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Abstract

We propose a method to assist the
user in the interpretation of the
best Bayesian network model indu-
ced from data. The method consists
in extracting relevant features from
the model (e.g. edges, directed
paths and Markov blankets) and,
then, assessing the confidence in
them by studying multiple locally
optimal models of the data. We
prove that our approach to confi-
dence estimation is asymptotically
optimal under the faithfulness as-
sumption. Experiments with syn-
thetic and real data show that the
method is accurate and informative.

Keywords: Bayesian networks.

1 Introduction

Learning Bayesian network (BN) models from
data has been widely studied for the last few
years. As a result, two main approaches
to learning have been developed: One tests
conditional independence constraints, while
the other searches the space of models using
a score. In this paper we focus on the latter
approach, usually called model selection.

A model selection procedure usually consists
of three components: A neighborhood, a sco-
ring criterion and a search strategy. The
neighborhood of a model restricts the search
to a small part of the search space around
the model, and it is usually defined by means

of local transformations of a representative of
the model. The scoring criterion evaluates the
quality of a model with respect to data. The
search strategy selects a new model, based on
the scoring criterion, from those in the neigh-
borhood of the current best model.

Model selection aims to find a high scoring
BN model of the learning data. However,
there are applications where this is not en-
ough (e.g. data mining and bioinformatics):
We should as well assist the user in interpre-
ting the model. Unfortunately, there is little
research on how to proceed in these cases. In
this paper we focus on a solution that we call
feature analysis. It consists basically in ex-
tracting relevant features from the best model
found (e.g. edges, directed paths and Markov
blankets) and, then, assessing the confidence
in them. Assessing the confidence in the fea-
tures is crucial, since some of them may be
unreliable due to, for instance, noisy, sparse or
complex learning data. See [5, 6, 7] for some
approaches to confidence estimation. In this
paper we propose and evaluate a new method
for this purpose. We assess the confidence in
a feature as the fraction of models containing
the feature out of the different locally optimal
models obtained by running repeatedly the
k-greedy equivalence search algorithm (KES)
[12]. This approach to confidence estimation
is asymptotically optimal under the faithful-
ness assumption.

In the next section we introduce KES. In Sec-
tion 3 and 4 we describe and evaluate, respec-
tively, our proposal for feature analysis. We
conclude in Section 5 with some discussion.



2 Learning with KES

In this section we describe KES for learning
BN models from data. We first review some
basics and introduce some notation.

2.1 Basics and Notation

Let V denote a nonempty finite set of discrete
random variables. A Bayesian network (BN)
for V is a pair (G, θ), where G is an acyclic di-
rected graph (DAG) whose nodes correspond
to the random variables in V , and θ are pa-
rameters specifying a conditional probability
distribution for each node X ∈ V given its pa-
rents, p(X|Pa(X)). A BN represents a joint
probability distribution for V , p(V ), through
the factorization p(V ) =

∏
X∈V p(X|Pa(X)).

A BN model, M(G), is the set of all the
joint probability distributions that can be re-
presented by all the BNs with structure G.
Two DAGs G1 and G2 are equivalent if they
represent the same model, i.e. M(G1) =
M(G2). All the joint probability distributions
in a model M(G) satisfy certain conditional
independence constraints among the random
variables in V that can be read from the DAG
G by means of d-separation [11]. Joint pro-
bability distributions that do not satisfy any
other conditional independence than those en-
forced by d-separation in G are called faith-
ful to G. Any joint probability distribution
faithful to a DAG (as well as many more dis-
tributions) satisfies the composition property:
X⊥⊥Y |Z ∧X⊥⊥U |Z ⇒ X⊥⊥Y U |Z. A model
M is inclusion optimal w.r.t. a joint proba-
bility distribution p if M includes p and no
model strictly included in M includes p.

The inclusion boundary IB(M1) of a model
M1 is the union of the lower and upper in-
clusion boundaries, LIB(M1) and UIB(M1),
respectively. LIB(M1) is the set of models
M2 that are strictly included in M1 and such
that no model strictly included in M1 strictly
includes M2. Likewise, UIB(M1) is the set of
models M2 that strictly include M1 and such
that no model strictly including M1 is strictly
included in M2.

One uses data to select among different mo-

dels according to some scoring criterion that
assigns a score to each model. Sometimes it is
convenient to score a representative DAG of a
model, instead. If a scoring criterion assigns
the same value to equivalent DAGs, then we
say that the scoring criterion is score equiva-
lent. A scoring criterion is locally consistent
if the score assigned to a DAG G for some
data i.i.d. sampled from a joint probabi-
lity distribution p asymptotically always in-
creases by removing an edge in G, unless this
edge removal adds a conditional independence
constraint to the model M(G) that does not
hold in p. One of the most used score equiva-
lent and locally consistent scoring criteria is
the Bayesian information criterion (BIC) [3].

2.2 KES

The k-greedy equivalence search algorithm
(KES) [12] is formally described as follows:1

KES (k∈[0,1])
M = empty graph model
repeat

B = set of models in IB(M) with
higher score than the model M

if |B| > 0 then
C = random subset of the set

B with size max(1,|B|·k)
M = the highest scoring model

from the set C
else return(M)

Note that KES (k = 1) corresponds to the
greedy equivalence search algorithm (GES)
proposed in [3].2 As a matter of fact, KES
generalizes GES by including the parameter
k ∈ [0, 1], so that we can trade off greedi-
ness for randomness. This makes KES able to
reach different local optima when run repea-
tedly. We refer the reader to [12] for details
on the implementation of KES, as well as for
the proofs of the following properties.

1We leave the question of the representation of a
model up to the practitioner, although some repre-
sentations are more efficient than others for genera-
ting the inclusion boundary neighborhood. Common
choices are DAGs, essential graphs and patterns.

2To be exact, GES is a two-phase algorithm that
first uses only UIB(M) and, then, only LIB(M).
KES (k = 1) corresponds to a variant of GES des-
cribed in [3] that uses the whole IB(M) in each step.



Theorem 1 KES using a score equivalent
and locally consistent scoring criterion and
fully observed learning data i.i.d. sampled
from a joint probability distribution faithful to
a DAG G asymptotically always finds M(G).

Theorem 2 KES using a score equivalent
and locally consistent scoring criterion and
fully observed learning data i.i.d. sampled
from a joint probability distribution p satis-
fying the composition property asymptotically
always finds a model that is inclusion optimal
w.r.t. p.

Theorem 3 KES (k = 0) using a score equi-
valent and locally consistent scoring criterion
and fully observed learning data i.i.d. sampled
from a joint probability distribution p satis-
fying the composition property asymptotically
finds with nonzero probability any model that
is inclusion optimal w.r.t. p.

Therefore, KES (k = 0) can asymptotically
find any inclusion optimal model. Unfortu-
nately, the number of inclusion optimal mo-
dels for a domain with n random variables can
be exponential in n [12]. In practice, KES
(k = 0) examines all the locally optimal mo-
dels if run repeatedly enough times. The re-
sults compiled in [12] for KES (k 6= 1) show
that the number of different local optima can
be huge when the learning data is of finite
size, even if the faithfulness assumption holds
and the amount of learning data is conside-
rable. Moreover, a large number of them can
be superior to the one returned by GES.

3 Feature Analysis

In the light of the experiments in [12], run-
ning KES (k 6= 1) repeatedly and, then, re-
porting the best locally optimal model found
to the user is a very competitive model selec-
tion procedure. In this section we describe a
novel method for feature analysis that is built
on top of this procedure.

3.1 Feature Extraction

First of all, we need to adopt a model repre-
sentation scheme so that interesting features

can be extracted and studied. We propose
representing a model by an essential graph
(EG). An EG represents a model by summa-
rizing all its representative DAGs: The EG
contains the directed edge X → Y if and
only if X → Y exists in all the representa-
tive DAGs, while it contains the undirected
edge X—Y if and only if X → Y exists in
some representative DAGs and Y → X in
some others. Note that a model is uniquely
represented by an EG. See [3] for an efficient
procedure to transform a DAG into its corres-
ponding EG. We pay attention to three types
of features in an EG: Directed and undirec-
ted edges, directed paths and Markov blan-
ket neighbors (two nodes are Markov blanket
neighbors if there is an edge between them,
or if they are both parents of another node).
We focus on these types of features because
they stress relevant aspects of the distribution
of the learning data. Directed and undirec-
ted edges reflect immediate interactions bet-
ween random variables. In addition, directed
edges suggest possible causal relations. Direc-
ted paths establish orderings between random
variables. A random variable is conditionally
independent of all the random variables out-
side its Markov blanket neighborhood given
its Markov blanket neighborhood.

3.2 Confidence Assessment

Unfortunately, the best locally optimal model
discovered by running KES (k 6= 1) repea-
tedly is not likely to represent perfectly the
distribution of the learning data. Therefore,
some of the features extracted from it may be
unreliable. We need to provide the user with
a measure of the confidence in the features.

While all the different locally optimal models
found by running KES (k 6= 1) repeatedly di-
sagree in some features, we expect a large frac-
tion of them to share some others. In fact, the
more strongly the learning data supports a
feature, the more frequently it should appear
in the different locally optimal models found.
Likewise, the more strongly the learning data
supports a feature, the higher the likelihood
of the feature being true in the distribution of
the learning data. This leads us to assess the



confidence in a feature as the fraction of mo-
dels containing the feature out of the different
locally optimal models obtained by running
KES (k 6= 1) repeatedly. This approach to
confidence estimation is asymptotically opti-
mal under the faithfulness assumption.

Theorem 4 Assessing the confidence in a
feature as the fraction of models containing
the feature out of the different locally optimal
models obtained by running KES (k 6= 1) re-
peatedly using a score equivalent and locally
consistent scoring criterion and fully obser-
ved learning data i.i.d. sampled from a joint
probability distribution faithful to a DAG G
asymptotically always assigns confidence equal
to one to the features in M(G) and equal to
zero to the rest.

Proof: Under the conditions of the theorem,
KES is asymptotically optimal (recall Theo-
rem 1). Thus, it always returns M(G).

Note that our proposal for confidence esti-
mation gives equal weight to all the models
available, no matter their scores. An alter-
native approach consists in weighting each of
the models by its score. This approach is also
asymptotically optimal under the conditions
of Theorem 4. We stick to the former ap-
proach, for the sake of simplicity.

3.3 Feature Presentation

Let M̂ denote the model reported to the user,
i.e. the best model among the locally optimal
models obtained by running KES (k 6= 1) re-
peatedly. The simplest way of assisting the
user in the interpretation of M̂ consists in re-
porting every feature in M̂ together with its
confidence value. Instead, we suggest repor-
ting all the features in M̂ with confidence va-
lue equal or above a given threshold value t.
We call these features true positives (TPs).
Likewise, we define false positives (FPs) as
the features not in M̂ with confidence value
equal or above t, and false negatives (FNs) as
the features in M̂ with confidence value be-
low t. To aid the user setting t, we suggest
plotting the trade-off curve between the num-
ber of FPs and FNs as a function of t. The

user may, for instance, set t to the value that
minimizes the sum of FPs and FNs. This ap-
proach gives equal weight to FPs and FNs.
Alternatively, the terms in the sum can be
weighted according to the user’s preferences
for FPs and FNs. The thresholding process
has to be repeated for each type of features,
as the most convenient value for t may differ.

4 Evaluation

In this section we evaluate our approach to
feature analysis with synthetic and real data.

4.1 Databases and Setting

The synthetic database used for evaluation is
the Alarm database [10], 20000 cases sampled
from a BN representing potential anesthesia
problems in the operating room. The true
BN has 37 nodes and 46 arcs, and each node
has from two to four states. Note that the
faithfulness assumption holds.

The two real databases used for evaluation are
obtained by preprocessing the Leukemia da-
tabase [9], 72 samples from leukemia patients
with each sample being characterized by the
expression level of 7129 genes. First, gene ex-
pression levels are discretized into three states
via an information theory based method [1].
Then, the discretized database is split into
two auxiliary databases: One containing the
data of the 47 patients suffering from acute
lymphoblastic leukemia (ALL), and the other
containing the data of the 25 patients suffe-
ring from acute myeloid leukemia (AML). Fi-
nally, these two databases are transposed, so
that the 7129 genes are the cases and the mea-
surements for the corresponding patients are
the attributes. We denote the resulting data-
bases simply by ALL and AML, respectively.
It should be mentioned that the cases in these
databases are treated as i.i.d., although some
genes may be co-regulated and, thus, some
cases may be correlated. This simplifies the
analysis and may not change the essence of
the results. In fact, this approach is common
in gene expression data analysis (e.g. [2]).

We also perform experiments with samples of
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Figure 1: Trade-off curves between the num-
ber of FPs and FNs for the Alarm databases
at threshold values t = 0.05 · r, r = 1, . . . , 20.

sizes 1 %, 2 %, 5 %, 10 %, 25 % and 50 %
of the databases introduced above. The re-
sults reported are averages over five random
samples of the corresponding size.

The setting for the evaluation is as follows. In
the light of the experiments in [12], we consi-
der KES (k = 0.8) with the BIC as scoring
criterion. For each database used for evalua-
tion, we proceed as described in Section 3. We
first run KES 1000 independent times and use
all the different locally optimal models disco-
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Figure 2: Edges for the original Alarm data-
base. Solid edges are TPs and dashed edges
are FPs. Plain edges correspond to threshold
value t = 0.45 and bold edges to t = 0.95.

vered to assess the confidence in (directed and
undirected) edges, directed paths and Markov
blanket neighbors. Then, we plot the trade-off
curves between the number of FPs and FNs
as a function of the threshold value t for each
type of features. For the seven Alarm data-
bases, FPs and FNs are computed with res-
pect to the true model, so as to assess the
accuracy of our proposal. For each of the 14
ALL and AML databases, FPs and FNs are
calculated with respect to the best locally op-
timal model learnt from that database.

4.2 Results

Figure 1 shows the trade-off curves between
the number of FPs and FNs for the Alarm
databases. We notice that the true model has
46 edges, 196 directed paths and 65 Markov
blanket neighbors. The shape of the trade-off
curves, concave down and closer to the ho-
rizontal axis (FNs) than to the vertical axis
(FPs), indicates that our method for feature
analysis is reliable. For instance, for all the
databases of size above 1 %, there is a wide
range of values of t such that (i) the num-
ber of TPs is higher than the number of FNs,
and (ii) the number of FNs is higher than the
number of FPs. As expected because Theo-
rem 4 applies, increasing the size of the lear-
ning database improves the trade-off between
FPs and FNs in general, i.e. the number of
FPs and FNs decreases. In particular, when
setting t to the value that minimizes the sum
of FPs and FNs for the original Alarm data-
base, there are 1 FP and 1 FN (45 TPs) for
edges (t = 0.45), 1 FP and 10 FNs (186 TPs)
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Figure 3: Trade-off curves between the number of FPs and FNs for the ALL (left) and AML
(right) databases at threshold values t = 0.05 · r, r = 1, . . . , 20.

for directed paths (t = 0.6), and 0 FPs and 3
FNs (62 TPs) for Markov blanket neighbors
(t = 0.7). These results confirm that our ap-
proach to feature analysis performs very ac-
curately under the faithfulness assumption.

Figure 2 depicts the TP and FP edges for the
original Alarm database when t = 0.45, 0.95.
Recall that t = 0.45 is the threshold value
that minimizes the sum of FPs and FNs for
edges, and it implies 1 FP and 1 FN (45 TPs).
The FN edge (12 → 32) is reported in [4] to
be not supported by the data. When t = 0.95,

there are 0 FPs and 17 FNs (29 TPs). There-
fore, our method for feature analysis identifies
a significant amount of the edges in the true
model with very high confidence.

Figure 3 shows the trade-off curves between
the number of FPs and FNs for the ALL and
AML databases. As can be seen, the trade-
off between FPs and FNs does not necessarily
improve when the size of the learning data-
base increases. We conjecture that this may
be a characteristic of many real databases,
which is caused by the fact that the number
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of different local optima does not necessarily
decrease when more learning data are made
available. This is not surprising, because the
faithfulness assumption is not likely to hold
in real world domains. Figure 4 illustrates
the distinct trends in the number of local op-
tima discovered in our experiments with the
Alarm, ALL and AML databases.

Table 1 complements Figure 3 with the num-
ber of edges, directed paths and Markov blan-
ket neighbors in the best models induced from
the ALL and AML databases. These results
together indicate that our proposal for fea-
ture analysis can provide the user with va-
luable information. For instance, for all the
databases, the user can set t to a wide range
of values such that (i) the number of TPs is
higher than the number of FNs, and (ii) the
number of FNs is higher than the number of
FPs. In particular, when setting t to the value
that minimizes the sum of FPs and FNs for
the original ALL database, there are 21 FPs
and 34 FNs (99 TPs) for edges (t = 0.55), 27
FPs and 126 FNs (610 TPs) for directed paths
(t = 0.8), and 10 FPs and 33 FNs (173 TPs)
for Markov blanket neighbors (t = 0.8). For
the original AML database, when setting t to
the value that minimizes the sum of FPs and
FNs, there are 12 FPs and 6 FNs (54 TPs) for
edges (t = 0.4), 24 FPs and 50 FNs (120 TPs)
for directed paths (t = 0.6), and 4 FPs and 4
FNs (79 TPs) for Markov blanket neighbors
(t = 0.5). Therefore, for all the databases,

Table 1: Number of edges (E), directed paths
(D) and Markov blanket neighbors (M) in the
best models for the ALL and AML databases.

ALL AML
SIZE E D M E D M

1 % 46 0 46 23 0 23
2 % 46 19 47 24 0 24
5 % 53 194 60 19 0 20

10 % 84 538 113 35 105 43
25 % 91 519 123 47 186 59
50 % 102 600 145 38 151 49

100 % 133 736 206 60 170 83

1

6 10

11

15 1318

24

16

20

519

3

9

12

23 2

1421

8 7 1725

224

Figure 5: Edges for the original AML data-
base. Solid edges are TPs and dashed edges
are FPs. Plain edges correspond to threshold
value t = 0.75 and bold edges to t = 0.95.
Nodes are numbered in the same order as they
appear in the Leukemia database.

our method for feature analysis identifies a
considerable number of features in the best
models induced with confidence value signifi-
cantly high, i.e. the number of TPs is much
higher than the number of FPs. Reporting
these features provides the user with valuable
insight into these models as well as into the
distributions of the databases. Figure 5 de-
picts the TP and FP edges for the original
AML database when t = 0.75, 0.95. There
are 2 FPs and 31 FNs (29 TPs) for t = 0.75,
and 0 FPs and 48 FNs (12 TPs) for t = 0.95.
It is out of the scope of this paper to work out
a biological explanation for these edges.

Finally, it is worth mentioning that we also
ran all the experiments in this section with
KES (k = 0.4, 0.7, 0.9). Note that we avoi-
ded values of k too close to 0 in order to re-
duce the likelihood of convergence to poorly
fitted locally optimal models [12]. The trade-



off curves for the Alarm databases were hardly
distinguishable from the ones in Figure 1. The
trade-off curves for the ALL and AML data-
bases were slightly different from those in Fi-
gure 3, but they led to the same conclusions
as those discussed above.

5 Discussion

We introduce a novel procedure to assist the
user in the interpretation of the best Bayesian
network model learnt from data. It consists of
two main steps. First, extraction of relevant
features from the model. In particular, we pay
attention to directed and undirected edges, di-
rected paths and Markov blanket neighbors
in the essential graph representing the model.
Second, assessment of the confidence in the
features extracted. We propose a simple but
intuitive approach to confidence estimation:
Given some good locally optimal models of
the data, the more frequently a feature oc-
curs in these models the more reliable it is.
We suggest running repeatedly the k-greedy
equivalence search algorithm [12] to obtain
the locally optimal models. This guarantees
that our method for confidence estimation is
asymptotically optimal under the faithfulness
assumption. Experimental results with syn-
thetic and real data indicate that our proposal
is accurate and informative to the user.

Our approach to confidence estimation is close
in spirit to the methods proposed in [5, 6, 7].
The models considered in [5, 6] for confidence
estimation are obtained by first creating a se-
ries of bootstrap samples of the original lear-
ning data and, then, running a greedy hill-
climbing search with random restarts on each
of the samples. On the other hand, the mo-
dels considered in [7] for confidence estimation
are obtained by first sampling some causal or-
ders via Markov chain Monte Carlo simula-
tion and, then, sampling some models that are
consistent with each of the causal orders. Un-
fortunately, no proof of asymptotic optima-
lity is reported for either of these procedures.
Moreover, these methods are likely to be less
efficient than ours. If a cache is used in [5, 6]
to store previously computed scores, then it

has to be cleared with each bootstrap sample.
Our approach exploits the same cache for the
whole confidence estimation process, because
the learning data do not change over the pro-
cess. On the other hand, Markov chain Monte
Carlo simulations are known to be accurate
but costly.

A line of further research that we consider
consists in applying the framework developed
in this paper to gene expression data analysis.
See [8, 13] for applications of [5, 6] to this end.
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