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Definitions

To speed up the progress in the field
of materials design, a number of chal-
lenges related to big data need to be ad-
dressed. This entry discusses these chal-
lenges and shows the semantic technolo-
gies that alleviate the problems related to
Variety, Variability, Veracity and FAIR-
ness.

Overview

Materials design and materials in-
formatics is central for technological
progress, not the least in the green
engineering domain. Many traditional
materials contain toxic or critical raw
materials, whose use should be avoided
or eliminated. Also, there is an urgent
need to develop new environmentally
friendly energy technology. Presently,
relevant examples of materials design

challenges include energy storage, solar
cells, thermoelectrics, and magnetic
transport (Ceder and Persson (2013);
Jain et al (2013); Curtarolo et al (2013)).

The space of potentially useful
materials yet to be discovered — the
so-called ‘chemical white space’ — is
immense. The possible combinations
of, say, up to six different elements,
constitute many billions. The space
is further extended by possibilities
of different phases, low-dimensional
systems, nanostructuring, and so forth,
which adds several orders of magnitude.
This space was traditionally explored by
experimental techniques, i.e., materials
synthesis and subsequent experimental
characterization. Parsing and searching
the full space of possibilities this way
is, however, hardly practical. Recent
advances in condensed matter theory
and materials modeling make it possible
to generate reliable materials data by
means of computer simulations based
on quantum mechanics (Lejaeghere et al
(2016)). High-throughput simulations
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combined with machine learning can
speed up progress significantly and also
help to break out of local optima in
composition space to reveal unexpected
solutions and new chemistries (Gaultois
et al (2016)). The progress brought by
the combination of machine learning
models and databases of materials data,
is now so rapid that it can be discussed
as a lead-up to a singularity for the field
of materials design (Armiento (2020)).

This development has led to sev-
eral global efforts to assemble and
curate databases that combine exper-
imentally known and computation-
ally predicted materials properties,
along with a desire to make them
interoperable (e.g., OPTIMADE,
https://www.optimade.org/).
These efforts have collectively been
referred to as the Materials Genome Ini-
tiative (https://www.mgi.gov/).
A central idea is that materials design
challenges can be addressed by search-
ing these databases for entries with
desired combinations of properties.
Nevertheless, these data sources also
open up for materials informatics, i.e.,
the use of big data methodology and
data mining techniques to discover
new physics from the data itself. A
workflow for such a discovery process
can be based on a typical data mining
process, where key factors are identified,
reduced and extracted from heteroge-
neous databases, similar materials are
identified by modeling and relationship
mining and properties are predicted
through evaluation and understanding
of the results from the data mining
techniques (Agrawal and Alok (2016)).
The use of the data in such a workflow
requires addressing problems with data
integration, provenance, and seman-

tics, which remains an active field of
research.

Even when a new material has been
invented and synthesized in a lab, much
work remains before it can be deployed.
Production methods allowing manufac-
turing the material at large scale in a
cost effective manner need to be devel-
oped, and integration of the material into
the production must be realized. Further-
more, life-cycle aspects of the material
need to be assessed. Today, this post-
invention process takes typically about
two decades (Mulholland and Paradiso
(2016); Jain et al (2013)). Shortening
this time is in itself an important strate-
gic goal, which could be realized with
the help of an integrated informatics ap-
proach (Jain et al (2013)).

To summarize, it is clear that ma-
terials data, experimental as well as
simulated, has the potential to speed
up progress significantly in many steps
in the chain starting with materials
discovery, all the way to marketable
product. However, the data needs to be
suitably organized and easily accessible,
which in practice is highly nontrivial to
achieve. It requires a multidisciplinary
effort and the various conventions and
norms in use need to be integrated.
Materials data is highly heterogeneous
and much of it is currently hidden
behind corporate walls (Mulholland and
Paradiso (2016)).

Big and FAIR Data Challenges

To implement the data-driven materials
design workflow, we need to deal with
several of the big data properties (e.g.
Rajan (2015)).

https://www.optimade.org/
https://www.mgi.gov/
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Volume refers to the quantity of the
generated and stored data. The size of
the data determines the value and poten-
tial insight. Although the experimental
materials science does not generate
huge amounts of data, computer sim-
ulations with accuracy comparable to
experiments can. Moreover, going from
state-of-the-art static simulations at
temperature T = 0 K towards realistic
descriptions of materials properties at
temperatures of operation in devices and
tools will raise these amounts as well.

Variety refers to the type and nature of
the data. The materials databases are het-
erogeneous in different ways. They store
different kinds of data and in different
formats. Some databases contain infor-
mation about materials crystal structure,
some about their thermochemistry, oth-
ers about mechanical properties. More-
over, different properties may have the
same names, while the same information
may be represented differently in differ-
ent databases.

Velocity refers to the speed at which
the data is generated and processed to
meet the demands and challenges that lie
in the path of growth and development.
In computational materials science new
data is generated continuously, by a large
number of groups all other the world.
In principle, one can store summary re-
sults and data streams from a specific
run as long as one needs (days, weeks,
years) and analyze it afterwards. How-
ever, to store all the data indefinitely may
be a challenge. Some data needs to be re-
moved as the storage capacity is limited.

Variability deals with the consistency
of the data. Inconsistency of the data
set can hamper processes to handle and
manage it. This can occur for single
databases as well as data that was
integrated from different sources.

Veracity deals with the quality of the
data. This can vary greatly, affecting
accurate analysis. The data generated
within materials science may contain
errors, and it is often noisy. The quality
of the data is different in different
databases. It may be challenging to have
provenance information from which
one can derive the data quality. Not all
the computed data is confirmed by lab
experiments. Some data is generated
by machine learning and data mining
algorithms.

Furthermore, to be able to enable
machines to automatically find and use
the data, and individuals to easily reuse
the data, we need to make our data FAIR
(Findable, Accessible, Interoperable,
and Reusable, Wilkinson et al (2016)).
Findable refers to the fact that data and
metadata should be easy to find, accessi-
ble to the fact that it should be clear how
to access the data, interoperable to the
fact that the data needs to be integrated
with other data and be usable by ap-
plications and workflows, and reusable
to the fact that data and metadata are
well described such that the data can
be replicated or combined in different
settings (https://www.go-fair.
org/fair-principles/). Also
in the materials science domain an
awareness regarding the importance
of such principles for data storage
and management is developing and
research in this area is starting (Draxl
and Scheffler (2018)).

Sources of data and Semantic
Technologies

Although the majority of materials data
that has been produced by measurement

https://www.go-fair.org/fair-principles/
https://www.go-fair.org/fair-principles/
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or through predictive computation have
not yet become organized in general
easy-to-use databases, several sizable
databases and repositories do exist.
However, as they are heterogeneous in
nature, semantic technologies are im-
portant for the selection and integration
of the data to be used in the materials
design workflow. This is particularly im-
portant to deal with Variety, Variability
and Veracity. These technologies have
also been proposed to play a significant
role in making data FAIR.

In materials science the interest in
using semantic technologies is growing
rapidly and the development of ontolo-
gies and standards is pursued by more
and more groups. Ontologies aim to
define the basic terms and relations of a
domain of interest, as well as the rules
for combining these terms and relations.
They standardize terminology in a
domain and are a basis for semantically
enriching data, integration of data from
different databases (Variety), reasoning
over the data (Variability and Veracity)
and making data FAIR.

Furthermore, standards for exporting
data from databases and between tools
are being developed. These standards
provide a way to exchange data be-
tween databases and tools, even if the
internal representations of the data in
the databases and tools are different.
They are a prerequisite for efficient
materials data infrastructures that allow
for the discovery of new materials
(Austin (2016)). In several cases the
standards formalize the description of
materials knowledge (and thereby create
ontological knowledge).

In the remainder of this section a brief
overview of databases, ontologies and
standards in the field is given.

Databases and repositories

The Inorganic Crystal Struc-
ture Database (ICSD, https:
//icsd.fiz-karlsruhe.de/)
is a frequently utilized database for
completely identified inorganic crystal
structures, with nearly 200k entries
(Belsky et al (2002); Bergerhoff et al
(1983)). The data contained in ICSD
serve as an important starting point
in many electronic structure calcula-
tions. Several other crystallographic
information resources are also avail-
able (Glasser (2016)). A popular open
access resource is the Crystallography
Open Database (COD, http://www.
crystallography.net/cod/)
with nearly 400k entries (Grazulis et al
(2012)). Closely related to COD is
the Predicted Crystallography Open
Database (PCOD, http://www.
crystallography.net/pcod/)
with over 1 million predicted crystal
structures.

At the International Cen-
tre for Diffraction Data (ICDD,
http://www.icdd.com/) a num-
ber of databases for phase identification
are hosted. These databases have been
in use by experimentalists for a long
time.

Springer Materials (http:
//materials.springer.com/)
contains among many other data sources
the well-known Landolt Bornstein
database, an extensive data collection
from many areas of physical sciences
and engineering. Similarly, The Japan
National Institute of Material Science
(NIMS) Materials Database MatNavi
(http://mits.nims.go.jp/
index_en.html) contains a wide
collection of mostly experimental but

https://icsd.fiz-karlsruhe.de/
https://icsd.fiz-karlsruhe.de/
http://www.crystallography.net/cod/
http://www.crystallography.net/cod/
http://www.crystallography.net/pcod/
http://www.crystallography.net/pcod/
http://www.icdd.com/
http://materials.springer.com/
http://materials.springer.com/
http://mits.nims.go.jp/index_en.html
http://mits.nims.go.jp/index_en.html
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also some computational electronic
structure data.

Thermodynamical data, necessary
for computing phase diagrams with the
CALPHAD method, exists in many dif-
ferent databases (Campbell et al (2014)).
Open access databases with relevant
data can be found through OpenCalphad
(http://www.opencalphad.
com/databases.html).

Databases of results from electron
structure calculations have existed in
some form for several decades. In
1978, Moruzzi, Janak, and Williams
published a book with computed elec-
tronic properties such as, e.g., density
of states, bulk modulus and cohesive
energy of all metals (Moruzzi et al
(2013)). Only in the last few years,
however, has the idea of collecting
computed results at a large scale in
publicly available databases for general
use become widespread. Prominent ex-
amples of databases or repositories that
appeared early during the present trend
are Electronic Structure Project (ESP)
(http://materialsgenome.se),
Aflow (Curtarolo et al (2012), http:
//aflowlib.org/), the Materials
Project (Jain et al (2013), https:
//materialsproject.org/),
the Open Quantum Materials Database
(OQMD, http://oqmd.org/)
(Saal et al (2013)), and the NOMAD
repository (https://repository.
nomad-coe.eu/).

There is now a growing demand
for open science from funding agen-
cies, regulatory bodies, the scientific
community and the general public.
Data management plans are becoming
mandatory, and making research data,
also raw data, available is now expected
and becoming the norm in research. This
has lead to an explosion of available

materials science datasets and archived
data of varying quality and useful-
ness. Many of the above mentioned
repositories have made their frame-
works available, see, e.g., Automated
Interactive Infrastructure and Database
for Computational Science (AiiDA,
http://www.aiida.net/) (Pizzi
et al (2016)), the Atomic Simula-
tion Environment (ASE, https:
//wiki.fysik.dtu.dk/ase/)
(Larsen et al (2017)), and the
high-throughput toolkit (httk,
http://www.httk.org)
(Faber et al (2016)). Popular
repositories also include Zenodo
(https://zenodo.org/), a catch-
all repository for EC funded research
developed within the OpenAIRE
project, and Materials cloud (https:
//www.materialscloud.org/),
which is specifically built to enable
seamless sharing and dissemination of
resources in computational materials
science.

Ontologies

A number of ontologies in materials sci-
ence have been developed and we show
some characteristics in Table 1.

EMMO (European Materials & Mod-
elling Ontology (https://github.
com/emmo-repo/EMMO) is a top
level ontology with the purpose to
develop a standard representational on-
tology framework based on knowledge
of materials modeling and charac-
terization. Most ontologies, however,
are domain ontologies that focus on
specific sub-domains of the materials
field (Domain in Table 1) and have
been developed with a specific use in

http://www.opencalphad.com/databases.html
http://www.opencalphad.com/databases.html
http://materialsgenome.se
http://aflowlib.org/
http://aflowlib.org/
https://materialsproject.org/
https://materialsproject.org/
http://oqmd.org/
https://repository.nomad-coe.eu/
https://repository.nomad-coe.eu/
http://www.aiida.net/
https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/
http://www.httk.org
https://zenodo.org/
https://www.materialscloud.org/
https://www.materialscloud.org/
https://github.com/emmo-repo/EMMO
https://github.com/emmo-repo/EMMO
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mind (Application Scenario in Table
1). MatOnto (Cheung et al (2008)),
based on the upper ontology DOLCE,
aims to represent structured knowledge,
properties and processing steps relevant
to materials for data exchange, reuse
and integration. MatOWL (Zhang
et al (2009)) is extracted from MatML
schema data to enable ontology-based
data access. The Materials Ontology
in Ashino (2010) was designed for
data exchange among thermal property
databases, particularly focusing on rep-
resenting knowledge relevant to material
processing, measurement methods and
manufacturing processes. The NanoPar-
ticle Ontology (Thomas et al (2011)),
based on the upper ontology BFO, and
the eNanoMapper ontology (Hastings
et al (2015)) are two ontologies in the
nanotechnology domain. The former
represents properties of nanoparticles
to design new nanoparticles, while
the latter focuses on assessing risks
caused by the use of nanomaterials
in engineering. Extensions to these
ontologies are computed in Li et al
(2019). The MMOY ontology (Zhang
et al (2016)) captures metal materials
knowledge from Yago. The Materials
Design Ontology (Li et al (2020),
https://w3id.org/mdo/), in-
spired by OPTIMADE, aims to enable
semantic and integrated querying
over multiple heterogeneous materials
databases such as Materials Project,
OQMD, NOMAD and AFLOW.

From the knowledge representation
perspective, the basic terms defined in
materials ontologies involve materials,
properties, performance, and processing
in specific sub-domains. All presented
ontologies use OWL as a representation
language (Language in Table 1). The
number of OWL classes ranges from

a few to several thousands (Ontology
Metrics in Table 1). Some ontologies
have more classes than properties
(e.g., MatOnto, Materials Ontology,
NanoParticle Ontology, MMOY and
EMMO), while some have much more
properties (e.g., MDO). Several ontolo-
gies are developed in a modular fashion
(Modularity in Table 1).

Standards

Early efforts for standards including
ISO standards and MatML achieved
limited adoption according to Austin
(2016). The standard ISO 10303-
45 includes an information model
for materials properties. It provides
schemas for material properties,
chemical compositions and measure
values (Swindells (2009)). ISO 10303-
235 includes an information model
for product design and verification.
MatML (Kaufman and Begley (2003),
https://www.matml.org/) is
an XML-based markup language for
materials property data which includes
schemas for such things as materials
properties, composition, heat, and
production.

Some other standards that have
received more attention are, e.g., Ther-
moML and CML. ThermoML (Frenkel
et al (2006, 2011)) is an XML-based
markup language for exchange of
thermophysical and thermochemical
property data. It covers over 120
properties regarding thermodynamic
and transport property data for pure
compounds, multicomponent mixtures,
and chemical reactions. CML or Chem-
ical Markup Language (Murray-Rust
and Rzepa (2011); Murray-Rust et al

https://w3id.org/mdo/
https://www.matml.org/
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Table 1 Characteristics of some materials ontologies
Knowledge Representation Perspective Materials Science Perspective

Ontologies Ontology Metrics Language Modularity Domain Application Scenario
MatOnto
Cheung et al (2008)

78 classes, 10 properties,
24 individuals OWL ! Crystals Materials discovery

MatOWL
Zhang et al (2009) (not available) OWL Materials Semantic querying

Materials Ontology
Ashino (2010)

606 classes, 31 properties,
488 individuals OWL ! Thermal properties Data exchange, search

ELSSI-EMD ontology
CEN (2010)

35 classes, 37 properties,
33 individuals OWL ! Materials testing Standardization

NanoParticle Ontology
Thomas et al (2011) 1904 classes, 81 properties OWL Nanotechnology Data integration, search

eNanoMapper
Hastings et al (2015)

12781 classes, 5 properties
464 individuals OWL ! Nanotechnology Data integration

MMOY
Zhang et al (2016)

2325 classes, 9 properties,
1738 individuals OWL Metals Knowledge extraction

MDO
Li et al (2020) 37 classes, 64 properties OWL ! Materials design Semantic querying

over multiple databases

EMMO 309 classes, 35 properties,
3 individuals OWL ! Materials science Upper ontology

(2011)) covers chemistry and espe-
cially molecules, reactions, solid-state,
computation and spectroscopy. It is an
extensible language that allows for the
creation of sub-domains through the
convention construct. Furthermore, the
dictionaries construct allows for con-
necting CML elements to dictionaries
(or ontologies). This was inspired by the
approach of the Crystallographic Infor-
mation Framework or CIF (Bernstein
et al (2016), http://www.iucr.
org/resources/cif).

The European Committee for Stan-
dardization (CEN) organized workshops
on standards for materials engineering
data (Austin (2016)) of which the re-
sults are documented in CEN (2010).
The work focuses specifically on ambi-
ent temperature tensile testing and devel-
oped schemas as well as an ontology (the
ELSSI-EMD ontology from above).

Another recent approach is connected
to the European Centre of Excellence
NOMAD (Ghiringhelli et al (2016)).
The NOMAD repository’s (https:
//repository.nomad-coe.eu/)
metadata structure is formatted to be

independent of the electronic-structure
theory or molecular-simulation code
that was used to generate the data and
can thus be used as an exchange format.

Conclusion

The use of the materials data in a
materials design workflow requires
FAIR data and solutions for big data
problems including Variety, Variability
and Veracity. Semantic technologies
are a key factor in tackling some of
these problems. Efforts have started in
creating materials databases, ontologies
and standards. However, much work
remains to be done. To make full use of
these resources there is a need for inte-
gration of different kinds of resources
which use different database models and
application programming interfaces, and
reasoning capabilities should be used, as
in the bioinformatics field in the 1990s
(Lambrix et al (2009)). Databases could
use ontologies to define their schemas
and enable ontology-based query-

http://www.iucr.org/resources/cif
http://www.iucr.org/resources/cif
https://repository.nomad-coe.eu/
https://repository.nomad-coe.eu/
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ing. For existing databases mappings
between ontologies and the existing
schemas can be created. Integration of
databases is enabled by the use of on-
tologies. However, when databases have
used different ontologies, alignments
between different ontologies are needed
as well (Euzenat and Shvaiko (2007)).
Furthermore, more effort should be put
on connecting ontologies and standards
(as started in the CML, CEN and
NOMAD approaches), which may also
lead to connections between different
standards. Reasoning can be used in
different ways. When developing re-
sources reasoning can help in debugging
and completing the resources leading to
higher quality resources (Ivanova and
Lambrix (2013)). Reasoning can also
be used during querying of databases
as well as in the process of connecting
different resources.
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