
VITAL
Visualization and Implementation of Temporal Action Logic

Jonas Kvarnström, KPLAB, IDA

jonkv@ida.liu.se

DRAFT; version 0.53 (Wed, 09 May 2001 10:57:40 +0200)

2

Chapter 1

VITAL: The Input Language

This document describes the input language used by VITAL. The reader is assumed to have
some knowledge of TAL and the L(ND) narrative description language; we will often not describe
that language in detail, instead concentrating on how certain constructions in plain L(ND) are
written in the VITAL input language.

Since a large amount of code is shared between VITAL and TALplanner, including the parser,
many of the language constructions are identical or very similar for both tools. Instead of writing
two completely separate manuals and duplicating a large amount of text, minor differences
between the two languages will be pointed out in this manual, and the TALplanner language
manual often refers back to this document.

The input language contains a number of extensions to the plain L(ND) language. Many of
these extensions are experimental, and may either disappear in the future or be provided with
a formal translation into pure L(ND). Such extensions should also be marked clearly below.

For both tools, an input file starts with a number of declarations of features, actions, and similar
items. This section is followed by a set of L(ND) statements (or extended statements). We will
describe these declarations and statements in the following chapters, but first, we will describe
some general properties of the input language and how it is described in this manual.

1.1 The Input Language

As in L(ND), each declaration or statement in the input language is labeled. Unlike L(ND),
each label starts with a #, as in #obs or #dom. The reasons for this are purely technical: If
statement labels were pure identifiers (obs or dom), labels of future statement classes could clash
with the identifiers users have chosen for actions, features, and so on.

For similar reasons, options and similar keywords are always preceded with a colon (for example,
:hide and :splitpri). Such colon keywords will generally be explained in a labeled list, where
keywords that must be specified are underlined.

3

CHAPTER 1. VITAL

1.2 Statement Classes

This section will list all the statement classes available in VITAL and TALplanner.

The following statement classes belong to the declaration part of a narrative description:

#domain Declare a value domain (Section 2.2)

#feature Declare a feature (Section 2.3)

#action Declare an action (Section 2.4)

#timevar Declare a temporal variable (Section 2.5)

#timeconst Declare a temporal constant (Section 2.6)

#valuevar Declare a value variable (Section 2.7)

#valueconst Declare a value constant (Section 2.8)

#function Declare a pre-defined function (Section 2.9)

#relation Declare a pre-defined relation (Section 2.10)

#maxocc Change timeline lengths (Section 2.11)

#timescale Change the time scale (Section 2.12)

#attach Add a semantic attachment (Section 2.13)

#resource Declare a resource (Section 2.14 and the TALplanner manual)

The following statement classes belong to the statement part of a narrative description.

#obs Observation Statement (Section 4.1.1)

#dom Domain Constraint Statement (Section 4.1.2)

#init Initialization Statement (Section 4.1.3)

#dep Dependency Constraint Statement (Section 4.2.1)

#occ Action Occurrence Statement (Section 4.2.2)

#acs Action Law Schema (Section 4.2.3)

#define Feature Definition Statement (Section 4.3.1)

#objects Object Declaration Statement (Section 4.3.2)

#assert Assertion Statement (Section 4.3.3)

#goal Intended Goal Statement (Section 4.4 and the TALplanner manual)

#control Non-modal Control Statement (Section 4.4 and the TALplanner manual)

#modal Modal Control Statement (Section 4.4 and the TALplanner manual)

#redundancy Redundancy Control Statement (Section 4.4 and the TALplanner manual)

#operator Operator Definition Statement (Section 4.4 and the TALplanner manual)

#heuristic Heuristic Specification (Section 4.4 and the TALplanner manual)

4

Chapter 2

Declarations

Plain TAL provides no language or syntax for declarations; the set of features, actions, value
domains, and so on is assumed to be given. Therefore, a new declaration syntax had to be
invented for VITAL and TALplanner. This syntax is similar to the existing L(ND) syntax in
that it consists of a set of labeled statements.

This chapter will describe all declarations and all options available for each declaration class.
Note that all declarations must be given before the first logical statement (observation, domain
constraint, etc).

2.1 Pre-declared domains, values and variables

Even before a narrative description is parsed, VITAL or TALplanner automatically declares the
following entities:

• The two boolean values true and false

• The boolean value domain boolean = {true, false}
• The boolean value variables boolean, boolean1, boolean2, boolean3, boolean4, and boolean5.

• The temporal variables t, t1, t2, t3, t4, and t5.

See also “Arithmetic Operators” (Section 5.2) for information on functions/features that are
generated automatically the first time they are encountered in a narrative description. Such
functions include certain arithmetic operators (addition, subtraction, and so on).

2.2 Declaring value domains

TAL uses an order-sorted type structure with finite domains. The exact restrictions are still
somewhat unclear, but in VITAL, the type structure must be a forest, where each child domain
is a strict subset of its unique parent domain.

5

CHAPTER 2. DECLARATIONS

The boolean domain, containing the two values true and false, is declared automatically (see
Section 2.1).

A root domain is declared as follows:

#domain name [:no-vars] :elements {val1, val2, . . . , valn}
A child domain is declared as follows:

#domain name [:no-vars] :parent parent :elements {val1, val2, val7, val12, . . . , valn}
Unless the keyword :no-vars is specified, declaring a domain called name automatically declares
six value variables of that sort, called name, name1 , name2 , name3 , name4 , and name5 . An
exception is made for names that are already used by declared variables, values, or other entities.
That is, after

#domain ball :elements { ball1, ball2 }
there are four pre-declared value variables of sort ball: ball, ball3, ball4, and ball5. Additional
value variables, with arbitrary names, can be declared using #valuevar (Section 2.7).

Note that empty value domains can be created by specifying :elements {}.

:no-vars Do not automatically declare value variables for this domain.

:parent Specify the parent of a child domain.

:elements Specify the elements of a domain.

For a root domain (a domain without a parent), the argument is a comma-
separated list of elements (identifiers) within braces. Elements must not be
present in any existing value domain. The list can be empty.

For a child domain, the argument is a comma-separated list of elements (iden-
tifiers) within braces, where each item must be a member of the parent value
domain. Values must be specified in the same order as they appear in the
declaration of the parent domain. The list can be empty.

There are other ways of defining domains. See Section 5.1 if you want to declare a fixed point or
integer value domain (which is done using a #domain statement with the :integer and :fixedpoint
options). Value domains can also be defined by semantic attachments (Section 2.13).

2.2.1 Ranges of values in root domains

When you define a root domain, you normally explicitly enumerate every value in the domain.
However, VITAL and TALplanner also allow the use of an extended syntax to allow you to
define a set of values with a common prefix followed by an index:

#domain name [:no-vars] :elements {val1, pre<n1..n2>, . . . , valn}
For example, the following defines a domain object with the values ball1, ball2, . . . , ball17, cube7,
cube8, . . . , cube22:

#domain object :elements { ball<1..17>, cube<7..22> }
This is mainly used when random planning problem instances are generated for TALplanner.

6

2.3. Declaring features

2.2.2 Ranges of values in subdomains

Using ranges is also useful when defining subdomains. However, in this case each element that
will be added to the subdomain is already present in the parent domain. Therefore, VITAL
and TALplanner have enough information to allow a more general form of value range: Each
item in the :elements definition can be a range of values [val1 .. val2] where both values are
members of the parent domain. Every value between val1 and val2 (inclusive) will be added to
the subdomain, where values are ordered in the declaration order.

#domain object :elements { ball<1..17>, cube<7..22> }
#domain someobjects :parent object :elements { ball2, ball7, [cube10 .. cube18], cube22 }
#domain otherobjects :parent object :elements { ball5, [ball14 .. cube8], cube22 }

The final domain, otherobjects, will contain the elements ball5, ball14, ball15, ball16, ball17, cube7,
cube8, and cube22.

2.3 Declaring features

A feature without arguments is declared as follows:

#feature name :options

A feature with arguments of sort s1, . . . , sn is declared as follows, where each argi is either the
name of a value domain or the name of a value variable of that domain:

#feature name(arg1,arg2, . . . ,argn) :options

Multiple features can be declared in the same #feature statement. Simply write a comma-
separated list of features before the list of options. The options will be applied to all features in
the list.

#feature name(arg1,arg2, . . . ,argn), name2, name3(arg) :options

For example:

#feature alive :domain boolean

#feature at1(integer, integer, integer) :domain boolean

#valuevar x, y, z :domain boolean
#feature at2(x, y, z) :domain boolean // More obvious what the args mean

Features are normally limited to 231 − 1 instances (exceptions will be noted below). In other
words, Πn

i=1|si| must be strictly less than 231. VITAL will notify you if this limit is exceeded.
(Note that you will generally run out of memory even with far less than 231 feature instances.)

There is a large set of options that can be specified in arbitrary order. The only required option
is the :domain specification.

:domain d Specify the value domain of the feature. Here, d can be the predefined domain
boolean or the name of a value domain previously declared using a #domain
declaration or a semantic attachment.

7

CHAPTER 2. DECLARATIONS

The following options control whether a certain feature is persistent, durational, or semidynamic
(see the explanation of :semidynamic below). These options should only be used in VITAL, not
in TALplanner – the planner will most likely never support semidynamic features, and although
it will support durational features, this is not completely implemented yet.

Although some versions of TAL allows this characterization of a feature to vary over time, this is
not yet permitted in VITAL: Each feature must be either persistent at all timepoints, durational
with the same default value at all timepoints, or semidynamic.

:durational v Make this feature durational, rather than persistent (the default) or semi-
dynamic. Make v the default value, for all timepoints (meaning that at any
timepoint where the feature is unoccluded, it will take on its default value).

A :durational feature cannot be declared :semidynamic, :defined, :valuetype,
:injective-always, or :double-injective. It can be declared :injective, if it is a
boolean feature and the default value is false. It can also be declared ::func-
tion, although this would not make sense since ::function features cannot be
occluded (and therefore the durational feature would have to take on its de-
fault value at all timepoints).

:semidynamic Make this fluent semidynamic, rather than persistent (the default) or dura-
tional.

True dynamic fluents are not affected by nochange or default value assump-
tions, but can vary freely (except for restrictions placed by ordinary logic
formulas involving the dynamic fluents, of course). This is equivalent to oc-
cluding the fluent in the interval [0,∞).

However, VITAL works by performing constraint propagation over a finite
part of the timeline for each fluent, and allowing true dynamic fluents would
require considering the entire (infinite) timeline. Therefore, true dynamic
fluents are not supported.

Instead, VITAL supports semidynamic fluents – fluents that are dynamic
over an initial prefix [0, t∗] of the timeline and persistent in (t∗,∞), where t∗
is the final timepoint of occlusion as defined in Chapter 9. Thus, marking
a fluent as semidynamic is equivalent to occluding it in [0, $maxocc], except
that such syntactic constructions are not allowed by VITAL (see Section 3.1
for an explanation of the $maxocc term).

TALplanner does not support dynamic or semidynamic fluents, and most
likely never will.

A :semidynamic feature cannot be declared :durational, :defined, :valuetype,
:injective, :injective-always, :double-injective, or :function.

The following option controls certain aspects of how VITAL splits partial interpretations in
order to reason by cases. It does not affect the operation of TALplanner.

:splitpri n Set the split priority for this feature to n. The default split priority is 1024;
lowering the priority makes instances of this feature more likely to be chosen

8

2.3. Declaring features

when selecting a splitpoint, while raising it makes it less likely to be chosen.
See Chapter 8 for more detailed information.

The following options control the graphical appearance of a feature in VITAL. They do not
affect the operation of TALplanner. Note that these options only specify a default which can
be modified by right-clicking on the feature names in a narrative timeline window.

:showname Rather than showing a colour-coded timeline for each value the feature can
take on, show the names of the values the feature can take on for each time-
point. For features with large value domains, this often saves a large amount
of space in the graphical representation.

The main disadvantage of using this option is that for partial interpretations
where a feature may take on a value in a given (possibly large) set, VITAL
might not have enough space to show you the entire set, instead having to
fall back to showing you the size of the set (the number of possible values the
feature can take on, rather than the actual values).

:hide Do not show this feature in the graphical representation.

The following options allows the narrative constructor (you) to specify that certain conditions
will be guaranteed to hold at all timepoints, thereby allowing VITAL or TALplanner to enable
certain optimizations. Some of the names are extremely counter-intuitive (due to being inspired
by similar declarations in another tool) and will be changed in the future.

:function This feature is not a fluent, that is, it cannot vary over time.

Setting the :function flag for a feature f serves two different purposes:

First, it acts as an actual constraint on the values of f – semantically,
it is equivalent to adding a logical constraint that ∀t, t′, x.value(t, f(x)) =
value(t′, f(x)). Since this makes it pointless to occlude the feature at any
timepoint, VITAL will not allow the feature to occur within the scope of an
R, I or X operator, and TALplanner will not allow the feature to be assigned
a new value in an operator definition.

Second, it allows VITAL to use a more efficient data structure for the given
feature or features, since there is no need to store different values at different
timepoints, and the nochange axiom does not need to be checked or applied.
(TALplanner’s performance is not affected by this since it analyzes this prop-
erty automatically regardless of whether the :function option is set or not.
VITAL will also do this in the future.)

A :function feature cannot be declared :semidynamic. It can be declared :du-
rational, although this would not make sense since ::function features cannot
be occluded (and therefore the durational feature would have to take on its
default value at all timepoints).

:injective This is only applicable to boolean features f with at least one argument, and
specifies that ∀t, x, y, z.([t] f(x, y) ∧ f(x, z) → y = z). In other words, the

9

CHAPTER 2. DECLARATIONS

feature is in all models and at all timepoints a boolean representation of a
partial function from the first n− 1 arguments to the last argument.

An example of this would be the holding(block) feature in the blocks world
planning domain, given that there is only one gripper: The gripper is holding
a unique block or no block at all.

This option also has an impact on the performance of VITAL and TALplan-
ner, since instead of storing the boolean representation of a partial function
(for example, the boolean holding(block) feature) it permits the system to
store the partial function itself (for example, a holding’ feature whose value
is a block or null). This is more efficient in terms of memory as well as time.
(The details of this automatic conversion is available in +++.)

An :injective feature cannot be declared :semidynamic, :defined, :valuetype,
:injective-always, or :double-injective.

:injective-always This is only applicable to boolean features f with at least one argument,
and specifies both that ∀t, x, y, z.([t] f(x, y) ∧ f(x, z) → y = z) and that
∀t, x∃y.[t] f(x, y). In other words, the feature is in all models and at all
timepoints a boolean representation of a total function from the first n − 1
arguments to the last argument.

An example of this would be the in-city(location,city) feature in the logistics
planning domain: A location is always in exactly one city.

This option also has an impact on the performance of VITAL and TALplan-
ner, since instead of storing the boolean representation of a total function (for
example, the boolean in-city(location,city) feature) it permits the system to
store the partial function itself (for example, a in-city’(location) feature whose
value is a city). This is more efficient in terms of memory as well as time.
(The details of this automatic conversion is available in +++.)

An :injective-always feature cannot be declared :durational, :semidynamic, :de-
fined, :valuetype, :injective, or :double-injective. It can be declared :durational
with default value false.

:double-injective This is only applicable to boolean features f with two arguments, and specifies
both that ∀x, y, z.(f(x, y) ∧ f(x, z) → y = z) and that ∀x, y, z.(f(x, z) ∧
f(y, z) → x = y). In other words, the feature is a boolean representation
of a partial function from the first argument to the second argument and a
boolean representation of a partial function from the second argument to the
first argument.

An example of this would be the on(block1,block2) feature in the blocks world
planning domain: A block is always on top of at most one other block, and
given a block, there is at most one block on top of it.

This option also has an impact on the performance of VITAL and TALplan-
ner, since instead of storing the boolean representation of a partial function
(for example, the boolean on(block1,block2) feature) it permits the system
to store the two partial functions themselves (for example, a below(block1)
feature whose value is a block block2 or null, together with an above(block2)

10

2.3. Declaring features

feature whose value is a block block1 or null). This is more efficient in terms of
memory as well as time. (The details of this automatic conversion is available
in +++.)

A :double-injective feature cannot be declared :durational, :semidynamic, :de-
fined, :valuetype, :injective, or :injective-always.

The following options are used for declaring features that are defined in terms of logical formulas.

:defined This feature is defined in terms of a logical formula. This can currently only
be used for features with a boolean value domain. The feature takes on
the value true for exactly those arguments that make a certain formula is
true. This formula must be specified in the statement section using a #define
statement (Section 4.3.1).

:uncached Do not cache the calculated values for this feature (which must be :defined).
If :uncached is not specified, then whenever the value of the feature is calcu-
lated for a specific set of arguments, the calculated value is saved for future
reference. Caching usually (but not always) saves time, but may use large
amounts of memory.

Although features are normally limited to less than 231 instances, this limit
does not apply to uncached defined features. For example, suppose you want
to declare a defined feature less(a, b) where the sorts of a and b have size 220.
The resulting feature will have 240 instances, but this is not a problem as
long as the feature is uncached.

Finally, there are a few more options that do not fit into either of the categories above.

:cut In VITAL (but not TALplanner), the user can specify that certain features,
temporal constants and value constants should be ’cut’. This was inspired
by ’cut’ in FINDER, and is also similar to ’cut’ in Prolog.

Internally, VITAL works with partial interpretations, each of which corre-
sponds to a number of total interpretations. After propagating constraints as
far as possible in a partial interpretation, the system looks for a splitpoint,
in order to split the partial interpretation into a number of children.

Before the system looks for a splitpoint, it first checks whether the partial
interpretation is already equivalent to or included in some partial model that
has already been found, modulo the features and constants that are declared
:cut. If so, the partial interpretation is immediately discarded: Even if it
would turn out to be a model, it would only differ in :cut features and con-
stants, which are not considered significant.

Whether using :cut makes VITAL unsound or incomplete depends on whether
you consider the set of models generated or the set of conclusions that can
be drawn from those models. If we consider the set of models generated by
the system, using :cut will not yield non-models but might remove some valid

11

CHAPTER 2. DECLARATIONS

models and therefore makes VITAL sound but incomplete in this sense. If we
consider the set of conclusions that can be drawn from the generated models,
using :cut will not remove any valid conclusions but (due to the additional
filtering) may yield new conclusions, and therefore makes VITAL unsound
but complete in this sense.

:valuetype dom Instead of creating a normal feature, create a pre-defined feature which is
true if and only if its argument belongs to the given domain.

The feature must take a single argument whose domain is a parent of dom.
The value domain of the feature (specified using :domain) must be boolean.
Also, the feature must not be declared :durational, :injective, :injective-always,
:double-injective, or :defined.

For example, in order to determine whether a given vehicle is an airplane:

#domain vehicle :elements { . . . }
#domain airplane :parent vehicle :elements { . . . }
#feature is plane(vehicle) :domain boolean :valuetype airplane

:noinit A keyword temporarily used for supporting certain features of PDDL in
TALplanner. Do not use this option.

:fault Create a fault feature. This was used in a diagnosis procedure and is currently
not supported.

There are several other ways of defining features. See Section 2.9 if you want to declare a pre-
defined function, Section 2.10 if you want to declare a pre-defined relation, and Section 5.2 and
Chapter 6 if you want to use arithmetic functions and ordering functions on value domains.
Features can also be defined by semantic attachments (Section 2.13).

2.4 Declaring actions

For VITAL, actions (or action types) are declared using #action statements; later, the actions
that have been declared are defined using #acs statements (action law schemas, Section 4.2.3).
Exactly which actions occur is specified using action occurrence statements (#occ, Section 4.2.2).
For TALplanner, you should use #operator statements instead (see the TALplanner manual).

An action type without arguments is declared as follows:

#action name

An action type with arguments of sort s1, . . . , sn is declared as follows, where each argi is either
the name of a value domain or the name of a value variable of that domain:

#action name(arg1,arg2, . . . ,argn)

Multiple action types can be declared in a single #action statement using a comma-separated
list:

#action name(arg1,arg2, . . . ,argn), name2, name3(arg4)

12

2.5. Declaring temporal variables

For example:

#action Load, Spin, Fire
#action travel(person, location, location)
#action board(person, airplane)

#valuevar from, to :domain location
#action travel(person, from, to)

2.5 Declaring temporal variables

VITAL and TALplanner automatically creates the six temporal variables t, t1, t2, t3, t4, and t5.
If you need more variables, or you want your variables to have more meaningful names, additional
temporal variables can be declared as follows:

#timevar name1, name2, . . . , namen

2.6 Declaring temporal constants

In VITAL, temporal constants can be declared as follows:

#timeconst name1, name2, . . . , namen :options

Any options given at the end of the declaration are applied to the entire list of constants. The
following options are available:

:min n A lower limit on the value of the temporal constant (inclusive). This value
must be a non-negative integer.

:max n An upper limit on the value of the temporal constant (inclusive). This value
must be a non-negative integer.

:cut See :cut in Section 2.3.

:parameter Allows the value of this constant to be specified from the command line.
This can be useful when you want to create parameterized narratives (see
Chapter 10).

:default n Specifies a non-negative default value for the constant in case its value is not
specified as a parameter on the command line. A default value can only be
specified if the :parameter keyword is used.

TALplanner currently does not support temporal constants.

13

CHAPTER 2. DECLARATIONS

2.7 Declaring value variables

Whenever a domain is declared, a number of value variables are automatically created (Sec-
tions 2.2 and 2.1). If you need more variables, or you want your variables to have more mean-
ingful names, additional value variables can be declared as follows:

#valuevar name1, name2, . . . , namen :domain dom

2.8 Declaring value constants

In VITAL, value constants can be declared as follows:

#valueconst name1, name2, . . . , namen :options

Any options given at the end of the declaration are applied to the entire list of constants. The
following options are available:

:domain dom The domain of the value variable(s).

:cut See :cut in Section 2.3.

:parameter Allows the value of this constant to be specified from the command line.
This can be useful when you want to create parameterized narratives (see
Chapter 10).

:default v Specifies a default value for the value constant in case its value is not specified
as a parameter on the command line. The default value can be a value
constant (that is, a value defined in a #domain definition); certain other
forms of value terms are also accepted, as long as VITAL can easily compute
the value the term corresponds to at parsing time.

A default value can only be specified if the :parameter keyword is used.

TALplanner currently does not support value constants.

2.9 Declaring predefined functions

Functions that are independent of time can be represented as features (see Section 2.3, especially
the :function keyword). This also allows the user to specify the value of that function using
ordinary observation statements or domain constraints.

In some cases, however, it is easier to specify such functions as a simple enumeration of function
values. This can be done using #function statements, with or without a default value:

#function name(dom1, . . . ,domn) :domain dom = { name(arg1, . . . ,argn) == val, . . . }
#function name(dom1, . . . ,domn) :domain dom :default def

:exceptions { name(arg1, . . . ,argn) == val, . . . }

14

2.10. Declaring predefined relations

For example:

#function inv(colour) :domain colour = { inv(red) == cyan, inv(blue) == yellow, . . . }
If a default value is specified, any feature instance not mentioned in the initialization list is
given the default value. Otherwise, all feature instances must be given specific values in the
initialization list. Feature instances can be enumerated in any order.

2.10 Declaring predefined relations

Relations, in this context, are simply features with a boolean value domain. Relations that are
independent of time can be represented as features (see Section 2.3, especially the :function key-
word). This also allows the user to specify the value of that relation using ordinary observation
statements or domain constraints.

In some cases, however, it is easier to specify such relations as a simple enumeration of those
feature instances that map to a true value, or possibly to a false value.. This can be done using
#relation statements.

A relation declaration can specify a default value. If no default value is specified, or if false is
specified as default value, any feature instance mentioned in the initialization list maps to true
and all other feature instances map to false. If true is specified as a default value, any feature
instance mentioned in the initialization list maps to false and all other feature instances map to
true.

#relation name(dom1, . . . ,domn) = { name(arg1, . . . ,argn) == val, . . . }
#relation name(dom1, . . . ,domn) :default def :exceptions { name(arg1, . . . ,argn), . . . }

For example:

#relation square(integer) :default false :exceptions { square(1), square(4), square(9), ... }
Feature instances can be enumerated in any order.

2.11 Altering Timeline Lengths: #maxocc

Although each TAL fluent has an infinite timeline, VITAL only considers a finite part of that
timeline. We assume the existence of a timepoint t∗ such that in all preferred models, all
fluents are unoccluded after t∗. This timepoint can under certain circumstances be calculated
by VITAL, but can also be altered using a #maxocc declaration specifying the value t that t∗
should take on:

#maxocc t

See Chapter 9 for further information.

15

CHAPTER 2. DECLARATIONS

2.12 Time Scale Declarations

In order to facilitate the use of VITAL for simulating physical systems with varying temporal
granularity, VITAL provides an extension for specifying scaling factors for timepoints. A scaling
factor r must be a floating point literal or a fixed point (Section 5.1) value term that can be
evaluated to a constant, and is specified using a #timescale declaration:

#timescale r

This does not automatically alter the way temporal terms are interpreted. Instead, the VITAL
parser allows the use of a special scaling macro $scale(n), where n must be a numeric temporal
constant. The parser immediately converts this into the numeric temporal constant b(n/r)+0.5c;
in other words, it divides the argument of $scale by r and rounds the result to the nearest integer
timepoint.

Given that the time scale is 4, the following two statements are equivalent:

#occ [5,6] SetVoltage(pump, 0.57)
#occ [$scale(20),$scale(20)+1] SetVoltage(pump, 0.57)

2.13 Semantic Attachment

VITAL allows additional code to be linked into itself. Such code can provide external defini-
tions for features and value domains using semantic attachment, and can also hook into the
system in order to provide additional functionality such as specialized visualization modules for
specific narrative classes. There is a well-defined interface for such attachments, which will be
documented in a future version of this manual. In this version, however, we only describe the
narrative syntax used to link a piece of code into VITAL.

There are two variations of the #attach statement. If a quoted string is provided as an argu-
ment, this string is assumed to be the name of a Java class in the class path, complying with
the logic.semantics.SemanticAttachment interface. This may optionally be followed by a quoted
argument string, which is passed to and parsed by the linked code:

#attach ”se.liu.ida.jonkv.MyAttachment”
#attach ”se.liu.ida.jonkv.MyAttachment” ”some arguments”

On the other hand, if the first argument is a plain identifier id, this is assumed to be an ab-
breviation for the name of an attachment included with VITAL. The identifier is expanded to
”logic.semantics” + id.toLowerCase() + ”.” + id + ”Attachment”. For example, ”FixedPoint” is
expanded to ”logic.semantics.fixedpoint.FixedPointAttachment”. This usage will probably disap-
pear in the near future, as new syntax is introduced for the built-in attachments.

#attach FixedPoint ”fixedpoint - 0 100 2

16

2.14. Planning-related Declarations

2.14 Planning-related Declarations

For completeness, we will now briefly explain a number of planning-related declarations that are
supported by the parser. These declarations have no effect on VITAL, and should only be used
in plan narratives. They are explained in more detail in the TALplanner documentation.

The planning-related declarations are the following:

• Resource declarations, labeled #resource, are used to specify resource types.

17

CHAPTER 2. DECLARATIONS

18

Chapter 3

Terms and Formulas

The previous chapter described how entities such as values, variables, constants and features
could be declared. In this chapter, we will describe how such entities can be combined into
terms and logical formulas in VITAL and TALplanner, while the next chapter will describe how
such formulas can be used in various statement classes.

Please note that this chapter is not intended to explain the meaning of each term and formula.
It is assumed that the reader knows L(ND) and is interested in knowing how a certain formula
can be translated into the text-only representation used by VITAL.

3.1 Temporal Terms

Temporal terms are often denoted by τ . VITAL and TALplanner provides the following forms
of temporal terms:

Numeric temporal constants. Non-negative numbers 0, 1, 2, . . .

Symbolic temporal constants. Constants declared using #timeconst (Section 2.6).

Temporal variables. The pre-declared temporal variables t, t1, t2, t3, t4, and t5, and other
temporal variables declared using #timevar (Section 2.5).

Temporal expressions on the form τ + τ ′ and τ − τ ′. Addition and subtraction are the only
operators available for temporal terms.

Temporal cast expressions on the form $maketime(ω), where ω is a value term whose type
is an integer type with minimum value 0 (Section 5.1). This is an experimental VITAL
extension that allows value terms to be used as timepoints. The extension may disappear in
the future, if the type structure is modified to allow the specifications of value sorts that are
finite subsorts of the temporal sort.

Temporal scale expressions on the form $scale(τ), where τ is a temporal numeral. This is
an experimental VITAL extension intended to allow the user to easily modify the granularity
of a physical simulation; see Section 2.12 for more information.

19

CHAPTER 3. TERMS AND FORMULAS

Maxocc expressions of the form $maxocc. This is an experimental VITAL extension that
allows the user to refer to the timepoint t∗ after which no occlusion is allowed, as defined in
Chapter 9. Note that maxocc expressions cannot occur within the temporal context of an
R, I or X formula (Section 3.5).

Infinity is not a true temporal term, but can be used in the temporal context of a fixed fluent
formula, where it is denoted by $inf (Section 3.5).

3.2 Value Terms

Value terms are often denoted by ω. VITAL and TALplanner provides the following forms of
value terms:

Value name constants. Value names declared in a #domain declaration (Section 2.2), or one
of the predefined value names true and false in the boolean domain.

Symbolic value constants. Value constants declared using #valueconst (Section 2.8).

Value variables. Value variables automatically declared when a domain is declared (Sec-
tions 2.1 and 2.2), and other value variables declared using #valuevar (Section 2.7).

Value expressions of the form value(τ, fe), where τ is a temporal term and fe is a feature
expression (Section 3.3). Such expressions denote the value of the given feature expression
at the given timepoint.

Conditional value expressions of the form $ite (φ, ω, ω′), where φ is a logic formula and ω
and ω′ are value terms. The value of this value term is ω if φ is true, ω′ otherwise. This is
an experimental VITAL extension.

Note that VITAL does not support “true” functions that are independent of time. Such functions
are always “emulated” using fluents, and therefore always need a temporal context. Therefore,
even if a function such as plus(int,int) is defined using #function (Section 2.9), the expression
plus(1,1) is only a feature expression and not a value term. It can be converted to a value term
using the value() function, as in value(0,plus(1,1)).

3.3 Feature Expressions

Feature expressions are usually of either of the following forms:

• f, where f is a feature symbol of arity 0

• f(v1, . . . ,vn), where f is a feature symbol of arity n and v1, . . . ,vn are value terms of
suitable sorts.

20

3.4. Fluent Formulas

VITAL and TALplanner also allow the arguments of a feature to be pure feature expressions
(as opposed to value terms). This is seen as a shorthand for a value() expression where the
temporal term is borrowed from the temporal context of the outer feature expression. For
example, assuming f, g and h are features of suitable sorts, value(τ , f(g(h))) is a shorthand
for value(τ , f(value(τ , g(value(τ , h))))), and the formula [τ] f(g(h)) == v is a shorthand for
[τ] f(value(τ , g(value(τ , h)))) == v.

Feature symbols can be declared using #feature (Section 2.3), #function (Section 2.9), or #rela-
tion (Section 2.10). However, VITAL can also generate certain arithmetic functions and ordering
functions automatically (Section 5.2), along with definitions of those functions (semantic attach-
ment).

See also the discussion of infix notation in Chapter 6.

3.4 Fluent Formulas

In the current version of the TAL tutorial and specification, fluent formulas no longer exist.
However, I have currently ignored that, since they make it easier to explain the way formulas
are built. This section may be rewritten in the future.

Fluent formulas are built from elementary fluent formulas using the common operators and
quantifiers. Elementary fluent formulas are of either of the following forms:

• fe == ω, where fe is a feature expression and ω is a value term. Here, the double equals
sign corresponds to the =̂ “equals-with-a-hat” symbol in L(ND).

• fe, where fe is a boolean feature expression. This is a shorthand notation which is also
available in plain L(ND), and is equivalent to fe == true.

• fe == { ω1, . . . , ωn }, where fe is a feature expression and ω1 . . . ωn are value terms,
is equivalent to (fe == ω1 | . . . | fe == ωn), where | is the text representation of the
disjunction operator ∨.

[[+++ Is the last form a VITAL extension or not?]

VITAL and TALplanner add a negated form of this operator:

• fe !== ω is equivalent to !(fe == ω), where ! is the text representation of the unary
negation operator ¬.

• fe !== { ω1, . . . , ωn }, where fe is a feature expression and ω1 . . . ωn are value terms, is
equivalent to !(fe == ω1 | . . . | fe == ωn), where ! is the text representation of the unary
negation operator ¬ and | is the text representation of the disjunction operator ∨.

Elementary fluent formulas can be combined in the ordinary manner using the boolean connec-
tives and quantification over values. The following connectives are available (shown in order of
precedence):

21

CHAPTER 3. TERMS AND FORMULAS

• ! or ¬ (Unicode 0x00AC = 172) corresponds to logical negation (¬).

• & and !& correspond to logical conjunction (∧) and its negation (6 ∧), respectively.

• | and !| correspond to logical disjunction (∨) and its negation (6 ∨), respectively.

• ->, !->, <- and !<- correspond to logical implication (→) and its negation (6→) and reverse
implication (←) and its negation (6←), respectively.

• <-> and !<-> correspond to logical equivalence (≡) and its negation (6≡), respectively.

Quantifiers can be used as follows. Note that VITAL and TALplanner allow a list of variables
after the quantifier. The square brackets around the formula φ are required.

• Universal quantification over values: forall v1, . . . , vn [φ], where v1, . . . , vn are value
variables and φ is a fluent formula.

• Existential quantification over values: exists v1, . . . , vn [φ], where v1, . . . , vn are value
variables and φ is a fluent formula.

3.5 Logic Formulas

Logic formulas are built from atomic formulas using the common operators and quantifiers. The
following are the atomic formulas available in VITAL:

• true and false. Note that these atomic formulas are not the same as the elements true and
false in the boolean value domain.

• τ = τ ′, τ != τ ′, τ < τ ′, and τ <= τ ′, where τ and τ ′ are temporal terms as defined in
Section 3.1.

• ω = ω′ and ω != ω′, where ω and ω′ are value terms as defined in Section 3.2.

• Fixed fluent formulas of a number of different forms. For consistency with the Ct, R, I and
X operators, VITAL allows these fixed fluent formulas to be enclosed in an H() operator,
as in H([0] alive).

The current parser requires that intervals where the lower bound is open be enclosed in
the H() operator, due to technical difficulties in parsing intervals beginning with a left
parenthesis.

– [τ] φ, where τ is a temporal term and φ is a fluent formula as defined in Section 3.4.

– [τ ,τ ′] φ, [τ ,τ ′) φ, and [τ ,$inf) φ, where τ and τ ′ are temporal terms and φ is a fluent
formula.

– (τ ,τ ′] φ, (τ ,τ ′) φ, or (τ ,$inf) φ, where τ and τ ′ are temporal terms and φ is a fluent
formula. Note again that these formulas must be enclosed in the H() operator, as in
H((0,5] f).

22

3.5. Logic Formulas

• R(φ), I(φ) and X(φ), where φ is a fixed fluent formula as defined above. The temporal
interval specified in the formula must not contain the $maxocc term, since this would lead
to a circular definition of $maxocc. Also, the temporal interval must not contain infinity
($inf), since this would lead to occlusion during an infinite interval, which VITAL currently
cannot handle. Finally, note that certain feature expressions cannot occluded; this includes
all features whose values are independent of time, such as pre-defined arithmetic functions
and features declared in #function or #relation declarations.

• Ct([τ] φ, where τ is a temporal term and φ is a fluent formula.

Atomic formulas can be combined in the ordinary manner using the boolean connectives and
quantification over values. The following connectives are available (shown in order of prece-
dence):

• ! or ¬ (Unicode 0x00AC = 172) corresponds to logical negation (¬).

• & and !& correspond to logical conjunction (∧) and its negation (6 ∧), respectively.

• | and !| correspond to logical disjunction (∨) and its negation (6 ∨), respectively.

• ->, !->, <- and !<- correspond to logical implication (→) and its negation (6→) and reverse
implication (←) and its negation (6←), respectively.

• <-> and !<-> correspond to logical equivalence (≡) and its negation (6≡), respectively.

We also allow the use of a ternary conditional similar to the ?: operator in C. Note that this
conditional only operates on logic formulas, not on fluent formulas.

• $ifthenelse(φ, φ′, φ′′) is equivalent to (φ→ φ′) ∧ (¬φ→ φ′′).

Quantifiers can be used as follows. Note that VITAL and TALplanner allow a list of variables
after the quantifier. The square brackets around the formula are required.

• Universal quantification over values and time: forall v1, . . . , vn [φ], where v1, . . . , vn are
value variables or temporal variables and φ is a logic formula.

• Existential quantification over values and time: exists v1, . . . , vn [φ], where v1, . . . , vn are
value variables or temporal variables and φ is a logic formula.

We also allow the use of an extension where a variable is immediately bound to a value term:

• $bind(v, ω, φ) is equivalent to forall v [v = ω -> φ], with the exception that in a $bind
expression, ω must be guaranteed to take on a value in the domain of v.

This macro is especially useful in TALplanner, since the only way to relate values of
ordinary fluents to values in a modal goal context is to “quantify into” the modal context.

23

CHAPTER 3. TERMS AND FORMULAS

24

Chapter 4

Logical Statements

After the declarations, VITAL and TALplanner expect a sequence of labeled logical statements
in L(ND) or extended variations of L(ND). This chapter will describe all of those statement
classes.

[[+++ References to where these are defined]]

4.1 Observations and Other Constraints

There are three different statement classes that relate to plain logical constraints on the world,
either as observations at single timepoints (#obs, #init) or as domain constraints that must
hold in all states (#dom).

Unfortunately, some statements intuitively fall outside these classes, and TAL currently lacks
a generic statement class to be used for those statements. For such statements, you should
currently use domain constraints.

These statement classes must not contain R, I, or X operators.

4.1.1 Observation Statements

Observation statements, labeled #obs, are intended to correspond to actual observations of
values in the world. Therefore, in addition to the restriction that they not contain occlusion
expressions (occurrences of R, I, or X operators), they must also satisfy certain additional con-
straints. To be exact, they must be of one of the following forms:

• [τ] φ – a fixed fluent formula [[current terminology?]] with a singleton interval, where τ is
a numeric temporal constant. The fluent formula φ must not use features whose meaning
is defined using semantic attachment (arithmetic operators, for example). Also, feature
arguments in φmust be values, value constants, or value variables (not value() expressions),
and the == operator must always be followed by a single value, value constant, or value
variable.

25

CHAPTER 4. LOGICAL STATEMENTS

• ω=ω′, where ω and ω′ are value terms.

• ω!=ω′, where ω and ω′ are value terms.

• τ=τ ′, where τ and τ ′ are temporal terms.

• τ<τ ′, where τ and τ ′ are temporal terms.

• τ<=τ ′, where τ and τ ′ are temporal terms.

4.1.2 Domain Constraint Statements

Domain constraint statements, labeled #dom, are intended to correspond to logical constraints
that must hold at every point in time, or across point in time. Currently, a domain constraint
can be any logical formula as defined in Section +++. However, it cannot contain occlusion
expressions (occurrences of R, I, or X operators).

The syntax of a domain constraint statement is as follows:

#dom :options φ

:last Process this statement after all observation statements, initialization state-
ments, and domain constraint statements not marked with :last. This is a
hack implemented in order to support certain features of PDDL in TALplan-
ner, and will most likely be removed once proper support for these features
has been implemented. Do not use :last.

VITAL and TALplanner also accept the old label #acc (acausal constraint) for dependency
constraints. This label is deprecated, though.

4.1.3 Initialization Statements

Initialization statements, labeled #init, are an experimental extension. Their main use is to
provide a more succinct syntax for initializing features at time 0. Initialization statements were
introduced for use by TALplanner, but can also be used in VITAL.

The syntax of an initializion statement is as follows:

#init feature :options

Here, the feature is the name of an ordinary feature declared using #feature. The feature must
not be declared :defined or :valuetype. The following options are available:

:at τ The feature is initialized (constrained) at time τ . The default timepoint is 0.

:default ω The feature is initialized to ω (a value term) for all instances that are not
listed in :constrain.

:constrain

26

4.2. Action- and Change-related Statements

:predicate-value :for

[[+++ Update this for the new syntax]]

4.2 Action- and Change-related Statements

There are also a number of statement classes related to actions and change. Dependency con-
straints specify causal relationships in a dynamic world, where certain conditions trigger changes.
Action occurrence statements specify which actions occur when, while action law schemas pro-
vide the definitions of the actions that have been declared (Section 2.4). These three classes are
currently only used in VITAL, while TALplanner declares and defines operators in a single step
using the extended operator statements from L(ND)∗.

4.2.1 Dependency Constraint Statements

Dependency constraint statements (labeled #dep) specify causal relationships in a dynamic
world, where certain conditions trigger changes. See the TAL tutorial [[+++ref]] for a definition
and an explanation of the restrictions placed on dependency constraints.

The syntax of a dependency constraint statement is as follows:

#dep φ

Above, φ is an arbitrary logic formula, which can contain occurrences of R, I, and X operators
(subject to the restrictions defined in the TAL tutorial).

4.2.2 Action Occurrence Statements

Action occurrence statements (labeled #occ) specify exactly which actions occur, and when they
occur.

The syntax of an action occurrence statement is as follows, depending on whether the action
type Act has arguments:

#occ [τ , τ ′] Act
#occ [τ , τ ′] Act(ω1, . . . ,ωn)

Here, τ and τ ′ must be temporal terms with no free variables, and ω1 through ωn must be value
terms with no free variables.

[[+++ Rewrite this explanation]]

4.2.3 Action Law Schemas

Action law schemas (labeled #acs) provide the definitions of the actions that have been declared
using #action declarations (Section 2.4).

27

CHAPTER 4. LOGICAL STATEMENTS

The syntax of an action law schema is as follows, depending on whether the action type Act has
arguments:

#acs [τ , τ ′] Act ∼> φ
#acs [τ , τ ′] Act(ω1, . . . ,ωn) ∼> φ

Here, τ and τ ′ must be temporal variables, and ω1 through ωn must be value variables. The
formula φ must have no other free variables than τ, τ ′, ω1, . . . , ωn.

The special arrow ∼> (tilde / greater than) can also be replaced with a plain implication arrow
->.

4.3 Miscellaneous Extensions

The following statements are experimental extensions implemented by VITAL. They are not
part of plain L(ND) or of any published extension.

4.3.1 Feature Definition Statements

VITAL allows the use of defined features, boolean features defined in terms of logical formulas,
where the feature takes on the boolean value true iff the logic formula holds. Defined features are
evaluated by evaluating their definitions, which may of course lead to recursively evaluating the
feature again, hopefully with different arguments. Note that VITAL currently has no protection
against infinite recursion.

Defined features are declared using a #feature statement where the :defined option is specified.
Two more options, :uncached and :expand, control certain aspects of the defined feature. See
Section 2.3 for further information about these three options.

When a defined feature has been declared, the user must provide a definition for the feature
using a #define statement. The syntax of this statement is as follows:

#define [τ] f(v1, . . . ,vn) : φ

Here, τ and v1, . . . ,vn are the formal parameters to the defined feature: τ must be a temporal
variable, and v1, . . . ,vn must be value variables of sorts suitable as arguments to the feature f.
Whenever the defined feature is evaluated, τ will be bound to the evaluation timepoint and v1,
. . . ,vn to the actual arguments. Then, the logic formula φ will be evaluated. If it is true, the
boolean value true is returned; otherwise, the boolean value false is returned.

For example:

#feature alive(person) :domain boolean
#feature dead(person) :domain boolean :defined

#define [t] dead(person): [t] !alive(person)
#obs [0] dead(alice) & alive(bob)
#dep forall person [Ct([t] dead(person)) -¿ I([t] doSomething)]

28

4.3. Miscellaneous Extensions

4.3.2 Object Declaration Statements

Object declaration statements (labeled #objects) can be used for adding values to a value domain
after its declaration. This can be used in order to modularize definitions of value domains.

An object declaration statement has the following syntax:

#objects :domain dom :elements {val1, val2, . . . , valn}
If the domain dom is a top-level domain, this statement adds the new values {val1, val2, . . . ,
valn} to that domain. This is subject to all ordinary consistency checks; for example, the values
must not already exist in any other domain.

If the domain dom is a child domain, this statement adds the values {val1, val2, . . . , valn} to
that domain. However, the values are not created; they must already be present in the parent
domain. If they are not, you need to use additional #objects statements to add the values to all
parent domains before adding them to the child domain.

For example:

#domain colors :elements { red, green, blue, cyan, magenta, yellow }
. . .

#objects colors :elements { black, white }

4.3.3 Assertion Statements

Assertion statements, labeled #assert, provide VITAL or TALplanner with information that
the user asserts to hold in any preferred model of the narrative. Although VITAL currently
ignores this information, TALplanner can sometimes use it to infer certain information in order
to simplify action preconditions or control rules.

It is possible to assert the truth of any logic formula φ using the following syntax:

#assert φ

Note that this does not act as a constraint on the narrative; the formula will not affect the
set of models generated by VITAL or the plan generated by TALplanner (unless, of course, the
assertion is false and causes VITAL or TALplanner to perform optimizations that should not
have been allowed).

The following are some simple examples from the blocks world:

#assert forall t, block [[t] ontable(block) -> !holding(block)]
#assert forall t, block1, block2 [[t] on(block1, block2) -> !clear(block2)]
#assert forall t, block1, block2 [[t] on(block1, block2) -> !ontable(block1)]
#assert forall t, block1, block2 [[t] on(block1, block2) -> !holding(block1)]
#assert forall t, block1, block2 [[t] on(block1, block2) -> !holding(block2)]
#assert forall t, block1, block2 [[t] holding(block2) -> !clear(block2)]
#assert forall t, block1, block2 [[t] holding(block2) -> !handempty]

TALplanner currently prefers assertion statements on this simple form (a universal quantifier
prefix followed by an implication or disjunction).

29

CHAPTER 4. LOGICAL STATEMENTS

4.4 Planning-related Statements

For completeness, we will now briefly explain a number of planning-related statement classes that
are supported by the parser. These statement classes have no effect on VITAL, and should only
be used in plan narratives. They are explained in more detail in the TALplanner documentation.

The planning-related statement classes are the following:

• Intended goal statements, labeled #goal, are used to specify the goal that the planner
should attempt to reach.

• Non-modal control statements, labeled #control, and modal control statements, labeled
#modal, help the planner to prune the search tree.

• Redundancy control statements, labeled #redundancy, provide stronger pruning cababili-
ties by allowing pruning rules to consider multiple plan prefixes simultaneously.

• Operator definition statements, labeled #operator, replace action declarations (#action)
and action law schemas (#acs) and provide a more succinct way of defining plan operators.
They also facilitate the specification of resource usage.

• Heuristic specifications, labeled #heuristic, specify functions to be used in heuristic search.

30

Chapter 5

Numbers and Arithmetics

Many narratives and planning domains require the use of numbers and arithmetics. Although
any finite value domain can be specified specified by enumerating its elements in a #domain
declaration, this can quickly become tedious for larger value domains. Defining operations on
such domains by enumerating their definitions in #relation or #function declarations is even
more difficult, due to the need to list n2 function values for every binary operator.

Consequently, VITAL/TALplanner provides a way to automatically generate numeric value
domains and certain operations on these domains. This will be explained in the following
sections.

5.1 Fixed Point and Integer Value Domains

VITAL allows you to declare integer and fixed point value domains (that is, value domains with
a fixed number of decimals, as opposed to floating point value domains whose exact semantics
would be more difficult to define). These domains are declared using the ordinary #domain
statement, but instead of explicitly specifying a set of elements, you specify upper and lower
bounds for the value domain together with the desired number of decimals.

A fixed-point value domain is declared as follows:

#domain name [:no-vars] :integer :prefix pre :lb lower :ub upper :decimals dec

An integer value domain is declared as follows (or by using :decimals 0 above):

#domain name [:no-vars] :integer :prefix pre :lb lower :ub upper

The name is the name of the value domain that will be generated. Most options are mandatory,
and options must be given in the order defined above.

:fixedpoint Define a fixed point domain.

:integer Define an integer domain. This is the same as defining a fixed point domain
with :decimals 0.

31

CHAPTER 5. NUMBERS AND ARITHMETICS

:lb n The lower bound of the value domain. This integer will be included in the
domain.

:ub n The upper bound of the value domain. This integer will NOT be included in
the domain.

:decimals n The number of decimals for the numbers in this domain.

:prefix str All values in this domain will have names beginning with str . If no prefix is
given, the values will be pure numbers such as 7 or 412.88.

A few examples:

• #domain integer :fixedpoint :prefix int :lb 0 :ub 10 :decimals 0

Generate a value domain integer with the values int0, int1, . . . , int9.

• #domain integer :integer :prefix int :lb 0 :ub 10

Generate a value domain integer with the values int0, int1, . . . , int9.

• #domain length :fixedpoint :prefix fp :lb 0 :ub 100 :decimals 2

Generate a value domain length with the values fp0.00, fp0.01, . . . , fp99.98, fp99.99.

• #domain length :fixedpoint :lb 0 :ub 100 :decimals 2

Generate a value domain length with the values 0.00, 0.01, . . . , 99.98, 99.99.

As in ordinary domain declarations (Section 2.2), declaring a fixed point or integer domain called
name automatically declares six value variables of that sort, called name, name1 , name2 , name3 ,
name4 , and name5 , except for those names that are already used by declared variables, values,
or other entities.

It is possible to generate more than one fixed point or integer domain by using multiple #attach
statements. Note, however, that prefixes must be unique, and that at most one fixed point
value domain can have an empty (unspecified) prefix – otherwise, VITAL/TALplanner cannot
determine which value domain a given literal belongs to.

5.2 Arithmetic Operators

VITAL/TALplanner can automatically generate a large number of arithmetic operators on any
numeric value domain (that is, any value domain generated by #domain :integer or #domain
:fixedpoint).

Such operators are represented as ordinary features whose values for any given arguments are
defined using semantic attachment. Since they are features, they can be used more or less
anywhere ordinary features can be used – which means, among other things, that they must
be placed in a temporal context, even if they happen to be independent of time. That is, the
following observation statement is not allowed:

32

5.2. Arithmetic Operators

#obs value(0,level) = $times(5, 5)

The $times feature needs a temporal context (given by an enclosing [τ] or value() construction),
even though its value is independent of that context:

#obs value(0,level) = value(0, $times(5, 5))

Or, equivalently:

#obs [0] level == $times(5, 5)

Since these operators work on finite domains, we must define what happens when there is
overflow or underflow, and define rounding characteristics for operations such as division. One
possibility would be to “wrap around”, using arithmethics modulo n (where $times(5, 5) = 3 if
the value domain is limited to [0, 22)). However, in most applications we have explored, another
semantics has appeared more useful, where $times(5, 5) = 22 if the value domain is limited to
[0, 22).

[[+++ What should this be called, formally?]]

Below, we will define the exact semantics of all automatically generated operators. First, given
a value v, let num(v) be its numerical value (a real), and given a real number r, let val(r)
be the corresponding value. Let minval be the minimum value in the value domain, and let
maxval be the maximum value in the value domain. Given a real number r, let adjust(r) be
min(num(maxval),max(num(minval), r)). Given a real number r, let wrap(r) be num(minval)
if r < num(minval), num(maxval) if r > num(maxval), or r otherwise.

The following arithmetic operators are available:

$plus $plus(v1, v2) = val(adjust(num(v1) + num(v2)))

$minus $minus(v1, v2) = val(adjust(num(v1)− num(v2)))

$times $times(v1, v2) = val(adjust(num(v1) ∗ num(v2)))

$div $div(v1, v2) = val(adjust(num(v1)/num(v2)))

$sqrt $sqrt(v) = val(b√num(v) + 0.5c), where the √ operator follows IEEE double
precision floating point rounding rules (+++ CHECK/FORMALIZE).

$abs $abs(v) = val(|num(v)|). Note that this feature can only be generated for
value domains where −num(minval) ≤ num(maxval).

$next $next(v) = val(wrap(num(v) + 1)).

$prev $prev(v) = val(wrap(num(v) − 1)).

$min $min(v1, v2) = val(min(num(v1),num(v2)).

$max $max(v1, v2) = val(max(num(v1),num(v2)).

There are also a number of relational operators. These operators take two arguments and
return true or false (that is, a value in the boolean domain). The following relational operators
are available:

33

CHAPTER 5. NUMBERS AND ARITHMETICS

$less $less(v1, v2) =

{
true if num(v1) < num(v2)
false otherwise

$lessequal $lessequal(v1, v2) =

{
true if num(v1) ≤ num(v2)
false otherwise

$equals $equals(v1, v2) =

{
true if num(v1) = num(v2)
false otherwise

$greaterequal $greaterequal(v1, v2) =

{
true if num(v1) ≥ num(v2)
false otherwise

$greater $greater(v1, v2) =

{
true if num(v1) > num(v2)
false otherwise

VITAL/TALplanner also provides a number of automatically generated pseudo-features that
perform operations over all instantiations of a set of variables. For example, the $sum pseudo-
feature corresponds to the

∑
operator.

We call these operators pseudo-features since they act like features except that their arguments
are of a different form and type. The generic form of such a feature expression is as follows:

name(<v1, . . . , vn>, ψ, ω)

Above, v1, . . . , vn are value variables (n ≥ 1), ψ is a logic formula acting as a condition on which
instantiations of the value variables should be considered, and ω is a value term.

The pseudo-features can be informally described as follows:

$sum(<v1, . . . , vn>, ψ, ω) = val(adjust(
∑

v1∈dom(v1) · · ·
∑

vn∈dom(vn)

{
0 if ψ is false
num(ω) if ψ is true

))

$mmax(<v1, . . . , vn>, ψ, ω) = val(adjust(maxv1∈dom(v1) · · ·maxvn∈dom(vn)

{
−∞ if ψ is false
num(ω) if ψ is true

))

$mmin(<v1, . . . , vn>, ψ, ω) = val(adjust(minv1∈dom(v1) · · ·minvn∈dom(vn)

{
∞ if ψ is false
num(ω) if ψ is true

))

5.2.1 Arithmetic Operators for Arbitrary Domains

The arithmetic operators supported by VITAL and TALplanner can also be used for ordinary
value domains, regardless of their contents. In this case, the values in the domain are mapped
to a finite subset of the non-negative integers, starting with 0. For example, suppose you define
a domain of colors as follows:

#domain colors :elements { red, green, blue, cyan, magenta, yellow }
Then, red is mapped to 0, green is mapped to 1, and so on.

34

5.2. Arithmetic Operators

All arithmetic operations are performed on these integers. This implies that the following
statements will hold:

#obs [0] $plus(red, red) == red // True; 0 + 0 == 0
#obs [0] $times(blue, blue) == magenta // True; 2 * 2 == 4
#obs [0] $less(green, blue) // True; 1 < 2
#obs [0] $sqrt(yellow) == blue // True; sqrt(5) rounded to an integer is 2

WARNING: If you use subdomains, you should be aware that the argument type of
the generated arithmetic feature will be the topmost common parent of the two actual
arguments.
Suppose you have the following domains:

#domain int :elements { i0, i1, i2, i3, i4, i5, i6, i7, i8, i9 }
#domain small :parent int :elements { i0, i1, i2, i3, i4 }
#domain large :parent int :elements { i5, i6, i7, i8, i9 }

Then, in the following statements, all generated arithmetic features will take ints as
argument, and will return int.

#obs i3 + i3 == i6
#dom exists small [[0] small + small == i6] #obs exists small [$next(small) == i5]

In the first two statements, the + operator is an addition operator over ints, rather that
an addition operator over smalls. Thus, i3 + i3 is equal to i6, rather than i4.
In the third statement, the $next operator is an increment operator over ints, rather than
an increment operator over smalls. Thus, $next(i4) is equal to i5, rather than i0.
If you for some reason need an operator where the argument sort is not a top-level sort,
you must declare this operator manually (Section 5.2.2). This may be the case if you
need a $next operator that only operates on the members of a subsort, for example.

5.2.2 Declaring Operators Manually

Instead of using automatically generated features, you can also specify exactly which operators
you want to generate. This may be useful if you need an operator that operates on a subsort
rather than a top-level sort, as explained in the warning box above, or if you want to define your
own names for an operator rather than using a built-in name.

Operators can be declared using a #attach statement, similar to the one used for declaring a
fixed point or integer value domain. The syntax is as follows:

#attach DomainOrder ”dom min minus prev less lesseq equal greatereq greater next plus max
sqrt mult div sum abs”

Here, dom is the name of a domain, while min through sum are the names you wish to give the
corresponding operators on the domain (or a hyphen to indicate that the corresponding feature
should not be generated). For example:

#attach DomainOrder ”location minloc minusloc previousloc lessloc lessequalloc equalloc
greaterequalloc greaterloc nextloc plusloc maxloc - - - sumloc -”

This syntax may be extended in the future, since it is easy to make mistakes in the argument
order for the current syntax.

35

CHAPTER 5. NUMBERS AND ARITHMETICS

36

Chapter 6

Infix Notation

As an extension to the plain L(ND) syntax, VITAL and TALplanner also allow infix notation
to be used for any feature taking two arguments.

Currently, it is not possible to define precedence rules for features. Instead, certain built-
in features (Section 5.2) have predefined precedence levels, while all other features share the
highest possible predecence (that is, they bind harder). Also, all operators are left associative.
Use parentheses where necessary.

In order to improve clarity and make narratives more succinct, many of the arithmetic and
relational operators can also be written using common symbols (+, −, <=, and so on) when
using infix notation.

6.1 Precedence Rules

The precedence levels are as follows, from highest to lowest precedence:

• Any binary feature not specified below

• * ($times), / ($div), % ($mod)

• + ($plus), - ($minus)

• < ($less), <= ($lessequal), >= ($greaterequal), > ($greater), $equals

6.2 A Note on Equality

Equality exists in plain L(ND), and is a logical operator rather than a feature with a semantic
attachment. Therefore, $equals does not have a corresponding infix operator =. This is also the
reason why $equals requires a temporal context provided by [τ] or value(), while = cannot be
used within a temporal context.

37

CHAPTER 6. INFIX NOTATION

6.3 Examples

The following examples should help you understand the precedence and associativity rules used
by VITAL and TALplanner.

#domain colors :elements { red, green, blue, cyan, magenta, yellow }
#attach FixedPoint ”integer - 0 1000 0”
#feature foo(integer, integer) :domain integer

#obs [0] $less(12, 42) // true
#obs [0] 12 < 42 // equivalent
#obs [7] 12 < 42 // equivalent, temporal context is ignored but required
#obs 12 < 42 // Wrong, no temporal context

#obs 12 = 12 // true
#obs [0] 12 = 12 // Wrong, no equality within temporal context

#obs [0] 12 + 42 * 3 == 138 // True; note the use of ’==’
#obs [0] 12 $plus 42 $times 3 == 138 // True
#obs [0] $plus(12, $times(42, 3)) == 138 // True

#obs [0] foo(12+7, 12*3/2) == 5 // True or false...
#obs [0] (12+7) foo (12*3/2) == 5 // Equivalent
#obs [0] 12+7 foo 12*3/2 == 5 // Not equivalent, foo binds harder

#obs [0] red + red == red // True; 0 + 0 == 0
#obs [0] blue * blue == magenta // True; 2 * 2 == 4
#obs [0] green < blue // True; 1 < 2

38

Chapter 7

Controlling Constraint Propagation

The #propagation statement can be used for controlling the order in which constraints are applied
to a partial interpretationThis only affects VITAL; TALplanner is unaffected. The syntax is as
follows:

#propagation :options

The following options are available:

:constraints-by-time In a narrative with multiple domain constraints d1, . . . , dn universally
quantified over time, VITAL normally applies d1 at all timepoints, then d2

at all timepoints and so on.

With :constraints-by-time, VITAL first applies d1 at time 0, d2 at time 0, . . . ,
dn at time 0. This is repeated as long as changes are made to the partial
interpretation. When a fixpoint is found, VITAL starts applying constraints
at time 1, and so on.

Using :constraints-by-time can speed up constraint propagation considerably
in some cases, such as when several domain constraints together propagate
information forward in time. An example of this would be the following:

#obs [0] f & g
#dom forall t [[t] f & g -> [t+1] f]
#dom forall t [[t] f & g -> [t+1] g]

39

CHAPTER 7. CONTROLLING CONSTRAINT PROPAGATION

40

Chapter 8

Controlling Splitting

Internally, VITAL uses constraint propagation to find all possible models for a given narrative.
The algorithms start with a partial interpretation where all features and constants are completely
unknown (can take on arbitrary values), and then performs constraint propagation on this
structure using the logical formulas as constraints.

In many cases, however, the complete set of models for the narrative cannot be represented as a
single partial interpretation. One example of this would be a narrative with a constraint such as
[0]f ⊕g. For such narratives, VITAL must split the original partial interpretation into a number
of children in order to reason by cases. In this example, VITAL might split on f , generating
one child where f is definitely true (eventually resuming constraint propagation and concluding
that g must be false), and one child where f is definitely false (eventually concluding that g
must be true).

Splitting may also be necessary when the constraint propagation methods implemented in VI-
TAL are not strong enough: Instead of immediately constraining a partial interpretation, VITAL
splits it into a number of children in order to reason by cases. Eventually, it may conclude that
certain cases were in fact not possible, in which case those partial interpretations are discarded.

The performance of VITAL can be affected significantly by exactly which splitpoints are chosen.
Above, for example, VITAL might choose to split either on f or on g. Therefore, before splitting,
VITAL considers all possible splitpoints in the partial interpretation, assigns each splitpoint a
goodness value, and chooses a splitpoint with maximum goodness. The goodness of a splitpoint
is a non-positive value; the best possible splitpoint has a goodness of 0.

Since it is difficult to find a heuristic for assigning goodness values that works well for all
narratives, the user can affect certain aspects of this process. The next section lists the different
kinds of splitpoint currently considered by VITAL and shows how their goodness values are
calculated by default, while Section 8 shows how to tell VITAL whether splitpoints at earlier
timepoints should always be preferred more than those at later timepoints.

41

CHAPTER 8. CONTROLLING SPLITTING

8.1 Splitpoints and Priorities

Given a partial interpretation and a set of formulas that should hold in that interpretation, there
are a number of different kinds of splitpoints.

Each splitpoint is assigned a goodness value, a non-positive integer. For splitpoints associated
with the value of a fluent at a given timepoint, this value can be affected by the split priority
of that feature (denoted by splitpri(feature) below). This priority is 1024 by default, but can be
changed using the :splitpri option of the corresponding #feature declaration (Section 2.3).

• Suppose a formula depends on a temporal constant, whose value is unknown (that is,
which is not assigned a single possible value by the partial interpretation). Then, the
partial interpretation can be split into one child for each value the constant can currently
take on. The goodness of this splitpoint is −2048.

• Suppose a formula depends on a value constant, whose value is unknown. Then, the partial
interpretation can be split into one child for each value the constant can currently take
on. The goodness of this splitpoint is −(the number of children)× 1024.

• Suppose a formula depends on an expression [τ] f(ω) =̂ {v1, . . . , vn} whose value is un-
known, and that VITAL has already determined the values of the temporal term τ , the
feature arguments ω and all the value terms in the set {v1, . . . , vn}. Then, then the partial
interpretation can be split into one child where the comparison holds and one where it
does not hold. The goodness of this splitpoint is −2× splitpri(feature).

• Suppose a formula depends on an expression value(τ, f(ω) whose value is unknown, and
that VITAL has already determined the values of the temporal term τ and the fea-
ture arguments ω. Then, the partial interpretation can be split into one child for each
possible value that f can currently take on at τ . The goodness of this splitpoint is
−(the number of children)× splitpri(feature).

Feature expressions occurring as arguments in other feature expressions, or occurring after
=̂, are implicitly considered to be embedded in value().

• Suppose a formula depends on a temporal comparison τ = τ ′, τ < τ ′ or τ ≤ τ ′ whose
value is unknown, but that one of the temporal terms is known and the other is a tem-
poral constant. Then, the partial interpretation can be split into two children, where the
comparison holds or does not hold, respectively. The goodness of this splitpoint is −2048.

8.2 Controlling Splitpoint Selection

As discussed above, splitpoint selection can be affected by altering the split priorities of the
features occurring in a narrative. Certain other aspects of this procedure can be controlled by
the #splitting statement. This only affects VITAL; TALplanner is unaffected. The syntax is as
follows:

#splitting :options

The following options are available:

42

8.2. Controlling Splitpoint Selection

:split-by-time Usually, splitpoint priorities are calculated as explained in Section 2.3 (see
:splitpri). For some narratives, however, it makes more sense to always choose
a splitpoint as early in time as possible, even if there is a splitpoint later in
time that would result in fewer children. Using :split-by-time forces VITAL
to prioritize earlier splitpoints above later ones.

:breadth When VITAL splits a partial interpretation into a number of children, some
of those child interpretions may contradict the remaining set of formulas.
Although VITAL will always discover this and discard those interpretations,
this may take a long time, requiring a large number of additional splits.

VITAL normally uses depth-first search during splitting and constraint prop-
agation. In other words, when a partial interpretation is split, all its children
are created and placed on a stack, and constraint propagation is restarted
for the topmost child. When no more constraints can be applied but for-
mulas still remain, the child is split into grandchildren, and the constraint
propagation begins for the topmost grandchild, and so on.

In most cases, this works well. For some narratives, however, almost all
children are contradictory and discovering this is not very difficult or time
consuming. For such narratives, breadth-first search may be better, in the
sense that it discards contradictory children more quickly and keeps fewer
interpretations in memory. Use the :breadth option to force VITAL to use
breadth-first search.

43

CHAPTER 8. CONTROLLING SPLITTING

44

Chapter 9

The t∗ (maxocc) Constant

Although each TAL fluent has an infinite timeline, VITAL only considers a finite part of that
timeline. We assume the existence of a timepoint t∗ such that in all preferred models, all fluents
are unoccluded after t∗. This, of course, limits the set of TAL narratives for which VITAL is
applicable.

The condition that no fluent is occluded in [t∗ + 1,∞) implies that each fluent has a constant
value in the interval [t∗ + 1,∞): Persistent fluents and semidynamic fluents (Section 2.3, option
:semidynamic) retain their values from t∗, and durational fluents take on their default values.

9.1 Calculating a Value for t∗

Determining whether a t∗ exists, and determining a suitable value, is not trivial in the general
case.

VITAL currently makes the following assumptions:

• No action has direct effects after the end of its invocation interval. That is, an action law
schema [t, t′] A Ψ cannot imply occlusion after t′.

• No dependency constraint can be triggered at a timepoint t without there being a change
in the value in some fluent at t. This was always true for old-style causal constraints, but
is not necessarily true for the new dependency constraints.

• All dependency constraints (not only the non-delayed dependency constraints) are strati-
fied, so that no dependency constraint can cause a chain of changes that eventually triggers
the same dependency constraint.

[[+++ Describe the assumptions more formally]]

Given that these assumptions hold, VITAL can calculate an overestimate of t∗. [[+++ Describe
how]] If this value turns out to be greater than necessary, VITAL may take longer than necessary
to calculate the set of preferred models for your narrative. If the value turns out to be too small,
VITAL will eventually complain about conditions implying occlusion after t∗.

45

CHAPTER 9. THE T∗ (MAXOCC) CONSTANT

9.2 Using #maxocc and $maxocc

If you are not satisfied with the value VITAL calculates for t∗, you can specify a value using a
#maxocc declaration (Section 2.11).

It is also possible to refer to the value VITAL uses for t∗ using the temporal constant $maxocc.
This makes it possible to conditionalize formulas such as dependency constraints on the value
of t∗.

This may be especially useful when you want to simulate some process where dependency con-
straints can trigger each other in infinite chains. Although VITAL cannot handle infinite chains,
you can refer to the value of t∗ in domain constraints and dependency constraints using the
$maxocc constant and use this constant to ensure that no effects are triggered after t∗. You can
then “simulate” the process over arbitrary finite prefixes of the timeline by specifying different
values of t∗ using a #maxocc declaration.

For example, [[+++ more explanations and an example]]

46

Chapter 10

Parameterized Narratives

Not yet written

47

Bibliography

48

Index

τ , 19
+, 19
-, 19
::function, 8, 9
0, 1, 2, . . . , 19

$abs, 33
#acc, 26
#acs, 12, 27, 30
#action, 12, 27, 30
#assert, 29
:at, 26
atomic formulas, 23
#attach, 16, 16, 32, 35, 38

$bind, 23
boolean, 5
:breadth, 43, 43

caching
defined features, 11

connectives
in fluent formulas, 21
in logic formulas, 23

:constrain, 26, 26
:constraints-by-time, 39, 39
#control, 30
Ct, 23
:cut, 11, 11, 12, 13, 13, 14, 14

:decimals, 31, 32, 32
:default, 13, 14, 14, 15, 26
default value assumption, 8
#define, 28, 28
:defined, 8, 10, 11, 11, 12, 26, 28
defined feature, 11

uncached, 11
#dep, 27, 27, 28
$div, 33
#dom, 3, 25, 26, 26, 35, 39

domain
empty, 6

:domain, 7, 7, 12–14, 14, 15, 28, 29, 38
#domain, 5, 6, 7, 12, 20, 29, 31, 32, 34, 35,

38
domains

pre-declared, 5
:double-injective, 8, 10, 10, 11, 12
durational, 8
:durational, 8, 8, 9–12
dynamic, 8

:elements, 6, 6, 7, 12, 29, 34, 35, 38
$equals, 34, 37
:exceptions, 14, 15
:expand, 28

false, 5
:fault, 12
feature

defined, 11
#feature, 7, 12, 21, 26, 28, 38, 42
feature expressions, 20
:fixedpoint, 6, 31, 32
fluent

durational, 8
dynamic, 8
persistent, 8
semidynamic, 8

fluent formulas, 21
formulas

atomic, 23
fluent, 21
logic, 22

function
independent of time, 9
partial, 9
partial, double, 10
total, 10

49

INDEX

:function, 8, 9, 9, 14, 15
#function, 14, 14, 20, 21, 23, 31

#goal, 30
graphical representation

hiding features, 9
showing names, 9

$greater, 34
$greaterequal, 34

#heuristic, 30
:hide, 3, 9

I, 23
$ifthenelse, 23
$inf, 20, 23
#init, 25, 26
:injective, 8, 9, 10–12
:injective-always, 8, 10, 10, 11, 12
:integer, 6, 31, 31, 32
$ite, 20

:last, 26, 26
:lb, 31, 32, 32
$less, 34
$lessequal, 34
logic formulas, 22

$maketime, 19
:max, 13
$max, 33
#maxocc, 15, 15, 46
$maxocc, 8, 20, 23, 46
:min, 13
$min, 33
$minus, 33
#modal, 30

$next, 33, 35
:no-vars, 6, 6, 31
nochange assumption, 8
:noinit, 12
numeric temporal constants, 19

#objects, 29, 29
#obs, 3, 25, 25, 28, 33, 35, 38, 39
#occ, 12, 16, 27
#operator, 12, 30

:parameter, 13, 13, 14, 14
:parent, 6, 6, 7, 12, 35
partial function, 9

double, 10
persistent, 8
$plus, 33
pre-declared, 5
:prefix, 31, 32, 32
$prev, 33
priority

for splitting, 8
#propagation, 39

quantification
in fluent formulas, 21
in logic formulas, 23

R, 23
#redundancy, 30
#relation, 15, 15, 21, 23, 31
#resource, 17

$scale, 16, 19
semidynamic, 8
:semidynamic, 8, 8, 9–11, 45
:showname, 9
split priority, 8
:split-by-time, 43, 43
:splitpri, 3, 8, 42, 43
splitting

and cut, 11
#splitting, 42
$sqrt, 33
$sum, 34
symbolic temporal constants, 19

temporal constants
numeric, 19
symbolic, 19

temporal terms, 19
temporal variables, 19
terms

temporal, 19
value, 20

#timeconst, 13, 19
$times, 33, 33
#timescale, 16, 16
#timevar, 13, 19

50

INDEX

total function, 10
true, 5

:ub, 31, 32, 32
:uncached, 11, 11, 28

value, 20
value domain, see domain
value terms, 20
#valueconst, 14, 20
values

pre-declared, 5
:valuetype, 8, 10–12, 12, 26
#valuevar, 6, 14, 20
variables

pre-declared, 5
temporal, 19

X, 23

51

