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2Center for Genomics and Bioinformatics, Karolinska Institutet, 17177 Stockholm, Sweden

Abstract

We study cross-validation as a scoring criterion for
learning dynamic Bayesian network models that
generalize well. We argue that cross-validation is
more suitable than the Bayesian scoring criterion
for one of the most common interpretations of
generalization. We confirm this by carrying out an
experimental comparison of cross-validation and the
Bayesian scoring criterion, as implemented by the
Bayesian Dirichlet metric and the Bayesian informa-
tion criterion. The results show that cross-validation
leads to models that generalize better for a wide
range of sample sizes.

Keywords: Dynamic Bayesian network models,
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1 Motivation

Let Xt = {Xt
1, . . . , X

t
I} denote a set of I discrete ran-

dom variables that represents the state of a temporal
process at a discrete time point t. A dynamic Baye-
sian network (DBN) is a pair (G, θ) that models the
temporal process by specifying a probability distribu-
tion for X0, . . . , XT , p(X0, . . . , XT |G, θ) [7, 18]. The
first component of the DBN, G, is an acyclic directed
graph (DAG) whose nodes correspond to the random
variables in X0 and X1. Edges from X1 to X0 are
not allowed because they do not conform with the
arrow of time. The second component of the DBN,
θ, is a set of parameters specifying a conditional pro-

∗To whom correspondence should be addressed (e-mail:
jmp@ifm.liu.se, phone: +46-13-281000, fax: +46-13-137568).

bability distribution for each node Xt
i in G given its

parents Pa(Xt
i ) in G, p(Xt

i |Pa(Xt
i ), G, θ). In this pa-

per, all these conditional probability distributions are
multinomial, which is the most common choice. We
call G the (DBN) model and θ the (DBN) parame-
ters. A DBN represents p(X0, . . . , XT |G, θ) through
the factorization

p(X0, . . . , XT |G, θ) =
T∏

t=0

I∏

i=1

p(Xt
i |Pa(Xt

i ), G, θ)

(1)
where Pa(Xt

i ) = {Xt−1
j |X0

j ∈ Pa(X1
i )} ∪

{Xt
j |X1

j ∈ Pa(X1
i )} and p(Xt

i |Pa(Xt
i ), G, θ) =

p(X1
i |Pa(X1

i ), G, θ) for t > 1. Note that we im-
plicitly assume that X0

i , . . . , XT
i have all the same

set of possible values. Note also that our defini-
tion of DBNs constrains the temporal processes that
can be modelled to be both first-order Markov, i.e.
p(Xt|X0, . . . , Xt−1, G, θ) = p(Xt|Xt−1, G, θ), and
stationary, i.e. p(Xt|Xt−1, G, θ) is the same for all t.
These constraints can be easily removed. However,
they are commonly adopted because they reduce the
complexity of the DBNs under consideration, which
can be otherwise overwhelming, particularly for large
values of T [7, 18].

Learning a DBN model from data aims to find the
best model of the unknown probability distribution
underlying the temporal process on the basis of a
random sample of finite size, i.e. the learning data.
The goodness of a model is evaluated with the help of
a scoring criterion, which represents our preferences
for the models. Let D = {D1, . . . , DS} denote the
learning data, which consists of S independent and
identically distributed time series. Each Ds specifies
values for the random variables X0, . . . , XTs . The
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Bayesian scoring criterion (BSC) is probably the most
commonly used scoring criterion. The BSC value of
a model G given the learning data D is defined as

log p(D, G) = log p(D|G) + log p(G). (2)

For simplicity, p(G) is usually assumed to be uni-
form. In this paper, we make this assumption as well.
Thus, BSC is equivalent to log p(D|G). This means
that BSC scores the likelihood of G having generated
D. According to [4], BSC can also be interpreted as
follows. From the chain rule of probability, we have

log p(D|G) =
S∑

s=1

log p(Ds|D1, . . . , Ds−1, G) (3)

where p(Ds|D1, . . . , Ds−1, G) represents the pre-
dictive accuracy of G for Ds given D1, . . . , Ds−1

after averaging over θ. The log in front of
p(Ds|D1, . . . , Ds−1, G) can be thought of as the uti-
lity function for prediction. Thus, BSC scores the ac-
curacy of G as a sequential predictor of D under the
log utility function. This means that BSC summa-
rizes not only how well a model fits the learning data
but also how well it generalizes to unseen data. Sco-
ring the generalization ability of the models is crucial
because it prevents overfitting and, thus, guarantees
a good approximation to the unknown probability
distribution of the temporal process that generated
the learning data.

In this paper, we aim to learn DBN models that
generalize well. We interpret the generalization abi-
lity of a model G as the expected predictive accu-
racy for the next time series, DS+1, after plugging
the maximum likelihood (ML) or maximum a pos-
teriori (MAP) parameters obtained from D, θ̂, into
G, i.e. E[log p(DS+1|G, θ̂)]. As in BSC, we consi-
der the log utility function. This is a very common
interpretation of the generalization ability of a mo-
del1 but, unfortunately, BSC does not fully conform
to it for the following three reasons, which have been
previously discussed in [4]. First, we are interested in

1For instance, all those papers that measure the generali-
zation ability of a model as the cross-entropy or log-loss of the
model after plugging the ML or MAP parameters into it agree
with our interpretation of generalization.

the predictive accuracy for DS+1 given the S time se-
ries already seen, i.e. D. In contrast, BSC combines
the accuracy of predictions based on 0, 1, 2, . . . , S− 1
time series, i.e. all the predictions are based on less
than S time series and some of them in many less
than S. Second, we are interested in the expected
predictive accuracy for DS+1 because DS+1 is unk-
nown. In contrast, BSC combines the accuracy of
predictions for known time series, i.e. Ds is known
when making the prediction based on D1, . . . , Ds−1.
Third, we are interested in the predictive accuracy
after plugging θ̂ into G. In contrast, BSC averages
the predictive accuracy over all the possible values of
θ. Consequently, BSC is not fully in line with our
preferences for the models. As we will see, this sub-
stantially harms generalization.

Unfortunately, the exact evaluation of
E[log p(DS+1|G, θ̂)] is computationally unfea-
sible in all but small domains, because it implies
summing over all DS+1 and all G. That is

E[log p(DS+1|G, θ̂)]

=
∑

DS+1

p(DS+1|D) log p(DS+1|G, θ̂)

=
∑

DS+1

[ ∑

G

p(G|D)p(DS+1|D, G)
]
log p(DS+1|G, θ̂).

(4)
In this paper, we propose K-fold cross-validation

(CV) as a computationally feasible scoring criterion
for learning DBN models that generalize well under
our interpretation of generalization. The CV value of
a model G given the learning data D is computed as
follows. First, D is randomly split into K mutually
exclusive subsets or folds D1, . . . , DK of approxima-
tely equal size. Then, the predictive accuracy of G
for Dk after plugging the ML or MAP parameters ob-
tained from D \Dk, θ̂k, into G, i.e. log p(Dk|G, θ̂k),
is calculated for all k. Finally, the CV value of G
given D is computed as

1
S

K∑

k=1

log p(Dk|G, θ̂k). (5)

CV is intended to estimate E[log p(DS+1|G, θ̂)].
Obviously, CV departures from this aim in that it
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combines the accuracy of predictions based on less
than S time series. We believe that this is a minor
departure if K is large enough. Thus, we hypothe-
size that CV complies better than BSC with our in-
terpretation of the generalization ability of a model.
The experimental results that we report in Section 2
confirm this hypothesis: CV leads to models that ge-
neralize better than those obtained by BSC for a wide
range of sample sizes. It is worth mentioning that,
in the experiments, we consider two implementations
of BSC: On one hand, the Bayesian Dirichlet metric
(BD) [7, 8] which calculates BSC exactly and, on the
other hand, the Bayesian information criterion (BIC)
[7, 23] which is an asymptotic approximation to BSC.
CV outperforms both implementations of BSC.

The remaining two sections of this paper are devo-
ted to the experimental comparison of CV and BSC,
and to the discussion of this and related works.

2 Experiments

In this section, we evaluate CV as a scoring criterion
for learning DBN models that generalize well. We use
BSC (BD and BIC implementations) as benchmark.
All the experiments involve data sampled from known
DBNs. This enables us to assess the topological ac-
curacy of the models learnt, in addition to their gene-
ralization ability. We first describe the experimental
setting.

2.1 Experimental Setting

All the learning databases in the experiments involve
between 20 and 40 nodes. This prohibits performing
an exhaustive search for the highest scoring model
and, thus, we turn to heuristics. Specifically, we use a
greedy hill-climbing search: We start from the empty
graph and, gradually, improve it by applying the hi-
ghest scoring single edge addition or removal avai-
lable. This is a popular search strategy due to its
simplicity and good performance [7, 8].

The version of CV that we use in the experiments
is 10 times 10-fold cross-validation, i.e. we average 10
runs of 10-fold cross-validation with different folds in
each run. The folds are the same for all the mo-

dels evaluated. This setting guarantees a good re-
plicability of the results [2, 14]. It is worth mentio-
ning that CV shares two important properties with
BD and BIC. First, CV decomposes into local scores,
one for each node and its parents. This means that
scoring an edge addition or removal in the greedy
hill-climbing search requires computing a single local
score. Second, all the sufficient statistics required in
each evaluation of CV can be computed in a single
pass of the learning data at the expense of storage
space. This is typically the most time consuming
step in the evaluation of CV, BD and BIC.

CV prevents overfitting by recommending the ad-
dition of only those edges that seem to be beneficial
for generalization. This excludes the vast majority of
false positive edges. However, a considerable number
of false positive edges can still get recommended just
by chance due to the noisy and/or finite nature of the
learning data. Solving this problem is crucial for CV
to be a competitive scoring criterion. The overfitting
problem of CV has been previously noticed in [9, 19].
Despite these works are not concerned with learning
DBN models from data, their arguments are general
and apply to this task as well. In [9], the authors sug-
gest that overfitting occurs due to the large variance
of CV and propose solving it by adding a penalty
to CV. The penalty is up to the user as the authors
do not provide any principled method for setting it.
In [19], the author claims that overfitting occurs due
to testing too many hypotheses, which in our context
means testing too many edge additions, and proposes
an algorithm to solve it. The algorithm discards the
best scoring hypotheses due to the risk of overfitting
and returns the next best one.

In this paper, we propose solving the overfitting
problem of CV in a new and principled way. We mo-
dify the greedy hill-climbing search so as to add an
edge only if it significantly improves the CV value of
the model. In order to decide upon the significance of
the improvement in CV for an edge addition, we pro-
pose carrying out a hypothesis test with the impro-
vement in CV as the test statistic and under the null
hypothesis that the improvement is just by chance
due to the noisy and/or finite nature of the learning
data and, thus, the edge should not be added to the
model. As we do not know an analytical expression
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of the probability distribution for the test statistic
under the null hypothesis, we empirically estimate it.
To be exact, we need to estimate one such probability
distribution for each edge that can be added to the
model. To keep it simple, we estimate the probabi-
lity distributions only at the beginning of the greedy
hill-climbing search, i.e. when the model is the empty
graph. This means that we disregard the complexity
of the model in the hypothesis tests. Furthermore, if
all the nodes in the learning data have the same car-
dinality, then we only need to estimate a single pro-
bability distribution at the beginning of the search.
This is the case in our experiments. Specifically, we
empirically estimate the probability distribution for
the test statistic under the null hypothesis from the
improvement in CV scored by 10000 false positive
edge additions to the empty graph that we obtain as
follows. First, we replace the values in the learning
data with uniformly drawn values and, then, compute
the improvement in CV for every possible edge addi-
tion to the empty graph. Note that all these edges
are false positive. We repeat this process until we
gather the improvement in CV for 10000 false posi-
tive edges. We obtain the threshold for rejecting the
null hypothesis by first sorting the 10000 CV values
in descending order and, then, picking the (100·α)-th
percentile where α is the significance level. We use
α = 0.001. As the results below show, this somewhat
crude solution works satisfactorily. It is out of the
scope of this paper to compare different solutions to
the overfitting problem of CV.

The version of BD that we use in the experiments
is the so-called BDeu with an equivalent sample size
(ESS) of 1 [7, 8]. This is a popular choice based
on the results in [8]. For the sake of completeness,
we also investigate the effects of increasing ESS. In
the experiments, we always compute θ̂ and θ̂k as the
MAP parameters obtained from D and D \Dk, res-
pectively. The prior probability distribution over the
parameters is always the same as in BD. See [7, 8] for
details.

2.2 Experiments with Random DBNs

The first set of experiments involves learning data-
bases of different sizes sampled from random DBNs

of different complexities. We consider four model
complexities: 20 three-valued nodes with 30 and 50
edges, and 40 three-valued nodes with 60 and 100
edges. We consider learning databases that consist
of S independent and identically distributed time
series, S = 3, 5, 10, 25, 50, 100, 250, 500, 1000. Each
time series is of length 10, i.e. it specifies values for
X0, . . . , X9. Therefore, we consider learning data-
bases of size 10 · S observations for each node. For
each combination of model complexity and sample
size, we generate 100 random DBNs. The model of
each of these DBNs is obtained by adding edges to
the empty graph such that each edge links a uni-
formly drawn pair of nodes. To keep it simple, all
the edges go from X0 to X1. All the parameters
are drawn uniformly from [0, 1]. From each of these
DBNs, we sample a learning database of the corres-
ponding size and a testing database with 1000 time
series of length 10. For each learning database D, we
proceed as follows. We run the greedy hill-climbing
search described above with CV, BD and BIC as the
scoring criterion. We assess the topological accuracy
of each model learnt G by computing its precision
and recall. Precision is the number of true positive
edges divided by the number of true and false posi-
tive edges, and it represents the purity of G. Recall
is the number of true positive edges divided by the
number of true positive and false negative edges, and
it represents the completeness of G. We assess the
generalization ability of G as log p(D′|G, θ̂), where
D′ is the testing database paired with D. This quan-
tity divided by the number of time series in D′, also
known as log-loss, is commonly used as an approxi-
mation of E[log p(DS+1|G, θ̂)]. For each combination
of model complexity and sample size, we report the
following performance measures. We report the ave-
rage difference in generalization ability between the
100 models learnt via CV and the 100 induced via
BD (BIC). We denote these values by CV−BD and
CV−BIC. Positive values indicate that CV is super-
ior. We also report the average precision and recall
of the models learnt via CV, BD and BIC. We denote
the precision values by p CV, p BD and p BIC, and
the recall values by r CV, r BD and r BIC. Finally,
we also report whether the differences in the results
of CV and BD (BIC) are statistically significant or
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Size CV−BD CV−BIC p CV p BD p BIC r CV r BD r BIC

30 13243±5579
√

8326±4149
√

0.40±0.43 0.24±0.12
√

0.37±0.17 0.02±0.03 0.10±0.05
√

0.09±0.05
√

50 2536±2291
√

2587±2154
√

0.63±0.40 0.58±0.25 0.60±0.21 0.05±0.04 0.10±0.05
√

0.12±0.06
√

100 -109±705 -254±758 0.94±0.11 0.91±0.20 0.93±0.12 0.15±0.07 0.14±0.07
√

0.18±0.08
√

250 575±584
√

225±456
√

0.98±0.04 0.99±0.03 1.00±0.01
√

0.41±0.10 0.27±0.07
√

0.34±0.08
√

500 861±462
√

410±283
√

0.99±0.03 1.00±0.01
√

1.00±0.02
√

0.62±0.11 0.41±0.09
√

0.49±0.10
√

1000 944±500
√

625±395
√

0.99±0.02 1.00±0.00
√

1.00±0.01
√

0.85±0.10 0.62±0.11
√

0.68±0.10
√

2500 421±290
√

264±241
√

0.99±0.02 1.00±0.00
√

1.00±0.00
√

0.97±0.06 0.84±0.10
√

0.87±0.10
√

5000 345±288
√

155±191
√

1.00±0.01 1.00±0.00
√

1.00±0.00
√

0.98±0.06 0.90±0.10
√

0.93±0.10
√

10000 99±192
√

84±171
√

1.00±0.01 1.00±0.00
√

1.00±0.00
√

1.00±0.01 0.97±0.06
√

0.97±0.05
√

100 250 500 1000 2500 5000 10000
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Figure 1: Results of the experiments with the random DBNs of 20 three-valued nodes and 30 edges.

Size CV−BD CV−BIC p CV p BD p BIC r CV r BD r BIC

30 13655±5162
√

10695±3919
√

0.37±0.42 0.28±0.14 0.34±0.18 0.01±0.01 0.06±0.04
√

0.05±0.03
√

50 1274±1973
√

2175±1958
√

0.55±0.43 0.64±0.32 0.63±0.24 0.02±0.02 0.04±0.03
√

0.06±0.03
√

100 -244±613
√

-183±588 0.88±0.21 0.91±0.25 0.91±0.16 0.07±0.04 0.06±0.03
√

0.09±0.04
√

250 565±464
√

267±358
√

0.97±0.05 1.00±0.01
√

0.99±0.03
√

0.21±0.06 0.12±0.04
√

0.16±0.04
√

500 1065±525
√

563±382
√

0.99±0.02 1.00±0.03 1.00±0.01
√

0.38±0.08 0.21±0.05
√

0.27±0.06
√

1000 1774±706
√

1323±601
√

1.00±0.01 1.00±0.00
√

1.00±0.01 0.60±0.10 0.34±0.07
√

0.40±0.08
√

2500 1396±528
√

1014±482
√

0.99±0.01 1.00±0.00
√

1.00±0.00
√

0.83±0.10 0.55±0.08
√

0.60±0.10
√

5000 1385±613
√

659±421
√

1.00±0.01 1.00±0.00 1.00±0.00 0.90±0.08 0.68±0.10
√

0.76±0.11
√

10000 634±438
√

546±383
√

1.00±0.00 1.00±0.00 1.00±0.00 0.97±0.05 0.82±0.09
√

0.84±0.09
√

100 250 500 1000 2500 5000 10000
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Figure 2: Results of the experiments with the random DBNs of 20 three-valued nodes and 50 edges.
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Size CV−BD CV−BIC p CV p BD p BIC r CV r BD r BIC

30 56389±13130
√

28254±6636
√

0.35±0.27 0.12±0.05
√

0.23±0.10
√

0.02±0.02 0.11±0.05
√

0.08±0.04
√

50 9983±4523
√

8438±3141
√

0.64±0.30 0.40±0.14
√

0.46±0.13
√

0.04±0.03 0.09±0.04
√

0.11±0.04
√

100 -322±1114 -96±1310 0.91±0.09 0.90±0.10 0.86±0.09
√

0.14±0.04 0.15±0.04
√

0.19±0.05
√

250 1048±671
√

376±586
√

0.96±0.04 0.99±0.02
√

0.99±0.02
√

0.41±0.07 0.27±0.05
√

0.34±0.06
√

500 1639±580
√

875±414
√

0.98±0.02 1.00±0.01
√

1.00±0.01
√

0.64±0.07 0.42±0.07
√

0.49±0.07
√

1000 1913±666
√

1332±589
√

0.99±0.01 1.00±0.00
√

1.00±0.00
√

0.83±0.09 0.59±0.07
√

0.66±0.07
√

2500 1039±522
√

591±392
√

0.99±0.01 1.00±0.00
√

1.00±0.00
√

0.95±0.06 0.80±0.08
√

0.84±0.08
√

5000 772±488
√

368±295
√

0.99±0.01 1.00±0.00
√

1.00±0.00
√

0.98±0.04 0.89±0.06
√

0.92±0.05
√

10000 211±257
√

176±227
√

0.99±0.01 1.00±0.00
√

1.00±0.00
√

0.99±0.02 0.95±0.05
√

0.96±0.05
√

100 250 500 1000 2500 5000 10000
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Figure 3: Results of the experiments with the random DBNs of 40 three-valued nodes and 60 edges.

Size CV−BD CV−BIC p CV p BD p BIC r CV r BD r BIC

30 52350±10899
√

33778±7335
√

0.23±0.29 0.13±0.04 0.20±0.08 0.01±0.01 0.06±0.02
√

0.04±0.02
√

50 7462±3971
√

10571±4040
√

0.64±0.33 0.44±0.15
√

0.40±0.14
√

0.02±0.01 0.04±0.02
√

0.06±0.02
√

100 -223±764 414±1037
√

0.86±0.16 0.89±0.13 0.78±0.13
√

0.05±0.02 0.05±0.02 0.08±0.02
√

250 869±756
√

342±577
√

0.95±0.04 0.99±0.03
√

0.98±0.04
√

0.21±0.04 0.12±0.03
√

0.16±0.03
√

500 1989±748
√

1011±549
√

0.98±0.02 1.00±0.00
√

1.00±0.01
√

0.38±0.06 0.21±0.04
√

0.27±0.05
√

1000 3416±883
√

2499±759
√

0.99±0.01 1.00±0.00
√

1.00±0.00
√

0.59±0.06 0.33±0.05
√

0.40±0.05
√

2500 2729±827
√

1902±689
√

1.00±0.01 1.00±0.00
√

1.00±0.00
√

0.79±0.07 0.54±0.06
√

0.60±0.06
√

5000 2741±946
√

1277±533
√

1.00±0.01 1.00±0.00
√

1.00±0.00
√

0.88±0.06 0.66±0.06
√

0.74±0.07
√

10000 1347±659
√

1130±589
√

1.00±0.01 1.00±0.00
√

1.00±0.00
√

0.94±0.05 0.79±0.07
√

0.81±0.07
√
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Figure 4: Results of the experiments with the random DBNs of 40 three-valued nodes and 100 edges.
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not. For this purpose, we use the Wilcoxon test at
a significance level of 0.001. We denote statistical
significance by the symbol

√
.

Figures 1-4 present the results of the experiments
for the four model complexities considered. The table
in each figure shows average and standard deviation
values, while the graphs only show average values to
help visualization. We exclude from the graphs the
sample sizes 30 and 50 because some of their average
values are too large to be plotted without making the
rest unreadable. Clearly, the models learnt via CV
generalize better than those induced via BD and BIC.
Specifically, CV significantly outperforms BD (BIC)
in 32 (33) of the 36 combinations of model complexity
and sample size in the evaluation, while BD (BIC) si-
gnificantly outperforms CV in only one (zero). The
precision and recall values clearly indicate that CV,
BD and BIC lead to very different models. For the
sample sizes smaller than 100, the models learnt via
CV score similar low precision but lower recall than
those induced by BD and BIC. This means that all
the models learnt contain a considerable number of
false positive edges, particularly those obtained by
BD and BIC. These edges harm generalization, par-
ticularly for the models obtained by BD and BIC
because they contain more false positive edges than
those induced via CV. It is certain that the preci-
sion and recall values reported for the sample sizes
smaller than 100 also mean that the models learnt
by BD and BIC contain more true positive edges
than those obtained via CV. However, these edges
confer a limited advantage regarding generalization
because the corresponding parameters cannot be es-
timated accurately from such small sample sizes. For
the sample sizes larger than 100, the models learnt
via CV score similar high precision but higher recall
than those induced by BD and BIC. This means that
the models learnt hardly contain false positive edges,
and that the models obtained by CV contain more
true positive edges than those obtained via BD and
BIC. This confers advantage regarding generalization
to the models learnt via CV. All these observations
together lead us to conclude that the models selec-
ted by CV are very different from those selected via
BD and BIC, though all of them must be supported
by the learning databases, otherwise they would not

have been selected. Thus, the reason why BD and
BIC do not lead to the same models as CV, though
they are supported by the learning databases and ge-
neralize better, is because there is a mismatch bet-
ween learning and testing in the case of BD and BIC,
i.e. the scoring criterion in the learning phase is not
fully in line with the scoring criterion in the testing
phase. This confirms our hypothesis in Section 1, na-
mely that CV complies better than BD and BIC with
our interpretation of generalization.

Some other conclusions that we obtain from Fi-
gures 1-4 follow. Increasing the ratio of the number
of edges to the number of nodes in the model sam-
pled affects the results of CV, BD and BIC more no-
ticeably than increasing the number of nodes while
keeping the ratio constant. This is not surprising
because the higher the ratio, the more complex the
model sampled is. We note that the performance of
CV degrades less than that of BD and BIC when the
ratio is increased (compare Figure 1 with Figure 2,
and Figure 3 with Figure 4). It is also worth men-
tioning that our results for BD and BIC agree with
those in [16]: Both scoring criteria produce a conside-
rable number of false positive edges for sample sizes
smaller than 100, while they produce a considerable
number of false negative edges for sample sizes larger
than 100. Finally, we note that BD and BIC should
always lead to the true models in our experiments
in the large sample limit [3]. Therefore, CV cannot
beat BD and BIC in the large sample limit. Our ex-
periments show that this theoretical result can be of
limited importance in practice: CV outperforms BD
and BIC for a wide range of sample sizes. Reducing
the amount of learning data required to converge to
the true model is very important if gathering new
data is expensive.

2.3 Experiments with Yeast DBNs

We complement the previous section with some ex-
periments that involve a real-world DBN model. A
brief introduction to this model follows.

Much of a cell’s complex behavior can be explai-
ned through the concerted activity of genes and gene
products. This concerted activity is typically repre-
sented as a network of interacting genes and gene
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Figure 5: Partial model of the yeast transcriptional regulatory network. An edge Xi → Xj should be read
as X0

i → X1
j in the language of DBN models.

products that we call regulatory network. Identifying
this network is crucial for understanding the behavior
of the cell which, in turn, can lead to better diagno-
sis and treatment of diseases. This is one of the most
exciting challenges in computational biology. For the
last few years, there has been an increasing interest
in learning DBN models of regulatory networks from
data [7, 10, 13, 17, 20, 22, 27]. It is worth mentioning
that there also exist other models of regulatory net-
works in the computational biology literature, some
are more coarse than DBN models, e.g. Boolean net-
work models, and some are less coarse, e.g. differen-
tial equation models. See [6, 26] for a review. All in
all, the references above prove that DBN models can

provide valuable insight into regulatory networks.

The second set of experiments in this paper in-
volves learning databases of different sizes sampled
from a partial model of the transcriptional regula-
tory network of Saccharomyces cerevisiae, i.e. baker’s
yeast. Yeast is typically the testing ground for new
algorithms in computational biology. Specifically, we
simulate the model in [11], which is based on the fin-
dings in [15]. The model involves 30 transcription
factors and 56 interactions between them. See Fi-
gure 5 for a graphical representation of the model.
The nodes represent the transcription factors and the
edges the interactions. An edge Xi → Xj should be
read as X0

i → X1
j in the language of DBN models.
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Size CV−BD CV−BIC p CV p BD p BIC r CV r BD r BIC

30 33996±9134
√

17200±5048
√

0.33±0.40 0.13±0.06
√

0.24±0.12 0.01±0.01 0.07±0.03
√

0.05±0.03
√

50 5932±3809
√

4711±2606
√

0.52±0.44 0.36±0.20
√

0.45±0.17 0.02±0.02 0.05±0.03
√

0.06±0.03
√

100 -212±994 -246±914 0.84±0.17 0.84±0.19 0.84±0.13 0.08±0.03 0.08±0.03 0.10±0.03
√

250 158±435
√

-30±385 0.94±0.07 0.98±0.04
√

0.98±0.04
√

0.18±0.03 0.14±0.03
√

0.16±0.03
√

500 414±318
√

188±227
√

0.98±0.04 1.00±0.02 1.00±0.01
√

0.26±0.04 0.20±0.03
√

0.22±0.03
√

1000 433±226
√

317±233
√

0.99±0.02 1.00±0.00
√

1.00±0.00
√

0.36±0.04 0.26±0.03
√

0.28±0.03
√

2500 954±302
√

748±295
√

0.99±0.02 1.00±0.00
√

1.00±0.00
√

0.56±0.05 0.35±0.03
√

0.39±0.03
√

5000 1252±288
√

747±292
√

0.99±0.02 1.00±0.00
√

1.00±0.00
√

0.69±0.04 0.44±0.04
√

0.50±0.04
√

10000 911±238
√

720±220
√

0.98±0.02 1.00±0.00
√

1.00±0.00
√

0.77±0.02 0.56±0.03
√

0.60±0.03
√
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Figure 6: Results of the experiments with the yeast DBNs when ESS is 1.

Size CV−BD CV−BIC p CV p BD p BIC r CV r BD r BIC

30 45097±3953
√

4864±1618
√

0.42±0.41 0.10±0.03
√

0.23±0.12
√

0.02±0.02 0.17±0.05
√

0.05±0.03
√

50 28317±4435
√

1190±1134
√

0.62±0.29 0.16±0.04
√

0.45±0.16
√

0.04±0.02 0.17±0.05
√

0.07±0.03
√

100 5096±1212
√

-253±602
√

0.79±0.15 0.35±0.08
√

0.81±0.14 0.09±0.03 0.18±0.04
√

0.10±0.03
250 511±335

√
182±359

√
0.92±0.07 0.67±0.08

√
0.98±0.04

√
0.20±0.04 0.24±0.04

√
0.17±0.04

√
500 125±205

√
264±289

√
0.95±0.05 0.86±0.07

√
1.00±0.02

√
0.29±0.03 0.29±0.03 0.23±0.03

√
1000 224±188

√
437±255

√
0.98±0.03 0.96±0.05

√
1.00±0.01

√
0.39±0.05 0.34±0.03

√
0.29±0.03

√
2500 797±227

√
1028±244

√
0.98±0.02 0.99±0.03 1.00±0.00

√
0.58±0.04 0.44±0.03

√
0.39±0.03

√
5000 515±233

√
939±283

√
0.98±0.02 0.99±0.01

√
1.00±0.00

√
0.70±0.04 0.55±0.03

√
0.49±0.04

√
10000 754±182

√
844±212

√
0.99±0.01 1.00±0.01 1.00±0.00

√
0.78±0.02 0.64±0.03

√
0.61±0.03

√
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Figure 7: Results of the experiments with the yeast DBNs when ESS is 10.
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ESS CV BD p CV p BD r CV r BD

1 -128506±2305 -128940±2372
√

0.99±0.02 1.00±0.00
√

0.36±0.04 0.26±0.03
√

10 -128275±2493 -128505±2459
√

0.97±0.04 0.95±0.05
√

0.40±0.05 0.34±0.03
√

25 -128158±2554 -128413±2525
√

0.97±0.04 0.84±0.07
√

0.42±0.05 0.39±0.04
√

50 -127683±2514 -127954±2437
√

0.97±0.04 0.73±0.07
√

0.44±0.06 0.45±0.04
100 -128659±2308 -128629±2296 0.99±0.03 0.62±0.06

√
0.39±0.07 0.51±0.05

√

1 10 25 50 100
−1.29

−1.288

−1.286

−1.284

−1.282

−1.28

−1.278

−1.276
x 10

5
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CV
BD

1 10 25 50 100
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1
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Figure 8: Results of the experiments with the yeast DBNs when increasing ESS. The size of the learning
data is 1000.

At first glance, this model seems to be of interme-
diate complexity compared to the random DBNs in
the previous section: All the edges go from X0 to X1

as in the random DBNs, it has 30 nodes while the
random DBNs had 20 and 40, and the ratio of the
number of edges to the number of nodes is 1.9 while
it was 1.5 and 2.5 for the random DBNs. A closer
look reveals that the complexity of this model is in
the fact that some transcription factors have many
regulators, i.e. parents (up to 11 for YAP6). Nodes
with many parents were unlikely to occur in the ran-
dom DBNs. However, this is a characteristic of many
regulatory networks [15].

We consider learning databases that consist of S
independent and identically distributed time series,
S = 3, 5, 10, 25, 50, 100, 250, 500, 1000. Each time se-
ries is of length 10. Therefore, we consider learning
databases of size 10·S measurements of the expression
level of each of the 30 genes in the model. For each
sample size, we generate 100 yeast DBNs. The mo-
del of each of these DBNs is the one in Figure 5. We
assume that each node in the model can take three
possible values, corresponding to the gene being up-

regulated, down-regulated and unchanged with res-
pect to its expression level in some control popula-
tion, e.g. the previous time point or the initial time
point. All the parameters are drawn uniformly from
[0, 1]. We note that the true parameters are unknown
in [11, 15], hence the sampling. From each of these
DBNs, we sample a learning database of the corres-
ponding size and a testing database with 1000 time
series of length 10. For each learning database, we
proceed as in the previous section. For each sample
size, we report the same performance measures as in
the previous section. We note that these experiments
are not completely realistic, e.g. all the samples are
free of measurement noise and some are too large gi-
ven the present cost of the measurement technology.
In this paper, we aim to reach some general conclu-
sions. Thus, we disregard these domain-specific is-
sues which may, otherwise, bias our conclusions.

Figure 6 summarizes the results of the experiments.
They lead us to the same conclusions as those in the
previous section, namely that the models learnt via
CV generalize better than those induced via BD and
BIC and that CV behaves very differently from BD
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and BIC. Specifically, CV significantly outperforms
BD (BIC) in eight (seven) of the nine sample sizes in
the evaluation, while BD and BIC never outperform
CV significantly. This again confirms our hypothesis
in Section 1, namely that there is a mismatch between
learning and testing in the case of BD and BIC.

We now study the effects of increasing ESS. Fi-
gure 7 shows the results of the experiments when
ESS takes value 10. This is another commonly used
value based on the results in [8]. The most impor-
tant observation that can be made from the figure is
that CV outperforms both BD and BIC in this sce-
nario as well. Specifically, CV significantly outper-
forms BD (BIC) in nine (eight) of the nine sample
sizes in the evaluation, while BD (BIC) significantly
outperforms CV in zero (one). The behavior of BIC
relative to CV is consistent with that observed for
ESS equal to 1. However, the behavior of BD rela-
tive to CV changes considerably from that of ESS
equal to 1. The explanation is that increasing ESS
reduces the model regularization implicit in BD and,
thus, allows more edges to be added to the model
[24] (compare the precision and recall values of BD
in Figure 6 with those in Figure 7). In our expe-
riments, this degrades generalization for the sample
sizes smaller than 500 and improves it for the rest,
which suggests that BD has an optimal ESS associa-
ted with each sample size. This has been previously
noticed in [8, 24]. We elaborate on this issue with
the help of Figure 8, which summarizes the results
of the experiments for the sample size 1000 when in-
creasing ESS. The figure reports the average genera-
lization ability of the models induced via CV and BD
instead of the average differences. We denote these
values simply by CV and BD. For this sample size,
increasing ESS up to 50 leads BD to models that ge-
neralize better. Therefore, the optimal ESS for BD
for this sample size seems to be around 50. However,
CV significantly outperforms BD for this ESS too.
We believe that, even if the optimal ESS were known
in advance for any sample size, BD would not beat
CV because the argument of the mismatch between
learning and testing still applies to BD. Moreover, our
results warn that, while increasing ESS can lead BD
to models that generalize better, these models can
be very imprecise. Therefore, the assessment of ESS

for BD remains a sensitive issue. Note, on the other
hand, the robustness of CV in terms of precision and
recall across all the values of ESS considered.

3 Discussion

BSC is probably the most commonly used scoring
criterion for learning DBN models from data. Typi-
cally, BSC is regarded as scoring the likelihood of a
model having generated the learning data. Alternati-
vely, BSC can be seen as scoring the accuracy of the
model as a sequential predictor of the learning data.
This alternative view is interesting because it reflects
that BSC scores some sort of generalization. In this
paper, we are concerned with a different interpreta-
tion of generalization, namely the expected accuracy
of the model for the next time series after plugging
the ML or MAP parameters into the model. There-
fore, BSC is not fully in line with our interpretation
of generalization, though it is a popular one. This
means that the common practice of learning a mo-
del via BSC, plugging the ML or MAP parameters
into it and, then, using it to predict the next time
series to be seen involves a mismatch between the
purpose the model was learnt for and the use that is
made of it. This can have negative consequences for
performance. In this paper, we propose correcting
this mismatch via CV. As the experimental results
reported show, this is an effective way of solving the
problem for a wide range of sample sizes: CV leads to
models that generalize better than those induced by
BSC (BD and BIC implementations). Furthermore,
the models obtained by CV are topologically more ac-
curate than those obtained by BSC for a wide range
of sample sizes. Therefore, if the goal is to maximize
topological accuracy rather than generalization abi-
lity, then CV may still be preferred over BSC. Finally,
it is worth mentioning that we expect similar results
as the ones in this paper for learning (static) Baye-
sian network (BN) models that generalize well under
our interpretation of generalization, because our ar-
guments for preferring CV over BSC apply to that
task as well.

Our work is inspired by [4]. In that work, the au-
thors aim to learn BN models that generalize well,
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where the generalization ability of a model G is in-
terpreted as the expected predictive accuracy for
the next instance, i.e. E[log p(DS+1|D,G)]. The
authors compare two scoring criteria for learning
BN models that generalize well. First, BSC (BD
implementation), which the authors call the scien-
tific criterion. Second, the exact computation of
E[log p(DS+1|D, G)], which the authors call the en-
gineering criterion, that is

E[log p(DS+1|D,G)]

=
∑

DS+1

p(DS+1|D) log p(DS+1|D, G)

=
∑

DS+1

[∑

G

p(G|D)p(DS+1|D, G)
]
log p(DS+1|D, G).

(6)
The experimental results in [4] show that the engi-
neering criterion outperforms the scientific criterion.
There are two differences between our work and [4]
that are worth mentioning. First, our interpreta-
tion of the generalization ability of a model G, i.e.
E[log p(DS+1|G, θ̂)], differs slightly from that in [4],
i.e. E[log p(DS+1|D,G)], because we are interested in
using the ML or MAP parameters rather than in ave-
raging over all the parameters. Second and more im-
portant, the engineering criterion is computationally
unfeasible in all but small domains, because it implies
summing over all DS+1 and all G (see Equation 6).
As a matter of fact, the experiments in [4] do not in-
volve domains with more than six random variables.
We recall that the exact evaluation of our interpre-
tation of generalization is computationally unfeasible
for the same reasons (see Equation 4). This is our
main motivation for proposing CV as a scoring crite-
rion for learning DBN models that generalize well: It
aims to estimate the generalization ability of a model
while being computationally feasible. A line of fur-
ther research may be the evaluation of CV under the
interpretation of generalization in [4].

There exist several papers that use CV for learning
BN models for classification tasks, e.g. [12, 21]. Ho-
wever, to our knowledge, [25] is the only study of CV
for learning BN models for general purposes. In [5],
the authors mention the possibility of using CV for

learning BN models for general purposes but they do
not pursue it further. In [25], the authors aim to learn
BN models that minimize the cross-entropy which, as
discussed in Section 1, agrees with our interpretation
of generalization. They experimentally compare CV,
BIC and Akaike’s information criterion (AIC) [1], and
conclude that CV performs the best because AIC and
particularly BIC overpenalize the model complexity
and, thus, lead to underfitted models. We note that
they neither include BD in the comparison nor carry
out a search in the space of models. Instead, they
generate a set of nested models from the simplest to
the most complex passing through the true one and,
then, compare how the different scoring criteria be-
have for that set of models. These issues apart, the
main difference between [25] and our work is in the
explanation of why CV does the best: The authors of
[25] argue that BIC and AIC overpenalize the model
complexity, while we argue that BD and BIC do not
fully match the ultimate goal, namely generalization.
Therefore, we provide an alternative explanation to
that in [25]. A criticism of the explanation in [25] is
that it is not valid for all sample sizes: Our results
and those in [16] show that BIC underpenalizes the
model complexity for samples sizes smaller than 100.
This is not detected in [25] because all the databases
considered are of size 200 or larger. The explanation
in [25] does not seem to apply to BD either: In the
small ESS limit, BD leads to the complete graph for
small sample sizes [24]. We are currently studying
the connection between the mismatch and the un-
der and overpenalization. We hope that this paper
contributes to a better understanding of the behavior
of the different scoring criteria for learning BN and
DBN models from data.
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