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This note extends the original manuscript with new results, and corrects some errors.

1. Factorization

A probability distribution p is Markovian wrt an AMP CG G iff the following three properties
hold for all C ∈ Cc(G) (Andersson et al., 2001, Theorem 2):

● C1: C⊥pNdG(C) ∖CcG(PaG(C))∣CcG(PaG(C)).
● C2: p(C ∣CcG(PaG(C))) is Markovian wrt GC .
● C3∗: For all D ⊆ C, D⊥pCcG(PaG(C)) ∖ PaG(D)∣PaG(D).

Lemma 1. C1, C2 and C3∗ hold iff the following two properties hold:

● C1∗: For all D ⊆ C, D⊥pNdG(D) ∖ PaG(D)∣PaG(D).
● C2∗: p(C ∣PaG(C)) is Markovian wrt GC .

Proof. First, C1∗ implies C3∗ by decomposition. Second, C1∗ implies C1 by taking D = C and
applying weak union. Third, C1 and the fact that NdG(D) = NdG(C) imply D ⊥ pNdG(D) ∖
CcG(PaG(C))∣CcG(PaG(C)) by symmetry and decomposition, which together with C3∗ imply C1∗
by contraction. Finally, C2 and C2∗ are equivalent because p(C ∣PaG(C)) = p(C ∣CcG(PaG(C))) by
C1∗ and decomposition. �

Given C ∈ Cc(G) and D ⊆ C, we define the marginal graph GD
C as the undirected graph over D

st X − Y is in GD
C iff X − Y is in GC or X − V1 − . . . − Vn − Y is GC with V1, . . . , Vn ∉D.

Lemma 2. Assume that p is strictly positive and C1∗ holds. Then, C2∗ holds iff

p(D∣PaG(C)) = ∏
K∈Cs(GD

C )
ψD(K,PaG(K)) (1)

for all D ⊆ C.

Proof. To prove the if part, it suffices to take D = C and note that GD
C = GC . Then, C2∗ holds

(Lauritzen, 1996, Proposition 3.8). To prove the only if part, we adapt the proof of Theorem 3.9
by Lauritzen (1996) to prove that p(D∣PaG(D)) factorizes as indicated in Equation 1. This implies
the desired result by C1∗ and decomposition. Specifically, choose arbitrary but fixed states d∗ and

paG(D)∗ of D and PaG(D). Given B ⊆ D, let b
∗

and paG(B)∗ denote the values of D ∖ B and
PaG(D) ∖ PaG(B) consistent with d∗ and paG(D)∗. For all B ⊆D, let

HD(b, paG(B)) = log p(b, b∗∣paG(B), paG(B)∗).
Note that using the logarithm is warranted by the assumption of p being strictly positive. For all
K ⊆D, let

φD(k, paG(K)) = ∑
B⊆K

(−1)∣K∖B∣HD(b, paG(B)) (2)

where b is consistent with k. Now, we can apply the Möbius inversion (Lauritzen, 1996, Lemma
A.2) to obtain

log p(d∣paG(D)) =HD(d, paG(D)) = ∑
K⊆D

φD(k, paG(K))
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where k is consistent with d. Then, it only remains to prove that φD(k, paG(K)) is zero whenever
K ∉ Cs(GD

C ). Consider two nodes S and T of K that are not adjacent in GD
C . Then

φD(k, paG(K)) = ∑
B⊆K∖ST

(−1)∣(K∖ST )∖B∣[HD(b, paG(B)) −HD(bs, paG(BS))

−HD(bt, paG(BT )) +HD(bst, paG(BST ))] (3)

where b, bs, bt and bst are consistent with k. Note that S ⊥ pT ∣(D ∖ ST )PaG(C) by C2∗, and
S⊥pPaG(C)∖PaG(D)∣(D∖ST )PaG(D) by C1∗, symmetry, decomposition and weak union. Then,
S ⊥ pT ∣(D ∖ ST )PaG(D) by contraction and decomposition. This together with Equation 3.7 by
Lauritzen (1996) imply that

HD(bst, paG(BST )) −HD(bs, paG(BS)) = log
p(bst, bst∗∣paG(BST ), paG(BST )∗)
p(bs, bs∗∣paG(BS), paG(BS)∗)

= log
p(s∣b, bst∗, paG(BST ), paG(BST )∗)p(bt, bst∗∣paG(BST ), paG(BST )∗)

p(s∣b, bst∗, paG(BS), paG(BS)∗)p(b, bs∗∣paG(BS), paG(BS)∗)
.

Moreover, note that S⊥pPaG(T )∖PaG(D∖T )∣(D∖ST )PaG(D∖T ) by C1∗, symmetry, decompo-
sition and weak union. This implies that

HD(bst, paG(BST )) −HD(bs, paG(BS))

= log
p(s∣b, bst∗, paG(BS), paG(BST )∗)p(bt, bst∗∣paG(BST ), paG(BST )∗)
p(s∣b, bst∗, paG(BS), paG(BST )∗)p(b, bs∗∣paG(BS), paG(BS)∗)

= log
p(s∗∣b, bst∗, paG(BT ), paG(BT )∗)p(bt, bst∗∣paG(BST ), paG(BST )∗)
p(s∗∣b, bst∗, paG(BT ), paG(BT )∗)p(b, bs∗∣paG(BS), paG(BS)∗)

.

Moreover, S⊥pPaG(T ) ∖ PaG(D ∖ T )∣(D ∖ ST )PaG(D ∖ T ) also implies that

HD(bst, paG(BST )) −HD(bs, paG(BS))

= log
p(s∗∣b, bst∗, paG(BT ), paG(BT )∗)p(bt, bst∗∣paG(BST ), paG(BST )∗)

p(s∗∣b, bst∗, paG(B), paG(B)∗)p(b, bs∗∣paG(BS), paG(BS)∗)
.

Finally, note that D ∖ S ⊥ pPaG(S) ∖ PaG(D ∖ S)∣PaG(D ∖ S) by C1∗ and decomposition. This
implies that

HD(bst, paG(BST )) −HD(bs, paG(BS))

= log
p(s∗∣b, bst∗, paG(BT ), paG(BT )∗)p(bt, bst∗∣paG(BT ), paG(BT )∗)

p(s∗∣b, bst∗, paG(B), paG(B)∗)p(b, bs∗∣paG(B), paG(B)∗)

= log
p(bt, bt∗∣paG(BT ), paG(BT )∗)
p(b, b∗∣paG(B), paG(B)∗)

=HD(bt, paG(BT )) −HD(b, paG(B)).

Thus, all the terms in the square brackets in Equation 3 add to zero, which implies that the entire
sum is zero. �

It is customary to think of the factors ψD(K,PaG(K)) in Equation 1 as arbitrary non-negative
functions, whose product needs to be normalized to result in a probability distribution. Note
however that Equation 1 does not include any normalization constant. The reason is that the so
called canonical parameterization in Equation 2 permits us to write any probability distribution
as a product of factors that does not need subsequent normalization. One might think that this
must be an advantage for parameter estimation and inference. However, the truth is that the cost
of computing the normalization constant has been replaced by the cost of having to manipulate a
larger number of factors in Equation 1. To see it, note that the size of Cs(GD

C ) is exponential in

the size of the largest clique in GD
C .

A necessary and sufficient factorization follows.
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Theorem 1. Let p be a strictly positive probability distribution. Then, p is Markovian wrt an AMP
CG G iff

p(V ) = ∏
C∈Cc(G)

p(C ∣PaG(C)) (4)

with

p(D∣PaG(C)) = ∏
K∈Cs(GD

C )
ψD(K,PaG(K)) (5)

for all D ⊆ C.

Proof. The only if part holds because C1∗ and decomposition imply Equation 4, and Lemma 2
implies Equation 5. To prove the if part, we prove that p satisfies C1∗ and C2∗. Note that NdG(C) =
NdG(D). This together with Equations 4 and 5 imply that

p(D,NdG(D)) = p(D,NdG(C)) = ( ∏
U∈Cc(G)∶U⊆NdG(C)

p(U ∣PaG(U)))p(D∣PaG(C))

= g(NdG(D))h(D,PaG(D))
and thus C1∗ holds (Lauritzen, 1996, Equation 3.6). Finally, C2∗ holds by Equation 5 and Lemma
2. �

A more convenient necessary and sufficient factorization follows.

Theorem 2. Let p be a strictly positive probability distribution. Then, p is Markovian wrt an AMP
CG G iff

p(V ) = ∏
C∈Cc(G)

p(C ∣PaG(C)) (6)

with

p(C ∣PaG(C)) = ∏
K∈Cs(GC)

ψC(K,PaG(K)) (7)

and

p(D∣PaG(C)) = p(D∣PaG(D)) (8)

for all D ⊆ C.

Proof. The only if part holds because C1∗ and decomposition imply Equations 6 and 8, and Lemma
2 implies Equation 7. To prove the if part, we prove that p satisfies C1∗ and C2∗. Note that
NdG(C) = NdG(D). This together with Equations 6 and 8 imply that

p(D,NdG(D)) = p(D,NdG(C)) = ( ∏
U∈Cc(G)∶U⊆NdG(C)

p(U ∣PaG(U)))p(D∣PaG(C))

= ( ∏
U∈Cc(G)∶U⊆NdG(C)

p(U ∣PaG(U)))p(D∣PaG(D)) = g(NdG(D))h(D,PaG(D))

and thus C1∗ holds (Lauritzen, 1996, Equation 3.6). Finally, C2∗ holds by Equation 7 (Lauritzen,
1996, Proposition 3.8). �

A necessary factorization that is more convenient for inference and parameter learning follows.

Corollary 1. Let p be a strictly positive probability distribution. If p is Markovian wrt an AMP
CG G, then

p(V ) = ∏
C∈Cc(G)

p(C ∣PaG(C)) (9)

with

p(C ∣PaG(C)) = ∏
K∈Cs(GC)

ψC(K,PaG(K)). (10)
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2. Parameter Learning

Given some data, we can efficiently obtain the maximum likelihood estimates of the factors in
Equation 10 by adapting the iterative proportional fitting procedure (IPFP) for MRFs (Murphy,
2012, Section 19.5.7) as follows:

1 For each C ∈ Cc(G)
2 Set p0(C ∣PaG(C)) to the uniform distribution
3 Compute φC(K,PaG(K)) for all K ∈ Cs(GC) as shown in Equation 2
4 Set ψC(K,PaG(K)) = expφC(K,PaG(K)) for all K ∈ Cs(GC)
5 Repeat until convergence

6 Set ψC(K,PaG(K)) = ψC(K,PaG(K))pe(K∣PaG(K))
p(K∣PaG(K)) for all K ∈ Cs(GC)

where pe is the empirical probability distribution over V obtained from the given data, and p is the
probability distribution over V due to the current estimates. Note that computing p(K ∣PaG(K))
requires inference. The multiplication and division in line 6 are elementwise. Existing gradient
ascend methods for MRFs can be adapted similarly.

We justify the algorithm above by adapting some existing results for MRFs. We temporally drop
the assumption that the product of factors in Equation 10 is normalized, and replace it with

p(C ∣PaG(C)) = 1

ZC(PaG(C)) ∏
K∈Cs(GC)

ψC(K,PaG(K)) (11)

where

ZC(PaG(C)) = ∑
c

∏
K∈Cs(GC)

ψC(k,PaG(K))

where k is consistent with c. Let ψ denote all the factors due to Equations 9 and 11. Then, the
log-likelihood function is

l(ψ) = ∑
C∈Cc(G)

( ∑
K∈Cs(GC)

∑
k

∑
paG(K)

n(k, paG(K)) logψC(k, paG(K)) − n(paG(C)) logZC(paG(C)))

where n(k, paG(K)) is the number of instances in the data where K and PaG(K) take values k and
paG(K) simultaneously. Similarly for n(paG(C)). Dividing both sides by the number of instances
in the data, n, we have that

l(ψ)/n = ∑
C∈Cc(G)

( ∑
K∈Cs(GC)

∑
k

∑
paG(K)

pe(k, paG(K)) logψC(k, paG(K))−pe(paG(C)) logZC(paG(C))).

Let U ∈ Cc(G) and Q ∈ Cs(GU). The gradient of l(ψ)/n wrt ψU(q, paG(Q)) is

∂l(ψ)/n
∂ψU(q, paG(Q)) = pe(q, paG(Q))

ψU(q, paG(Q)) −
pe(paG(U))
ZU(paG(U))

∂ZU(paG(U))
∂ψU(q, paG(Q)) .

Let W = U ∖Q. Then

∂ZU(paG(U))
∂ψU(q, paG(Q)) = ∑

w
∏

K∈Cs(GU )∖Q
ψU(k, k, paG(K))

= ZU(paG(U))
ψU(q, paG(Q)) ∑w

∏
K∈Cs(GU )∖Q

ψU(k, k, paG(K))ψU(q, paG(Q))
ZU(paG(U)) = ZU(paG(U))

ψU(q, paG(Q))p(q∣paG(U))

where k denotes the elements of q corresponding to the elements of K ∩Q, and the last equality
follows from Equation 11. Note also that p(q∣paG(Q)) = p(q∣paG(U)) by C1∗ and decomposition.
Putting together the results above, we have that

∂l(ψ)/n
∂ψU(q, paG(Q)) = pe(q, paG(Q))

ψU(q, paG(Q)) −
pe(paG(Q))p(q∣paG(Q))

ψU(q, paG(Q)) .

Since the maximum likelihood estimates are obtained when the gradient is 0 for all the entries of all
the factors, we have that the maximum likelihood estimates are obtained when

ψC(k, paG(K)) = ψC(k, paG(K))pe(k∣paG(K))
p(k∣paG(K))
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for all C ∈ Cc(G) and K ∈ Cs(GC). This justifies the updating step in line 6 of the IPFP.
Let the factor updated in the current iteration have the superscript t + 1, whereas the rest of the

factors have the superscript t. Next, we show that if Z0
C(PaG(C)) = 1 then Zt+1

C (PaG(C)) = 1.
This implies that Equations 7 and 11 are equivalent because Z0

C(PaG(C)) = 1 by line 3 and, thus,
our assumption of Equation 11 is innocuous. To see it, let U ∈ Cc(G), Q ∈ Cs(GU) and W = C ∖Q.
Then

pt+1(Q∣PaG(U)) = ∑
w

pt+1(w∣PaG(U))

= ∑
w

ψt+1
U (Q,PaG(Q)) 1

Zt+1
U (PaG(U)) ∏

K∈Cs(GU )∖Q
ψt
U(k,PaG(K))

= ∑
w

ψt
U(Q,PaG(Q))pe(Q∣PaG(Q))

pt(Q∣PaG(Q))
1

Zt+1
U (PaG(U)) ∏

K∈Cs(GU )∖Q
ψt
U(k,PaG(K))

= pe(Q∣PaG(Q))
pt(Q∣PaG(Q))

Zt
U(PaG(U))

Zt+1
U (PaG(U)) ∑w

pt(w∣PaG(U)) = pe(Q∣PaG(Q))
pt(Q∣PaG(Q))

Zt
U(PaG(U))

Zt+1
U (PaG(U))p

t(Q∣PaG(U))

= pe(Q∣PaG(Q)) Z
t
U(PaG(U))

Zt+1
U (PaG(U))

since pt(Q∣PaG(Q)) = p(Q∣PaG(U)) by C1∗ and decomposition. Summing both sides over q implies
that the IPFP preserves the normalization constant across iterations.

3. Discussion

Given a probability distribution p that is Markovian wrt an AMP CG G, we have described in
Equations 6-8 necessary and sufficient conditions for p to factorize wrt G. This note extends the
original manuscript, where p is shown to factorize as

p(V ) = ∏
C∈Cc(G)

∏
K∈Cs(GC)

ψC(K,PaG(K)).

To see that the condition above is necessary but not sufficient, consider the AMP CGs A → B −C
and A → B − C ← A, and note that both imply the same factorization, namely p(A,B,C) =
ψA(A)ψBC(A,B,C). So, if p encodes no independence then it factorizes according to both CGs
although it is Markovian wrt only the second of them. In any case, the factorization above is enough
to perform efficiently inference and parameter estimation, as shown in the original manuscript.

Unfortunately, finding the maximum likelihood estimates of the factors in the new factorization
is difficult and, thus, we have decided to enforce only Equations 6 and 7 in the estimation process
so that it can be performed efficiently via the IPFP. The so fitted factorization is enough to perform
inference efficiently following the same procedure as in the original manuscript.

Our work is related to that by Drton (2008), where the author proposes necessary and sufficient
conditions for p to factorize wrt G when G is a MVR CG. His factorization resembles ours in that
it includes constraints similar to those in Equation 7, which make maximum likelihood estimation
hard. To overcome this problem, the author develops a so called iterative conditional fitting pro-
cedure (ICFP) that, at each iteration, solves a convex optimization problem under the mentioned
constraints. We plan to study whether it is possible to adapt the ICFP to our problem, given the
similarity between the constraints in both factorizations. Drton (2008) also makes the interesting
observation that the runtime of the ICFP can be shortened by replacing G with a Markov equivalent
CG with smaller connectivity components. It would be interesting to see whether this also applies
to our IPFP. A result that would be helpful in that investigation is that by Sonntag and Peña (2015,
Theorem 4), which shows how to obtain a Markov equivalent CG with the fewest undirected edges.

Two other works that are related to ours are those by Abbeel et al. (2006) and Roy et al. (2009).
Unlike our work, these works do not characterize when the Markovian and factorization properties
are equivalent. Instead, they develop closed form expressions for estimating the factors in the
factorization of p wrt G when G is a factor graph. Since factor graphs subsume AMP CGs, we can
adapt their closed form estimates to our problem. Specifically, let C ∈ Cc(G) and K ∈ Cs(GC). Also,
let MbG(K) denote the minimal subset of CPaG(C) st K ⊥GCPaG(C) ∖KMbG(K)∣MbG(K). It
is easy to see that MbG(K) = NeG(K)PaG(K)PaG(NeG(K)). Now, choose an arbitrary but fixed
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state v∗ of V . Then, we can use Proposition 4 by Abbeel et al. (2006) to rewrite the factorization
in Corollary 1 as follows (details omitted):

p(v) = p(v∗) ∏
C∈Cc(G)

∏
K∈Cs(GC)∶K≠∅

ψ(k) (12)

where k is consistent with v, and

ψ(k) = exp( ∏
B⊆K

(−1)∣K∖B∣ log p(b, b∗∣mbG(K)∗)) (13)

where b
∗

and mbG(K)∗ denote the values of K ∖B and Mb(K) consistent with v∗. In order to esti-
mate the factors above, the authors propose replacing p with the empirical probability distribution
pe. Unfortunately, this may produce an unreliable estimate for p(v∗) unless the data available is

abundant. Similarly for p(b, b∗∣mbG(K)∗) because K and MbG(K) may be large. Note also that

the estimate of p(b, b∗∣mbG(K)∗) is based only on the instances of the data that are consistent with

b
∗

and mbG(K)∗ simultaneously. This means that the data available is not used efficiently. All
this leads the authors to acknowledge that their closed form estimates, as described, are probably
impractical (Abbeel et al., 2006, p. 1764). Roy et al. (2009) improve the method above by sim-
plifying Equation 13. Although the improvement alleviates the drawbacks mentioned, it does not
eliminate them completely (e.g. Equation 12 stays the same and, thus, the problem of estimating
p(v∗) remains). Unfortunately, no experimental results are reported in either of the works cited. It
would be interesting to compare them with our IPFP.
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