle.
This means that G is not transferable to the MVR CG interpretation. For
the AMP CG H shown in Figure 7b we can immediately see that it is not
transferable to the LWF CG interpretation since it contains a k-biflag with
k = 4. To see whether it can be transferable to the MVR CG interpretation
we first have to find a maximally oriented version of H. In this case H is
such a graph and since H contains an induced subgraph of the form B−C−D
we know that it is not transferable. Unlike the previous graphs the MVR
CG F shown in Figure 7c is not maximally oriented. To see this we can note
that a split is feasible with B in U and {C,D} in L. The resulting MVR
CG F ′, which is maximally oriented, does then have the following structure
A→C←→D←B. This means that F is not transferable to the LWF CG inter-
pretation since F ′ contains a bidirected edge, but that it is transferable to
the AMP CG interpretation since F ′ contains no bidirected flag.

A B

C D E

A

B C D E

A B

C D

(a) A LWF CG G. (b) An AMP CG H. (c) A MVR CG F .

Figure 7: Examples of transferability.

6. Extension of Meek’s conjecture

Meek’s conjecture states that given two DAGs G and H, s.t. I(H) ⊆
I(G), G can be transformed into H through a sequence of operations s.t., af-
ter each operation, G is a DAG and I(H) ⊆ I(G). The operations consist in
adding a single directed edge to G, or replacing G with a Markov equivalent
DAG. The conjecture was proven to be valid by Chickering in 2002 [4, The-
orem 4] who gave a constructive proof, i.e. an algorithm that constructs a
valid sequence of operations for any DAGs G and H. Hence, strictly speaking
Meek’s conjecture is really a theorem, but since the statement is known as
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Meek’s conjecture we will use that term in this article. Using the conjecture
the correctness could be proven for several structure learning algorithms for
DAGs that only require the probability distribution p of the data to fulfill
the graphoid properties and the composition property [5, 13]. These algo-
rithms can be seen as to consist of two phases: A first phase that starts from
the empty graph H and adds single edges to it until p is Markovian with
respect to H, and a second phase that removes single edges from H until p
is Markovian with respect to H and p is not Markovian with respect to any
DAG F s.t. I(H) ⊆ I(F ). The success of the first phase is guaranteed by the
composition property assumption, whereas the success of the second phase
is guaranteed by the validity of Meek’s conjecture.

Having similar structure learning algorithms for CGs is of course desir-
able. Hence the conjecture was extended to LWF CGs by Peña et al. in 2014
[16]. The authors stated the following: Given two LWF CGs G and H, s.t.
I(H) ⊆ I(G), G can be transformed into H through a sequence of operations
s.t., after each operation, G is a LWF CG and I(H) ⊆ I(G). The operations
do in this case consist of adding a single directed edge to G, adding a single
non-directed edge to G, or replacing G with a Markov equivalent LWF CG.
The authors then proved that this conjecture held through a constructive
proof. Moreover, they showed that this extended conjecture allowed for the
construction of structure learning algorithms that only require the data to
fulfill the graphoid properties and the composition property. This was done
by introducing and proving the correctness of such an algorithm [16].

Given the definition of the extended Meek’s conjecture for LWF CGs it is
easy to see what it would look like for the AMP and MVR CG interpretations,
the only thing that changes is that AMP resp. MVR CGs are considered
instead of LWF CGs. In 2012 Peña did however show that such an extension
of Meek’s conjecture does not hold for AMP CGs [14]. For MVR CGs the
conjecture has to our knowledge not been studied previously though we can
here show an example that proves it does not hold. Consider the conjecture to
be: Given two MVR CGs G and H, s.t. I(H) ⊆ I(G), G can be transformed
into H through a sequence of operations s.t., after each operation, G is a
MVR CG and I(H) ⊆ I(G). The operations do in this case consist of adding
a single directed edge to G, adding a single bidirected edge to G, or replacing
G with a Markov equivalent MVR CG. We can then study the independence
models of the MVR CGs G and H shown in Figure 8.
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A B

C D E

I J

A B

C D E

I J

G H

Figure 8: Two MVR CGs G and H s.t. I(H) ⊂ I(G).

To see that I(H) ⊆ I(G) holds we can list all separators between any pair
of distinct nodes for the two CGs. By SZXY we mean all the sets of nodes S
for which X⊥⊥ZY ∣S holds in an AMP CG Z. Specifically,

� S
H
AB = S

G
AB = S

H
BC = S

G
BC = S

H
CD = S

G
CD = S

H
DE = S

G
DE = S

H
IJ = S

G
IJ = S

H
JC =

S
G
JC = ∅,

� S
H
AC = all the node sets that do not contain {B} = SGAC ,

� S
H
AD = all the node sets that do not contain {B} ⊂ SGAD = all the node sets

that do not contain {B} or that contain {C},

� S
H
AE = all the node sets that do not contain {B,D} ⊂ SGAE = all the node

sets that do not contain {B,D} or that contain {C},

� S
H
AI = all the node sets that contain neither {B,C,J} nor {B,D,J} ⊂ SGAI

= all the node sets that do not contain {B,C,J},

� S
H
AJ = all the node sets that contain neither {B,C} nor {B,D} ⊂ SGAJ = all

the node sets that do not contain {B,C},

� S
H
BD = ∅ ⊂ S

G
BD = all the node sets that contain {C}

� S
H
BE = all the node sets that do not contain {D} ⊂ SGBE = all the node sets

that do not contain {D} or that contain {C},

� S
H
BI = all the node sets that contain neither {C,J} nor {D,J} ⊂ SGBI = all

the node sets that do not contain {C,J},

� S
H
BJ = all the node sets that contain neither {C} nor {D} ⊂ SGBJ = all the

node sets that do not contain {C},

� S
H
CE = all the node sets that do not contain {D} = SGCE ,

� S
H
CI = all the node sets that do not contain {J} = SGCI ,

� S
H
DI = all the node sets that do not contain {J} ⊂ SGDI = all the node sets

that do not contain {J} or contain {C},
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� S
H
DJ = ∅ ⊂ S

G
DJ = all the node sets that contain {C}

� S
H
EI = all the node sets that do not contain {D,J} ⊂ SGEI = all the node

sets that do not contain {D,J} or contain {C},

� S
H
EJ = all the node sets that do not contain {D} ⊂ SGEJ = all the node sets

that do not contain {D} or contain {C}.

Then, since SHXY ⊆ SGXY for all X,Y ∈ {A,B,C,D,E, I, J} with X ≠ Y we
know that I(H) ⊆ I(G).

Let G resp. H denote the Markov equivalence class of G resp. H. We
then know that any CG in G resp. H must take the form of the corresponding
CG shown in Figure 9, where a circle at the end of an edge represents an
unspecified end, i.e. an arrowhead or nothing.

A B

C D E

I J

A B

C D E

I J

G H

Figure 9: All MVR CGs in G resp. H.

However, we cannot transform any CG in G into a MVR CG in H as
required by Meek’s conjecture. To see this, note that adding any edge to any
CG in G between two non-adjacent nodes in H gives that I(H) ⊆ I(G) does
not hold. Hence the only modifications that we can perform to any MVR CG
in G is adding the edge B→D or the edge J→D. This does however imply
that A/⊥⊥D or I /⊥⊥D hold in the resulting MVR CG, whereas A⊥⊥D and I⊥⊥D
hold in any MVR CG in H.

7. Summary and conclusion

In this article we have covered different concepts of CGs that in different
ways connect to their representable independence models. We have studied
what results there exist for the different CG interpretations in previous re-
search and contributed in different ways when results have been missing. All
the areas we have covered do now have results for all three CG interpreta-
tions. Hence our hope is that this article can work as a coherent overview of
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how the concepts discussed here are applied for the different CG interpreta-
tions.
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Appendix A: Lemmas and proofs for Section 3

In this appendix we prove the correctness of Algorithm 1.

Lemma 6. After line 3, G and G∗ have the same adjacencies.

Lemma 7. After line 6, all the blocks in G∗ are on edge ends that are not
arrowheads in G.

Proof. It has been proven that any of the rules R1-R4 only blocks edge ends
that are not arrowheads in G [15, Lemma 3]. Of course, for this to hold,
the blocks in the antecedent of the rule must be on edge ends that are not
arrowheads in G. This implies that, after line 4, all the blocks in G∗ are on
edge ends that are not arrowheads in G, because G∗ has no blocks before line
4. However, to prove that this result also holds after line 6, we have to prove
that line 5 only blocks edge ends that are not arrowheads in G. To do so,
consider any cycle ρ∗ in G∗ that is of length greater than three, chordless, and
without blocks. Let ρ denote the cycle in G corresponding to the sequence
of nodes in ρ∗. Note that no (undirected) edge in ρ∗ can be directed in ρ
because, otherwise, a subroute of the form A→B ⊸C must exist in ρ, which
implies that G contains the triplex A→B ⊸C because A and C cannot be
adjacent in G since ρ∗ is chordless, which implies that Az⊸B z⊸C is in G∗ by
R1 in line 4, which contradicts that ρ∗ has no blocks. Therefore, every edge
in ρ∗ is undirected in ρ and, thus, line 5 only blocks edge ends that are not
arrowheads in G.

Lemma 8. After line 7, G and G∗ have the same triplexes. Moreover, G∗

has all the immoralities that are in G.

Proof. The proof is essentially the same as that of Lemma 4 in [15].
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Lemma 9. After line 6, G∗ does not have any induced subgraph of the form

A B C .

Proof. The proof is essentially the same as that of Lemma 5 in [15]. It just
suffices to add the following case:

Case 0 Assume that AzxB is in H due to line 5. Then, after line 5, H
had an induced subgraph of one of the following forms, where possible
additional edges between C and internal nodes of the route Azx . . .zxD
are not shown:

A B C

D. . .

A B C

D. . .

case 0.1 case 0.2

Note that C cannot belong to the route Az⊸ . . .z⊸D because, otherwise,
the cycle Az⊸ . . .z⊸Dz⊸B⊸A would not have been chordless.

Case 0.1 If B ∉ SCD then BxC is in H by R1, else BzC is in H by
R2. Either case is a contradiction.

Case 0.2 Recall from line 5 that the cycle Azx . . .zxDzxBzxA is of
length greater than three and chordless, which implies that there
is no edge between A andD inH. Thus, if C ∉ SAD then AzC is in
H by R1, else BxC is in H by R4. Either case is a contradiction.

Lemma 10. After line 6, every chordless cycle ρ∗ ∶ V1, . . . , Vn = V1 in G∗

that has an edge VizVi+1 also has an edge VjxVj+1.

Proof. The proof is essentially the same as that of Lemma 6 in [15].

Theorem 11. After line 7, G∗ is the essential graph in the class of triplex
equivalent CGs containing G.

Proof. Using Theorem 1 stated by Peña [15] it follows that after line 7, G∗

is Markov equivalent to G and it has no semi-directed cycles. Moreover, the
directed edges in G∗ after line 7 must be directed in the essential graph in
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the class of triplex equivalent CGs containing G by Lemma 7. For the same
reason, the undirected edges in G∗ after line 7 that correspond to AzxB edges
when line 7 was to be executed must be undirected in the essential graph in
the class of triplex equivalent CGs containing G. We show below that every
other undirected edge in G∗ after line 7 (i.e. those that correspond to edges
without blocks when line 7 was to be executed) must also be undirected in
the essential graph in the class of triplex equivalent CGs containing G.

Let H denote the graph that contains all and only the edges of G∗ re-
sulting from the replacements in line 7, and let U denote the graph that
contains the rest of the edges of G∗ after line 7. Note that all the edges in
U are undirected and they had no blocks when line 7 was to be executed.
Therefore, U has no cycle of length greater than three that is chordless by
line 5. In other words, U is chordal. Then, we can orient all the edges in U
without creating immoralities nor directed cycles by using, for instance, the
maximum cardinality search (MCS) algorithm [10, p. 312]. Consider any
such orientation of the edges in U and denote it D. Now, add all the edges
in D to H. As we show below, this last step does not create any triplex or
semi-directed cycle in H:

� It does not create a triplex ({A,C},B) in H because, otherwise, A−B
z⊸C must exist in G∗ when line 7 was to be executed, which implies

that Az⊸B or A z⊸B was in G∗ by R1 or R2 when line 7 was to be
executed, which contradicts that A−B is in U .

� Assume to the contrary that it does create a semi-directed cycle in H.
Note that this cycle cannot have any z edge by Lemma 10 when line
7 was to be executed and, thus, it must have some zx edge when line
7 was to be executed. However, this implies that A−BzxC must exist
in G∗ when line 7 was to be executed, which implies that A and C are
adjacent in G∗ because, otherwise, Az⊸B or A z⊸B was in G∗ by R1 or
R2 when line 7 was to be executed, which contradicts that A−B is in
U . Then, Az⊸C or A z⊸C exist in G∗ by Lemma 9 when line 7 was to
be executed, which implies that Az⊸B or A z⊸B was in G∗ by R3 when
line 7 was to be executed, which contradicts that A−B is in U .

Consequently, H is a CG that is triplex equivalent to G. Finally, let us
recall how the MCS algorithm works. It first unmarks all the nodes in U and,
then, iterates through the following step until all the nodes are marked: Select
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any of the unmarked nodes with the largest number of marked neighbors and
mark it. Finally, the algorithm orients every edge in U away from the node
that was marked earlier. Clearly, any node may get marked firstly by the
algorithm because there is a tie among all the nodes in the first iteration,
which implies that every edge may get oriented in any of the two directions
in D and thus in H. Therefore, either orientation of every edge of U occurs
in some CG H that is triplex equivalent to G. Then, every edge of U must
be undirected in the essential graph in the class of triplex equivalent CGs
containing G.

Appendix B: Lemmas and proofs for Section 4

In this appendix we prove that the feasible split and feasible merging for
AMP CGs are sound.

Lemma 1. A CG G in the AMP interpretation is in the same Markov equiv-
alence class before and after a feasible split.

Proof. Assume the contrary. Let G be a CG under the AMP interpretations
and G′ a graph s.t. G′ is G with a feasible split performed upon it. G and
G′ are in different Markov equivalence classes or G′ is not a CG under the
AMP interpretation iff (1) G and G′ does not have the same adjacencies, (2)
G and G′ does not have the same triplexes or (3) G′ contains semi-directed
cycles.

First it is clear that G and G′ contain the same adjacencies since a feasible
split does not change the adjacencies of any node in G. We do also know
that conditions 1, 2 and 3 in Definition 9 must be fulfilled for G. Secondly
let us assume G and G′ do not have the same triplexes. First let us assume
that G′ contains a triplex ({X,Y }, Z) that does not exist in G. Such a
triplex can only occur if Z ∈ L since the only difference between G and G′ is
that G′ contains some directed edges oriented towards L where G contains
undirected edges. If the triplex is a flag then the one of the nodes X or Y ,
let us say X, must be in U and the other one, let us say Y , must be in L.
However, according to condition 1 for the feasible split Y must be adjacent to
X which gives a contradiction. If the triplex is not a flag both X and Y must
be in U . They also have to be in nbG(L), which, together with condition 2,
contradicts that they are not adjacent. Hence we have a contradiction for
that G′ contains a triplex that does not exist in G.
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Secondly assume G contains a triplex ({X,Y }, Z) that does not exist in
G′. This new triplex cannot be over a node in L since these nodes only have
edges oriented towards them. Hence we have that Z ∈ U . This gives that
one of the nodes X or Y , let us say X, must be a parent of Z and the other,
let us say Y , must be in L. This does however contradict condition 3, since
every parent of Z also must be a parent of Y , and hence X and Y must be
adjacent. This gives us a contradiction.

Finally assume that a semi-directed cycle is introduced. This can happen
iff we have two nodes X and Y s.t. X ∈ deG′(Y ),X ∈ U and Y ∈ L. We
know no semi-directed cycle existed in G before the split and that deG′(Y ) ⊆
deG(Y ) ∖ U . This together with the fact that X ∉ deG(Y ) ∖ U then gives a
contradiction.

Lemma 2. A CG G in the AMP interpretation is in the same Markov equiv-
alence class before and after a feasible merging.

Proof. Assume the contrary. Let G be a CG under the AMP interpretation
and G′ a graph s.t. G′ is G with a feasible merging performed upon it. G and
G′ are in different Markov equivalence classes or G′ is not a CG under the
AMP interpretation iff (1) G and G′ does not have the same adjacencies, (2)
G and G′ does not have the same triplexes or (3) G′ contains semi-directed
cycles.

First it is clear that G and G′ contain the same adjacencies since a feasible
merging does not change the adjacencies of any node in G. It must also be
the case that the conditions in Definition 10 must hold in G. Secondly let
us assume G and G′ do not have the same triplexes. First let us assume
that G contains a triplex ({X,Y }, Z) that does not exist in G′. Such a
triplex can only occur if Z ∈ L since the only difference between G and G′ is
that G contains some directed edges oriented towards L where G′ contains
undirected edges. If the triplex is a flag in G then one of the nodes X or
Y , let us say X, must be in U and the other one, let us say Y , must be in
L. However, according to condition 1 for the feasible merging Y must be
adjacent to X which gives a contradiction. If the triplex is not a flag both
X and Y must be in U . They also have to be in paG(L), which, together
with condition 2, contradicts that they are not adjacent. Hence we have a
contradiction for that G contains a triplex that does not exist in G′.

Secondly assume G′ contains a triplex ({X,Y }, Z) that does not exist in
G. This new triplex cannot be over a node in L since any new undirected
edge with a node in L as endnode must previously have been a directed edge
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oriented towards L. Hence we know that Z ∈ U . This gives that one of the
nodes X or Y , let us say X, must be a parent of Z and the other, let us say Y ,
must be in L. This does however contradict condition 3, since every parent
of Z also must be a parent of Y , and hence X and Y must be adjacent. This
gives us a contradiction.

Finally assume G′ contains a semi-directed cycle. This means that we
have three nodes X, Y and Z s.t. X ∈ L, Z ∈ U , Y ∉ U ∪ L, Z−X←Y is in
G′ and Y ∈ deG′(Z). However, this means that Y ∈ paG(X) and Y ∈ deG(U)
must hold which violates condition 4 in Definition 10 and hence we have a
contradiction.

Lemma 12. If an AMP CG G is transformed into an AMP CG H through
a feasible split then there exists a feasible merging that transforms H into G
and vice versa.

Proof. We will start by proving that a merging transforming H into G must
be feasible if G was transformed into H with a feasible split. Assume the
contrary. Then we know that G and H have the same structure with the
exception that some undirected edges X−Y in G are replaced by directed
edges X→Y in H. Let U and L be the same set of nodes as during the feasible
split. Then we have that U and L must belong to the same connectivity
component C in G but to different connectivity components in H. We also
have that C = U ∪ L. Now, if a merging is feasible in H with this U and L
we have a contradiction. Hence one of the conditions in Definition 10 must
fail in H. Now, since paH(L) ∩ U = nbG(L) ∩ U , it is straightforward to see
that condition 2 must hold since we know that nbG(L)∩U is complete from
condition 2 in the previous split. For condition 3 we also know from condition
3 in the previous split that ∀B ∈ L, paG(nbG(L)∩U) ⊆ paG(B). Hence, since
paH(L) ∩ U = nbG(L) ∩ U , paG(nbG(L) ∩ U) = paH(paH(L) ∩ U) and that
∀B ∈ L, paG(B) = paH(B)∖U we must have that ∀B ∈ L, paG(paH(L)∩U) ⊆
paH(B), i.e. condition 3, must hold. For condition 1 we must have that
∀A ∈ nbG(L) ∩ U,L ⊆ nbG(A) must hold or the previous split would not
have been feasible. This together with nbG(L) ∩ U = paH(L) ∩ U and that
∀A ∈ nbG(L)∩U,nbG(A)∩L = chH(A)∩L then gives that ∀A ∈ paH(L)∩U,L ⊆
chH(A) must hold. Finally, condition 4 must hold or a semi-directed cycle
exists in G. Hence all conditions must be fulfilled and the merging must be
feasible.

Secondly assume that a split transforming H into G is not feasible when
G was transformed into H with a feasible merging. Let U and L denote the
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same U and L as for the previous feasible merging. Then we know that a
split with these sets of nodes will transform H into G and hence that the split
cannot be feasible. Hence, to not have a contradiction one of the conditions
in Definition 9 must fail. To see that condition 2 must hold we once again
have that paG(L) ∩ U is complete or condition 2 would have failed for the
previous merging. We also have that paG(L)∩U = nbH(L)∩U and hence that
nbH(L)∩U is complete which means condition 2 must hold for the split. For
condition 3 we can note that ∀B ∈ L, paG(paG(L) ∩ U) ⊆ paG(B) must hold
due to the previous merging. Hence, since paG(L)∩U = nbH(L)∩U it follows
that paG(paG(L)∩U) = paH(nbH(L)∩U). Moreover it must be the case that
∀B ∈ L, paH(B) = paG(B) ∖ U and paH(nbH(L) ∩ U) ∩ U = ∅. This means
that ∀B ∈ L, paH(nbH(L)∩U) ⊆ paH(B) must hold. Hence condition 3 must
hold. Finally for condition 1 we have that ∀A ∈ paG(L) ∩ U,L ⊆ chG(A)
or the previous merging would not have been feasible. This together with
paG(L) ∩ U = nbH(L) ∩ U and ∀A ∈ nbH(L) ∩ U, chG(A) ∩ L = nbH(A) ∩ L
then gives that ∀A ∈ nbH(L)∩U,L ⊆ nbH(A) must hold. Hence all conditions
must be fulfilled and the split must be feasible.

Theorem 3. Given two AMP CGs G and H in the same Markov equivalence
class there exists a sequence of feasible splits and mergings that transforms
G into H.

Proof. Since we know that any merging is reversible with a split and vice
versa we only have to show that the largest deflagged graph G∗ is reachable
from any AMP CG G. From Theorems 4 and 5 we get that a maximally
oriented AMP CG G′ is reachable from G through a sequence of feasible splits
and that G′ contains the unique minimal set of undirected edges. Hence we
know that G′ must be in the largest strong Markov equivalence class in the
Markov equivalence class of G. Now, to reach G∗ from G′ we only have to
make a set of legal mergings [17]. A legal merging replaces directed edges
between two components with undirected edges similarly as a feasible split.
The conditions for a merging of two components U and L to be legal are the
following: (1) ∀A ∈ L, paG(L) = paG(A), (2) paG(L)∩U is complete in G and
(3) ∀B ∈ paG(L)∩U, paG(L)∖U = paG(B). We can now see that if a merging
is legal for two components U and L, then this implies that the same merging
must also be feasible. Hence the largest deflagged graph G∗ is reachable from
two AMP CGs G and H in the same Markov equivalence class. From G∗ we
then know that there exists a sequence of feasible splits and mergings to reach
H. This sequence is simply the reverse inverse sequence of feasible splits and
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mergings to reach G∗ from H, i.e. where all splits have been replaced by
mergings and vice versa and the order has been reversed. Hence there must
exist a sequence of feasible splits and mergings that transforms G into H.

Lemma 13. If no split is feasible in an AMP CG G then there exists no
other AMP CG H s.t. I(H) = I(G) and H has a directed edge X→Y where
G has an undirected edge X−Y .

Proof. Assume this is not the case. We then know X and Y are in two
different components in H and that G and H have the same adjacencies. Let
us choose X and Y s.t. there exist no nodes Z,W s.t. Z ∈ deH(Y ) ∪ Y and
Z−W exists in G but Z→W exists in H. Since H contains no semi-directed
cycles we know that we must be able to choose such X and Y . We can then
let C be the component of X and Y in G and L = coH(Y ) ∩C. We can also
let U = C ∖L.

For a split not to be feasible in G with this U and L we know that one
of the conditions in Definition 9 must fail in G. Assume conditions 1 fails.
It must then in G exist an induced subgraph of the form ui−lj−lk s.t. ui ∈ U
and lj, lk ∈ L. Hence ui⊥⊥Glk∣lj ∪ nbG(lk) ∪ paG(C) must hold. For the same
to hold in H, where the edge ui→lj exists, we also must also have that lj→lk
exists, which is a contradiction since we then would have chosen lj as X
and lk as Y . Assume condition 2 fails. It must then in G exist an induced
subgraph of the form ui−lj−uk s.t. ui, uk ∈ U and lj ∈ L. Once again we
have that ui⊥⊥Guk∣lj ∪ nbG(uk) ∪ paG(C) must hold. For the same to hold in
H, where the edge ui→lj exists, we also must also have that lj→uk exists,
which is a contradiction since we then would have chosen lj as X and uk as
Y . Hence condition 3 must fail. We then must have that G must contain an
induced subgraph of the form P→ui−lj s.t. P ∈ paG(C), ui ∈ U and lj ∈ L.
Hence a triplex ({P, lj}, ui) must exist in G. We can then see that for H,
which instead contains the induced subgraph P ⊸⊸ui→lj, no such triplex can
exist, which is a contradiction. Hence the split must be feasible in G with
the defined U and L which contradicts the assumption.

Appendix C: Theorems, lemmas and proofs for Section 5

In this Appendix we prove that the conditions given in Table 1 are neces-
sary and sufficient with the exception of when an AMP CG can be translated
to a LWF CG since this has been shown before [2].
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Translation of MVR CGs to AMP CGs

Theorem 14. Given a MVR CG G, and a maximally oriented MVR CG
G′ in the Markov equivalence class of G, there exists an AMP CG H s.t.
IMVR(G) = IAMP (H) iff G′ contains no bidirected flag.

Proof. Sufficiency follows from from Lemmas 17 and 18 and necessity follows
from Lemma 15.

Lemma 15. A MVR CG G and an AMP CG H with the same structure,
except that every bidirected edge in G is replaced by an undirected edge in
H and where G contains no bidirected flag, represent the same independence
model.

Proof. Assume to contrary that there exist two CGs, G under the MVR
interpretation and H under the AMP interpretation, s.t. G does not contain
any bidirected flag, i.e. induced subgraph of the form X←→Y←→Z, G and H
contain the same directed edges, and for every bidirected edge in G H has
an undirected edge instead (and only contains those undirected edges) but
IMVR(G) ≠ IAMP (H). Clearly we must have VG = VH and that adG(X) =
adH(X), paG(X) = paH(X) and coG(X) = coH(X) holds for all X ∈ VG.
Given the definition of strict descendants sanG(X) = sanH(X) must also
hold. Moreover note that H cannot contain any induced subgraph of the
form X−Y −Z. Finally note that both G and H contains the same paths
between any pair of nodes X and Y .

For I(G) ≠ I(H) to hold there has to exist a path π in G (resp. H)
that is d-connecting (resp. S-open) s.t. there exists no path in H (resp. G)
that is S-open (resp. d-connecting). Let π be a minimal d-connecting (resp.
S-open) path in G (resp. H). Note that π cannot contain any subpath of the
form V1←→V2←→V3 (resp. V1−V2−V3) since the edge V1←→V3 (resp. V1−V3) must
exist in G (resp. H) or G contains a bidirected flag or semi-directed cycle.
This in turn would mean that π is not minimal since the path π ∖ V2 also
must be d-connecting and shorter than π. For π to be both d-connecting
and S-open for any set of nodes Z it must contain the same colliders and
head-no-tail nodes. A node W ∈ π is a collider if it is part of the following
configurations of edges in π (1) →W←, (2) ←→W←, (3) →W←→ and (4) ←→W←→.
Clearly the fourth case cannot occur. Case 1-3 would be translated into (1)
→W←, (2) −W←, (3)→W− in H which are all (and the only) head-no-tail
configurations. Hence π must be d-connecting in G iff π is S-open in H which
contradicts the assumption.
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Lemma 16. If a maximally oriented CG G in the MVR interpretation
contains a bidirected flag X←→Y←→Z then G also contains an induced sub-
graph of the form shown in (1) Figure 10a, (2) 10b, (3) P ←⊸Q←→Y←→Z, (4)
P ←⊸Q←→W←→Z s.t. bdG(Q) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(Q) hold.

Proof. Assume the contrary, that no such induced subgraph exists in G even
though G contains a bidirected flag and G is maximally oriented. Let C be
the component to which X,Y and Z belong. Let A be the set of nodes Ak

s.t. Ak ∈ spG(Y ) but Ak ∉ spG(Z). We know that X fulfills these criteria
and hence ∣A∣ ≥ 1.

First note that if there exists a node Ak ∈ A s.t. bdG(Ak) /⊆ bdG(Y ) ∪ Y
then there exists an induced subgraph P ←⊸Ak←→Y←→Z⋯P in G for some node
P ∈ bdG(Ak) ∖ bdG(Y ) ∖ Y . Hence we have a contradiction since G either
contains an induced subgraph of the form shown in Figure 10b (P ∈ bdG(Z))
or of the form P ←⊸Q←→Y←→Z (P ∉ bdG(Z)). Therefore we must have that
bdG(Ak) ⊆ Y ∪ bdG(Y ) holds for all Ak ∈ A, i.e. that bdG(A) ⊆ Y ∪ bdG(Y )
holds.

Secondly note that we can let B be a subset of A s.t. B consists of
the nodes in one connected subgraph in the subgraph of G induced by A
(any connected subgraph will do). Let D be the set of nodes s.t. D =
spG(Y ) ∩ spG(Z) ∩ spG(A). With these sets we know that the spouses of Y
can be either adjacent of Z or not, hence spG(Y ) ∖ Z = D ∪ A must hold.
This in turn gives that spG(A) = D ∪ Y and bdG(A) ⊆ D ∪ Y ∪ paG(Y )
since ∀Ak ∈ A bdG(Ak) ⊆ Y ∪ bdG(Y ) holds. Moreover spG(B) ⊆ D ∪ Y
and bdG(B) ⊆ D ∪ Y ∪ paG(Y ) must also hold. Hence, if D is empty then
spG(B) = {Y } and bdG(B) ⊆ Y ∪ paG(Y ) must hold. This does however lead
to a contradiction because a split then is possible s.t. U consists of B and L
consists of C ∖U . Hence there has to exists at least one node in D.

Thirdly note thatD∪Y must be complete or the induced subpathAk←→DYi

α β γ

δ λ

α β γ

δ

γ

β α

µ

λ

δ

(a) (b) (c)

Figure 10: MVR subgraph forms.
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←→Z←→DYj←→Al exists in G for some nodes Ak,Al ∈ A and DYi,DYj ∈ D ∪ Y .
This means that G contains an induced subgraph of the form shown in either
Figure 10a (Ak ≠ Al) or 10b (Ak = Al).

Fourth and finally note that there must exist a node P s.t. P ∈ bdG(B)∪
B but P ∉ bdG(Dj) for some Dj ∈ D ∪ Y or a split is feasible where U
consists of B and L consists of C ∖ U . Note that Dj ≠ Y must hold since
bdG(B) ∪ B ⊆ bdG(Y ) ∪ Y . This means that there must exist two nodes
Bi,Dj s.t. P ∈ bdG(Bi), P ∉ bdG(Dj),Bi ∈ B, Bi ∈ sp(Dj) and Dj ∈ D s.t.
the induced subgraph P ←⊸Bi←→Dj←→Z⋯P exists in G. This is a contradiction
either because G contains an induced subgraph of the form shown in Figure
10b (P ∈ bdG(Z)) or P ←⊸Bi←→Dj←→Z (P ∉ bdG(Z)) where bdG(Bi) ⊆ bdG(Y )∪
Y and Y ∈ spG(Bi) holds.

Lemma 17. If a maximally oriented CG G in the MVR interpretation con-
tains a bidirected flag then at least one of the induced subgraphs shown in
Figure 10 exist in G.

Proof. Assume the contrary, that no such induced subgraph exists in G even
though G contains a bidirected flag and G is maximally oriented. Since G
contains a bidirected flag we do with Lemma 16 get that G must contain
an induced subgraph X←→Y←→Z←⊸W or a contradiction directly follows. If
we now apply Lemma 16 to X←→Y←→Z we get that, since for G to contain
any induced subgraph of the form shown in Figure 10a or 10b is a con-
tradiction, there exists a set of nodes (that can be renamed to) c1, c2, c3
s.t. the induced subgraph c1 ←⊸c2←→c3←→Z exists in G and c3 = Y holds or
bdG(c2) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(c2) hold. If c3 = Y , G must contain
the subgraph c1 ←⊸c2←→Y←→Z←⊸W where c1 ∉ adG(Y ) and W ∉ adG(Y ) must
hold and c1 =W might hold. Clearly this subgraph takes the form of either
Figure 10a (c1 ≠W ) or 10b (c1 =W ) which is a contradiction. Hence c3 ≠ Y ,
bdG(c2) ⊆ bdG(Y ) ∪ Y and Y ∈ spG(c2) must hold.

Since W ∉ adG(Y ) holds and bdG(c2) ⊆ bdG(Y )∪Y it is clear that c1, c3 ∈
bdG(Y ) must hold. Hence W ≠ c2 holds since W ∉ adG(Y ) ∪ Y . This in
turn means that W ∉ bdG(c2) holds since bdG(c2) ⊆ bdG(Y ) ∪ Y and W ∉
bdG(Y ) ∪ Y . Finally we can see that W ∈ bdG(c3) holds or the induced
subgraph c1 ←⊸c2←→c3←→Z ←⊸W takes the form shown in Figure 10a (c1 ≠W )
or 10b (c1 = W ). However, if W ∈ bdG(c3) holds G contains an induced
subgraph of the form shown in Figure 10c (where δ = W , λ = c1, µ = c3,
γ = c2, β = Y and α = Z) and we have a a contradiction.
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Lemma 18. The independence model of a CG G in the MVR interpretation
which contains an induced subgraph of one of the forms shown in Figure 10
cannot be perfectly represented as a CG H in the AMP interpretation.

Proof. Assume the contrary, that there exists a CG H under the AMP in-
terpretation that can represent these independence models.

First assume that the independence model of the graph shown in Figure
10a can be represented in a CG H in the AMP interpretation. It is clear that
H must have the same skeleton, or some separations or non-separations that
hold in G would not hold in H. The following independence statements hold
in G: δ⊥⊥Gβ∣paG(β), α⊥⊥Gγ∣paG(α) and β⊥⊥Gλ∣paG(β). δ⊥⊥Gβ∣paG(β) gives
us that a triplex ({δ, β}, α) must exist in H, since α ∉ paG(β) i.e. that (1)
δ→α−β, (2) δ−α←β or (3) δ→α←β exists in H. α⊥⊥Gγ∣paG(α) does however
also state that a triplex ({α, γ}, β) must exist in H, since β ∉ paG(α). For
this to happen the edge between α and β cannot be oriented towards α
hence the subgraph δ→α−β←γ must exist in H. The orientation of the edge
between β and γ does however contradict the third independence statement
β ⊥⊥Gλ∣paG(β) which implies that the triplex ({β,λ}, γ) must exist in H,
since γ ∉ paG(β). Hence we have a contradiction if G contains the induced
subgraph shown in Figure 10a.

Secondly assume that the independence model of the graph shown in Fig-
ure 10b can be represented in a CG H in the AMP interpretation. It is clear
that H must have the same skeleton, or some separations or non-separations
that hold in G would not hold in H. The following independence statements
must then hold in G: δ⊥⊥Gβ∣paG(β) and α⊥⊥Gγ∣paG(α). δ⊥⊥Gβ∣paG(β) gives us
that two triplexes must exist in H, first ({δ, β}, α) and secondly ({δ, β}, γ),
since α, γ ∉ paG(β). ({δ, β}, α) gives that one of the following configurations
must occur in H: (1) δ−α←β, (2) δ→α−β or (3) δ→α←β. However, the
independence statement α⊥⊥Gγ∣paG(α) implies that the triplex ({α, γ}, β)
must exist in H since β ∉ paG(α). If the triplex ({α, γ}, β) should hold in
H the edge between α and β cannot be oriented towards α hence the sub-
graph δ→α−β←γ must exist in H. The orientation of the edge between β
and γ does however contradict the triplex ({δ, β}, γ) and hence we have a
contradiction for the G shown in Figure 10b.

Third and last assume that the independence model of the graph shown
in Figure 10c can be represented in a CG H in the AMP interpretation. From
the Figure we can read the following independence statements: λ⊥⊥Gµ∣paG(µ),
α⊥⊥Gγ∣paG(α), β⊥⊥Gδ∣paG(β). It is clear that H must have the same skeleton,
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or some separations or non-separations that hold in G would not hold in
H. λ⊥⊥Gµ∣paG(µ) and α⊥⊥Gγ∣paG(α) gives that the triplexes ({λ,µ}, β) and
({α, γ}, µ) must exist in H since β ∉ paG(µ) and µ ∉ paG(α). As seen above
this gives that λ→γ−µ←α must exist in H. Similarly β ⊥⊥Gδ∣paG(β) and
λ⊥⊥Gµ∣paG(µ) gives that λ→β−µ←δ must exist in H. Finally α⊥⊥Gγ∣paG(α)
and β⊥⊥Gδ∣paG(β) gives that the triplexes ({α, γ}, β) and ({β, δ}, α) must hold
in H, since β ∉ paG(α) and α ∉ paG(β), which in turn gives that γ→β−α←δ
must exist in H. This does however contradict that H is a CG since the semi-
directed cycle γ→β−µ−γ exists in H. Hence we have a contradiction.

Translation of AMP CGs to MVR CGs

Theorem 19. Given an AMP CG G, and a maximally oriented AMP CG
G′ in the Markov equivalence class of G, there exists a CG H s.t. IAMP (G) =
IMVR(H) iff G′ does not contain any induced subgraph of the form X−Y −Z.

Proof. Sufficiency follows from Lemma 15 while necessity follows from 20.

Lemma 20. If a maximally oriented CG G in the AMP interpretation con-
tains an induced subgraph of the form X−Y −Z then there exists no CG H in
the MVR interpretation s.t. IAMP (G) = IMVR(H).

Proof. Assume to the contrary that the lemma does not hold. G and H
must then have the same skeleton or some separations in H do not hold in
G or vice versa. Let H have a component ordering ord for its components
c1, ...ck s.t. ord(ci) < ord(cj) if ci is a parent of cj. Let C be the component
of X in G. From the assumption we know that X⊥⊥GZ ∣nbG(X) ∪ paG(X ∪
nbG(X)) holds, where Y ∈ nbG(X), and hence that H must contain one of
the following induced subgraphs: X ←⊸Y→Z, X←Y←⊸Z or X←Y→Z. For
any other configuration of edges X⊥⊥HZ ∣nbG(X) ∪ paG(X ∪ nbG(X)) does
not hold. Moreover we can generalize the configurations to X ←⊸Y→Z and
X←Y→Z simply by choosing the nodes to represent X and Z accordingly.
Both these structures are included in X ⊸⊸Y→Z and we will now show that
this structure leads to a contradiction if a split is not feasible in G.

The proof is iterative and when a restart is noted this is where the proof
restarts. For each restart it will be shown that there must exist a triplet of
nodes X, Y , Z s.t. an induced subgraph of the form X−Y −Z exists in G and
X ⊸⊸Y→Z in H. Apart from this we also know that IAMP (G) = IMVR(H)
holds and that no split is feasible in G. Let the set U consist of Y and every
node connected by a path to Y in the subgraph of G induced by C ∖Z and
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the set L consist of C∖U . This separation of sets gives that nbG(U) = Z. For
a split not to be feasible with these sets one of the conditions in Definition 9
must fail:

Case 1, condition 1 or 2 fails. This means that there exist two nodes W ∈ C
and P ∈ C s.t. the induced subgraph P−Z−W exists in G. Note that one of
the nodes might be Y . This means that P⊥⊥GW ∣nbG(W )∪paG(W ∪nbG(W ))
holds, where Z ∈ nbG(W ) and hence that P ←⊸Z→W , P←Z←⊸W or P←Z→W
must exist inH as described above. Without losing generality we can say that
either P ←⊸Z→W or P←Z→W exists in H and that W ≠ Y by choosing P and
W appropriately. This means that we can restart the proof with the structure
P ⊸⊸Z→W in H (and P−Z−W in G). The number of restarts is bounded
since (1) the number of nodes in V is bounded and that ord(coH(Z)) >
ord(coH(Y )).
Case 2, condition 1 and 2 hold but condition 3 fails. This means that there ex-
ist two nodes W ∈ U and P ∉ C s.t. the induced subgraph Z−W←P exists in
G. First let us cover the case where W = Y . This means that Z⊥⊥GP ∣paG(Z)
holds. Since H have the same skeleton as G this means that H must con-
tain an induced subgraph of the form P ←⊸Y←⊸Z since Y ∉ paG(Z). At the
same time we know that H contains the edge Y→Z which causes a contra-
diction and hence Y ≠ W must hold. Therefore, P ∉ paG(Y ) holds which
generalized means that paG(Y ) ⊆ paG(Z) must hold. For Z⊥⊥GP ∣paG(Z) to
hold in H there must exist an unshielded collider between Z and P over W
and hence that the induced subgraph Z ←⊸W←⊸P exists in H. Similarly we
have that Y ⊥⊥GP ∣paG(Y ) gives that H contains an induced subgraph of the
form Y ←⊸W←⊸P . Note that Y ∈ adG(W ) must hold since condition 2 holds.
Moreover for H not to contain a semi-directed cycle over Y→Z ←⊸W←⊸Y we
can see that Y→W←⊸P must exist in H. Finally note that X ≠W must hold
since X ∉ adG(Z) holds.

Now assume X ∈ nbG(W ). For X⊥⊥HZ ∣nbG(X)∪paG(X∪nbG(X)) to hold,
together with W ∈ nbG(X) and Z ←⊸W , it is easy to see that the induced sub-
graph Z ←⊸W→X must be in H. We can now see that P ∈ paG(X) must hold
or the induced subgraph X←W←⊸P in H contradicts that X⊥⊥GP ∣paG(X)
holds in H. Moreover, for X ⊸⊸Y→W→X not to form a semi-directed cycle
in H the edge between X and Y must be oriented to X←Y . We can there-
fore restart the proof by replacing X with Z, i.e. with the induced subgraph
X←Y ⊸⊸Z in H (and X−Y −Z) in G. Since we know that Z ←⊸W→X exists in
H we know that ord(coH(X)) > ord(coH(Z)). Hence we cannot get back to
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this subcase again (or we would have that ord(coH(X)) < ord(coH(Z)) which
is a contradiction). This, together with that Y is kept the same and that ∣V ∣
is finite gives that the number of restarts is bounded. Hence X /∈ nbG(W )
must hold.

Now assume that paG(Z) ⊆ paG(W ). We can now restart the proof with
X ⊸⊸Y→W . The number of iterations is then bounded since ∣V ∣ is finite and
case 2 cannot occur with Z as W again, or paG(Z) /⊆ paG(W ) would have to
hold which is a contradiction. Hence paG(Z) /⊆ paG(W ) must hold. Let Q
be the parent of Z not shared by W . Since W⊥⊥GQ∣paG(W ) holds, and we
know that H contains the induced subgraph Q ⊸⊸Z ←⊸W←⊸P , we can draw the
conclusion that H must contain the induced subgraph Q ←⊸Z←→W←⊸P since
Q ∉ paG(W ). Note that if there exist two different nodes W1 and W2 s.t. both
have the properties described for W in case 2 W1 and W2 must be adjacent.
If this were not the case we would have that both W1 ⊥⊥ GW2∣nbG(W1) ∪
paG(W1 ∪ nbG(W1)) and W1 /⊥⊥HW2∣nbG(W1) ∪ paG(W1 ∪ nbG(W1)) would
hold, since Z ∈ nbG(W1). Also note that since W1←→Z and W2←→Z exists in
H the edge between W1 and W2 must be bidirected or H contains a semi-
directed cycle. Let D be a set of nodes containing Z as well as all nodes that
have the properties described for W . From the description above we can see
that D must be complete and that the subgraph induced by D in H must
only contain bidirected edges. We will now show that a split must be feasible
in G with D as L and C ∖D as U . For a split not to be feasible one of the
constraints in Definition 9 must fail.

Assume condition (1) or (2) fails. Then there exist three nodes R ∈ C,
T ∈ C and Dj ∈ D s.t. the induced subgraph T−Dj−R exists in G. Since
T⊥⊥GR∣nbG(R) ∪ paG(R ∪ nbG(R)) holds we must, without losing generaliza-
tion, have that H contains the induced subgraph T ⊸⊸Dj→R, since Dj ∈
nbG(R). If this is the case we can however restart the proof with this in-
duced subgraph and know that the number of iterations is bounded since ∣V ∣
is finite and ord(coH(Dj)) > ord(coH(Y )).

Assume condition (1) and (2) hold but (3) fails. Then there exist two
nodes R ∈ U and T ∉ C s.t. the induced subgraph Di−R←T exists in G
for some Di ∈ D. First note that R must be adjacent of all nodes in D or
condition 1 would have failed in this split. Secondly note that R−Y must
exist in G or condition 2 would fail if we restart the proof with X ⊸⊸Y→Di

and a contradiction follows from there. Thirdly note that R ∉ adG(X) must
hold or the proof could be restarted with X ⊸⊸Y→Di, for which condition 3
would fail with R as W and a contradiction would follow as shown above.
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Finally note that paG(R) ⊆ paG(Z) must hold or R would be in D. This
means that paG(W ) /⊆ paG(R), and hence that P ∉ paG(R), holds. Moreover
we know that the edge Di←→W exists in G. For Di⊥⊥GT ∣paG(Di) to hold in
H it is clear that H must contain the induced subgraph Di ←⊸R←⊸T since
R ∉ paG(Di). Similarly we have that for R⊥⊥HP ∣paG(R) to hold H must
contain an induced subgraph of the form R ←⊸W←⊸P since W ∉ paG(R). This
means that for R ←⊸W←→Di ←⊸R not to form a semi-directed cycle in H the
edge R←→Di must exist in H. Moreover, since ∀Dm ∈ D ∖Di R ∈ adG(Dm)
and R←→Di and Di←→Dm hold, R←→Dm must also hold or G contains a semi-
directed cycle. Hence the subgraph of H induced by D ∪R is complete and
contains only bidirected edges. This in turn means that for Y→Di←→R ⊸⊸Y
not to form a semi-directed cycle Y→R must exist in H. Hence we can move
R into D and redo the last split again. The number of restarts are bounded
since ∣V ∣ is finite.

Hence each condition in Definition 9 must hold and we have a contradic-
tion.

Translation of MVR CGs to LWF CGs

Theorem 21. Given a MVR CG G, and a maximally oriented MVR CG G′

that is in the same Markov equivalence class as G, there exists a LWF CG
H s.t. IMVR(G) = ILWF (H) iff G′ contains no bidirected edge, i.e. can be
represented as a BN.

Proof. From Lemma 22 it follows that a maximally oriented CG G′ in the
MVR interpretation with a bidirected edge must have a subgraph of the
form shown in Figure 11. If it does not contain any bidirected edge in the
maximally oriented model it trivially follows that it is a BN (and hence it
can be represented as a CG in the LWF interpretation). From Lemma 23
it then follows that no CG G in the MVR interpretation which contains a
subgraph of the form shown in Figure 11 can be represented as a CG in the
LWF interpretation.

Lemma 22. If a bidirected edge exists in a maximally oriented CG G in the
MVR interpretation then G must contain an induced subgraph of the form
shown in Figure 11.

Proof. Assume to the contrary that a CG G in the MVR interpretation exists
where (1) no induced subgraph of the form shown in Figure 11 exists, (2)
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Figure 11: Included subgraph in Lemma 22 and 23.

no split is feasible and (3) at least one bidirected edge exists. From this
assumption we can see that there has to exist at least two nodes X and Y
s.t. X←→Y exists in G. Let C be the connectivity component to which X
and Y belong. Separate the nodes of C into two sets U and L s.t. X and
every node connected by a path to X in the subgraph of G induced by C ∖Y
belongs to L and C ∖L belongs to U . This separation of nodes allows us to
know that spG(L) only contains Y . For a split not to be feasible at least one
condition in Definition 7 has to fail.

Case 1. Assume constraint 1 fails. This means a node Z ∈ L exists s.t.
Z←→Y←→X occurs in G where Z ∉ adG(X) must hold, or Z would be in U .
Now remove Y from U and add it to L as well as all nodes not connected by
a path with Z in the subgraph of G induced by U ∖ Y and attempt another
split. This separation of nodes allows us, since we previously had nbG(L) = Y
and Y now have changed sets, to say that spG(U) = Y must hold and hence
that constraint 3 cannot fail. However, if constraint 1 or 2 fails we know
there exists a node W s.t. W ←⊸Z←→Y←→X is a subgraph of G but where
W ∉ adG(Y ), and Z ∉ adG(X) and W ∉ adG(X) by definition of the initial
split, which implies a contradictory induced subgraph. Hence constraint 1
cannot fail in the initial split.

Case 2. If constraint 2 or 3 fails in the initial split we know there exist two
nodes V1 and P1 s.t. P1 ←⊸Y←→V1 exists in G but where V1 ∉ adG(P1) (note
that V1 might be X). Now let L consist of every node connected by a path
to Y in the subgraph of G induced by C ∖ V1 and the nodes C ∖ L belong
to U . This separation of nodes allows us to know that spG(L) only contains
V1. If constraint 1 fails when performing a split with these sets it is clear
from case 1 that a contradiction occurs. If constraint 2 or 3 fails we know
there exist two new nodes V2 and P2 s.t. P2 ←⊸V1←→V2 exists in G but where
P2 ∉ adG(V2). Note that V2 or P2 cannot be P1 since P1 ∉ adG(P1). We now
get that V2 cannot be Y or an induced subgraph like that in Figure 11 occurs.
V2 ∈ ad(Y ) and P2 ∈ ad(Y ) must also hold or the induced subgraph V2 (resp.
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P2) ←⊸V1←→Y←⊸P1 occurs. By replacing V1 with V2, setting the proper U and L
as described above it we can now repeat this procedure iteratively. Moreover,
for every repetition i we must have that Vi and Pi must be adjacent of every
Vj(j < i) as well as Y or a contradiction occurs. This means that any nodes
Vi and Pi already used in a previous repetition cannot be used in a later one,
or both Pi ∈ ad(Vi) and Pi ∉ ad(Vi) would have to hold. This in turn means
that the number of repetitions is bounded since ∣C ∣ is finite and hence we
have a contradiction that condition 2 or 3 can fail.

This means that all three conditions in Definition 7 must hold and hence
a split must be feasible if the induced subgraph shown in Figure 11 does not
occur.

Lemma 23. If a CG G in the MVR interpretation contains an induced
subgraph of the form shown in Figure 11 then G cannot be translated into a
CG H in the LWF interpretation.

Proof. Assume to the contrary that there exists a CG H, in the LWF in-
terpretation, with the same independence model as G while G contains an
induced subgraph of the form shown in Figure 11. Clearly H and G must con-
tain the same nodes and adjacencies or some separations or non-separations
must exist in G but not in H.

From Figure 11 we can read that A⊥⊥GD∣paG(D) and C ⊥⊥GB∣paG(C)
hold. For A⊥⊥GD∣paG(D) to hold in H C must be a collider between A
and D and hence H must contain the induced subgraph A→C←D. Similarly
C⊥⊥GB∣paG(C) gives that H must contain the induced subgraph C→D←B
and hence we have a contradiction.

Translation of LWF CGs to MVR CGs

Theorem 24. Given a LWF CG G there exists a CG H s.t. ILWF (G) =
IMVR(H) iff (Gcl(K))m is chordal for all K ∈ cc(G).

Proof. To prove the “if” part, note that if (Gcl(K))m is chordal for allK ∈ cc(G),
then there is a DAG D s.t. ILWF (G) = IBN(D) [1, Proposition 4.2] and, thus,
it suffices to take H =D.

To prove the “only if” part, assume to the contrary that V1− . . .−Vn is a
chordless undirected cycle in (Gcl(K))m for some K ∈ cc(G). Note that H has
the same adjacencies as G. Therefore, Vi−1←Vi and/or Vi→Vi+1 must be in H
because, otherwise, Vi−1⊥⊥GVi+1∣Z ∈ ILWF (G) for some Z s.t. Vi ∈ Z whereas
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Vi−1⊥⊥HVi+1∣Z ∉ IMVR(H), which contradicts that ILWF (G) = IMVR(H). As-
sume without loss of generality that Vi→Vi+1 is in H. Then, Vi+1→Vi+2 must
be in H too, by an argument similar to the previous one. Repeated ap-
plication of this reasoning implies that H has a semi-directed cycle, which
contradicts the definition of CG.
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