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Definitions

To speed up the progress in the field
of materials design, a number of chal-
lenges related to big data need to be ad-
dressed. This entry discusses these chal-
lenges and shows the semantic technolo-
gies that alleviate the problems related to
Variety, Variability and Veracity.

Overview

Materials design and materials in-
formatics is central for technological
progress, not the least in the green
engineering domain. Many traditional
materials contain toxic or critical raw
materials, whose use should be avoided
or eliminated. Also, there is an urgent
need to develop new environmentally
friendly energy technology. Presently,
relevant examples of materials design

challenges include energy storage, solar
cells, thermoelectrics, and magnetic
transport (Ceder and Persson (2013);
Jain et al (2013); Curtarolo et al (2013)).

The space of potentially useful
materials yet to be discovered — the
so-called ‘chemical white space’ — is
immense. The possible combinations
of, say, up to six different elements,
constitute many billions. The space
is further extended by possibilities
of different phases, low-dimensional
systems, nanostructuring, and so forth,
which adds several orders of magnitude.
This space was traditionally explored by
experimental techniques, i.e., materials
synthesis and subsequent experimental
characterization. Parsing and searching
the full space of possibilities this way
is however hardly practical. Recent
advances in condensed matter theory
and materials modeling make it possible
to generate reliable materials data by
means of computer simulations based
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on quantum mechanics (Lejaeghere et al
(2016)). High-throughput simulations
combined with machine learning can
speed up progress significantly and also
help to break out of local optima in
composition space to reveal unexpected
solutions and new chemistries (Gaultois
et al (2016)).

This development has led
to a global effort — known as
the Materials Genome Initiative
(https://www.mgi.gov/) — to
assemble and curate databases that
combine experimentally known and
computationally predicted materials
properties. A central idea is that materi-
als design challenges can be addressed
by searching these databases for entries
with desired combinations of properties.
Nevertheless, these data sources also
open up for materials informatics, i.e.,
the use of big data methodology and
data mining techniques to discover
new physics from the data itself. A
workflow for such a discovery process
can be based on a typical data ming
process, where key factors are identified,
reduced and extracted from heteroge-
neous databases, similar materials are
identified by modeling and relationship
mining and properties are predicted
through evaluation and understanding
of the results from the data mining
techniques (Agrawal and Alok (2016)).
The use of the data in such a workflow
requires addressing problems with data
integration, provenance, and seman-
tics, which remains an active field of
research.

Even when a new material has been
invented and synthesized in a lab,
much work remains before it can be
deployed. Production methods allowing
manufacturing the material at large
scale in a cost effective manner need

to be developed, and integration of the
material into the production must be
realized. Furthermore, life-cycle aspects
of the material need to be assessed.
Today, this post-invention process takes
typically about two decades (Mulhol-
land and Paradiso (2016); Jain et al
(2013)). Shortening this time is in itself
an important strategic goal, which could
be realized with the help of an inte-
grated informatics approach (Jain et al
(2013), Materials Genome Initiative
https://www.mgi.gov/).

To summarize, it is clear that ma-
terials data, experimental as well as
simulated, has the potential to speed
up progress significantly in many steps
in the chain starting with materials
discovery, all the way to marketable
product. However, the data needs to
be suitably organized and easily ac-
cessible, which in practice is highly
nontrivial to achieve. It will require a
multidisciplinary effort and the various
conventions and norms in use need to
be integrated. Materials data is highly
heterogeneous and much of it is cur-
rently hidden behind corporate walls
(Mulholland and Paradiso (2016)).

Big Data Challenges

To implement the data-driven materials
design workflow, we need to deal with
several of the big data properties (e.g.
Rajan (2015)).

Volume refers to the quantity of the
generated and stored data. The size of
the data determines the value and poten-
tial insight. Although the experimental
materials science does not generate
huge amounts of data, computer sim-
ulations with accuracy comparable to

https://www.mgi.gov/
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experiments can. Moreover, going from
state-of-the-art static simulations at
temperature T=0K towards realistic
descriptions of materials properties at
temperatures of operation in devices and
tools will raise these amounts as well.

Variety refers to the type and nature of
the data. The materials databases are het-
erogeneous in different ways. They store
different kinds of data and in different
formats. Some databases contain infor-
mation about materials crystal structure,
some about their thermochemistry, oth-
ers about mechanical properties. More-
over, different properties may have the
same names, while the same information
may be represented differently in differ-
ent databases.

Velocity refers to the speed at which
the data is generated and processed to
meet the demands and challenges that lie
in the path of growth and development.
In computational materials science new
data is generated continuously, by a large
number of groups all other the world.
In principle, one can store summary re-
sults and data streams from a specific
run as long as one needs (days, weeks,
years) and analyze it afterwards. How-
ever, to store all the data indefinitely may
be a challenge. Some data needs to be re-
moved as the storage capacity is limited.

Variability deals with the consistency
of the data. Inconsistency of the data
set can hamper processes to handle and
manage it. This can occur for single
databases as well as data that was
integrated from different sources.

Veracity deals with the quality of the
data. This can vary greatly, affecting
accurate analysis. The data generated
within materials science may contain
errors, and it is often noisy. The quality
of the data is different in different
databases. It may be challenging to have

provenance information from which
one can derive the data quality. Not all
the computed data is confirmed by lab
experiments. Some data is generated
by machine learning and data mining
algorithms.

Sources of data and Semantic
Technologies

Although the majority of materials data
that has been produced by measurement
or through predictive computation have
not yet become organized in general
easy-to-use databases, several sizable
databases and repositories do exist.
However, as they are heterogeneous in
nature, semantic technologies are im-
portant for the selection and integration
of the data to be used in the materials
design workflow. This is particularly im-
portant to deal with Variety, Variability
and Veracity.

Within this field the use of seman-
tic technologies is in its infancy with
the development of ontologies and stan-
dards. Ontologies aim to define the ba-
sic terms and relations of a domain of
interest, as well as the rules for com-
bining these terms and relations. They
standardize terminology in a domain and
are a basis for semantically enriching
data, integration of data from different
databases (Variety), and reasoning over
the data (Variability and Veracity). Ac-
cording to Zhang et al (2015a) in the
materials domain ontologies have been
used to organize materials knowledge in
a formal language, as a global concep-
tualization for materials information in-
tegration (e.g. Cheng et al (2014)), for
linked materials data publishing, for in-
ference support for discovering new ma-
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terials and for semantic query support
(e.g., Zhang et al (2015b, 2017)).

Further, standards for exporting
data from databases and between tools
are being developed. These standards
provide a way to exchange data be-
tween databases and tools, even if the
internal representations of the data in
the databases and tools are different.
They are a prerequisite for efficient
materials data infrastructures that allow
for the discovery of new materials
(Austin (2016)). In several cases the
standards formalize the description of
materials knowledge (and thereby create
ontological knowledge).

In the remainder of this section a brief
overview of databases, ontologies and
standards in the field is given.

Databases

The Inorganic Crystal Struc-
ture Database (ICSD, https:
//icsd.fiz-karlsruhe.de/)
is a frequently utilized database for
completely identified inorganic crystal
structures, with nearly 200k entries
(Belsky et al (2002); Bergerhoff et al
(1983)). The data contained in ICSD
serve as an important starting point
in many electronic structure calcula-
tions. Several other crystallographic
information resources are also avail-
able (Glasser (2016)). A popular open
access resource is the Crystallography
Open Database (COD, http://www.
crystallography.net/cod/)
with nearly 400k entries (Grazulis et al
(2012)).

At the International Cen-
tre for Diffraction Data (ICDD,
http://www.icdd.com/) a num-

ber of databases for phase identification
are hosted. These databases have been
in use by experimentalists for a long
time.

Springer Materials (http:
//materials.springer.com/)
contains among many other data sources
the well-known Landolt Bornstein
database, an extensive data collection
from many areas of physical sciences
and engineering. Similarly, The Japan
National Institute of Material Science
(NIMS) Materials Database MatNavi
(http://mits.nims.go.jp/
index_en.html) contains a wide
collection of mostly experimental but
also some computational electronic
structure data.

Thermodynamical data, necessary
for computing phase diagrams with the
CALPHAD method, exist in many dif-
ferent databases (Campbell et al (2014)).
Open access databases with relevant
data can be found through OpenCalphad
(http://www.opencalphad.
com/databases.html).

Databases of results from electron
structure calculations have existed in
some form for several decades. In 1978,
Moruzzi, Janak, and Williams published
a book with computed electronic prop-
erties such as, e.g., density of states,
bulk modulus and cohesive energy
of all metals (Moruzzi et al (2013)).
Only recently however, the use of such
databases have become widespread, and
some of these databases have grown to a
substantial size.

Among the more recent efforts
to collect materials properties ob-
tained from electronic structure
calculations publicly available a
few prominent examples include the
Electronic Structure Project (ESP)
(http://materialsgenome.se)

https://icsd.fiz-karlsruhe.de/
https://icsd.fiz-karlsruhe.de/
http://www.crystallography.net/cod/
http://www.crystallography.net/cod/
http://www.icdd.com/
http://materials.springer.com/
http://materials.springer.com/
http://mits.nims.go.jp/index_en.html
http://mits.nims.go.jp/index_en.html
http://www.opencalphad.com/databases.html
http://www.opencalphad.com/databases.html
http://materialsgenome.se


Data Processing in Materials Design 5

with ca 60k electronic structure re-
sults, Aflow (Curtarolo et al (2012),
http://aflowlib.org/) with
data on over 1.7 million com-
pounds, the Materials Project with
data on nearly 70k inorganic com-
pounds (Jain et al (2013), https:
//materialsproject.org/),
the Open Quantum Materials Database
(OQMD, http://oqmd.org/), with
over 470k entries (Saal et al (2013)),
and the NOMAD repository with 44
million electronic structure calcula-
tions (https://repository.
nomad-coe.eu/). Also available is
the Predicted Crystallography Open
Database (PCOD, http://www.
crystallography.net/pcod/)
with over 1 million predicted crystal
structures, which is a project closely
related to COD.

As the amount of computed data
grows, the need for informatics in-
frastructure also increases. Many of
the databases discussed above have
made their frameworks available, well-
known examples include the ones by
Materials Project and OQMD. Other
publicly available frameworks used
in publications for materials design
and informatics include the Automated
Interactive Infrastructure and Database
for Computational Science (AiiDA,
http://www.aiida.net/) (Pizzi
et al (2016)), the Atomic Simula-
tion Environment (ASE, https:
//wiki.fysik.dtu.dk/ase/)
(Larsen et al (2017)), and the
high-throughput toolkit (httk,
http://www.httk.org) (Faber
et al (2016)).

Ontologies

We introduce the features of current ma-
terials ontologies from a materials (Table
1) and a knowledge representation per-
spective (Table 2), respectively.

Most ontologies focus on specific
sub-domains of the materials field
(Domain in Table 1) and have been
developed with a specific use in mind
(Application Scenario in Table 1).
The Materials Ontology in Ashino
(2010) was designed for data exchange
among thermal property databases.
Other ontologies were built to enable
knowledge-guided materials design
or new materials discovery, such as
PREMΛP ontology (Bhat et al (2013))
for steel mill products, MatOnto ontol-
ogy (Cheung et al (2008)) for oxygen
ion conducting materials in the fuel
cell domain, and SLACKS ontology
(Premkumar et al (2014)) that integrates
relevant product life cycle domains
which consist of engineering analysis
and design, materials selection and
manufacturing. The FreeClassOWL
ontology (Radinger et al (2013)) is de-
signed for the construction and building
materials domain and supports seman-
tic search for construction materials.
MMOY ontology (Zhang et al (2016))
captures metal materials knowledge
from Yago. The ontology design pattern
in Vardeman et al (2017) models and
allows for reasoning about material
transformations in the carbon dioxide
and sodium acetate productions by com-
bining baking soda and vinegar. Some
ontologies are generated (Data Source in
Table 1) by extracting knowledge from
other data resources such as the Plinius
ontology (van der Vet et al (1994))
which is extracted from 300 publication
abstracts in the domain of ceramic

http://aflowlib.org/
https://materialsproject.org/
https://materialsproject.org/
http://oqmd.org/
https://repository.nomad-coe.eu/
https://repository.nomad-coe.eu/
http://www.crystallography.net/pcod/
http://www.crystallography.net/pcod/
http://www.aiida.net/
https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/
http://www.httk.org
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materials, and MatOWL (Zhang et al
(2009)) which is extracted from MatML
schema data to enable ontology-based
data access. The ontologies may also
use other ontologies as a basis such as
for instance, MatOnto that uses DOLCE
(Gangemi et al (2002)) and EXPO
(Soldatova and King (2006)).

From the knowledge representation
perspective (Table 2), the basic terms
defined in materials ontologies involve
materials, properties, performance, and
processing in specific sub-domains.
The number of concepts ranges from
a few to several thousands. There are
relatively few relationships and most
ontologies have instances. Almost all
ontologies use OWL as a representation
language. In terms of organization of
materials ontologies, Ashino’s Materials
Ontology, MatOnto, and PREMΛP on-
tology are developed as several ontology
components that are integrated in one
ontology. In Table 2 this is denoted in
the modularity column.

Standards

There are currently not so many stan-
dards yet in this domain. Early efforts
including ISO standards and MatML
achieved limited adoption according
to Austin (2016). The standard ISO
10303-45 includes an information
model for materials properties. It pro-
vides schemas for material properties,
chemical compositions and measure
values (Swindells (2009)). ISO 10303-
235 includes an information model
for product design and verification.
MatML (Kaufman and Begley (2003),
https://www.matml.org/) is
an XML-based markup language for

materials property data which includes
schemas for such things as materials
properties, composition, heat, and
production.

Some other standards that have
received more attention are, e.g., Ther-
moML and CML. ThermoML (Frenkel
et al (2006, 2011)) is an XML-based
markup language for exchange of
thermophysical and thermochemical
property data. It covers over 120
properties regarding thermodynamic
and transport property data for pure
compounds, multicomponent mixtures,
and chemical reactions. CML or Chem-
ical Markup Language (Murray-Rust
and Rzepa (2011); Murray-Rust et al
(2011)) covers chemistry and espe-
cially molecules, reactions, solid-state,
computation and spectroscopy. It is
an extensible language that allows for
the creation of sub-domains through
the convention construct. Further, the
dictionaries construct allows for con-
necting CML elements to dictionaries
(or ontologies). This was inspired by the
approach of the Crystallographic Infor-
mation Framework or CIF (Bernstein
et al (2016), http://www.iucr.
org/resources/cif).

The European Committee for Stan-
dardization (CEN) organized workshops
on standards for materials engineering
data (Austin (2016)) of which the re-
sults are documented in CEN (2010).
The work focuses specifically on ambi-
ent temperature tensile testing and devel-
oped schemas as well as an ontology (the
ELSSI-EMD ontology from above).

Another recent approach is connected
to the European Centre of Excellence
NOMAD (Ghiringhelli et al (2016)).
The NOMAD repository’s (https:
//repository.nomad-coe.eu/)
metadata structure is formatted to be

https://www.matml.org/
http://www.iucr.org/resources/cif
http://www.iucr.org/resources/cif
https://repository.nomad-coe.eu/
https://repository.nomad-coe.eu/
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Table 1 Comparison of materials ontologies from a materials perspective

Materials ontology Data Source Domain Application Scenario

Ashino’s Materials Ontology
Ashino (2010) Thermal property databases Thermal properties Data exchange, search

Plinius ontology
van der Vet et al (1994) Publication abstracts Ceramics Knowledge extraction

MatOnto
Cheung et al (2008)

DOLCE ontology1,
EXPO ontology2

Crystals New materials discovery

PREMΛP ontology
Bhat et al (2013) PREMΛP platform Materials Knowledge-guided design

FreeClassOWL
Radinger et al (2013)

Eurobau data3,
GoodRelations ontology4

Construction and
building materials Semantic query support

MatOWL
Zhang et al (2009) MatML schema data Materials Semantic query support

MMOY
Zhang et al (2016) Yago data Metals Knowledge extraction

ELSSI-EMD ontology
CEN (2010)

Materials testing data
from ISO standards

Materials testing, Ambient
temperature tensile testing Data interoperability

SLACKS ontology
Premkumar et al (2014)

Ashino’s Materials Ontology,
MatOnto Laminated composites Knowledge-guided design

1 DOLCE stands for Descriptive Ontology for Linguistic and Cognitive Engineering.
2 EXPO ontology is used to describe scientific experiments.
3 Eurobau.com compiles construction materials data from ten European countries.
4 GoodRelations ontology (Hepp (2008)) is used for e-commerce with concepts such as business
entities and prices.



8 Lambrix, Armiento, Delin, Li

Table 2 Comparison of materials ontologies from a knowledge representation perspective

Materials ontology Ontology Metrics Language Modularity

Ashino’s Materials Ontology
Ashino (2010)

606 concepts, 31 relationships,
488 instances OWL !

Plinius ontology
van der Vet et al (1994)

17 concepts, 4 relationships,
119 instances1

Ontolingua code

MatOnto
Cheung et al (2008)

78 concepts, 10 relationships,
24 instances OWL !

PREMΛP ontology
Bhat et al (2013) 62 concepts UML !

FreeClassOWL
Radinger et al (2013)

5714 concepts, 225 relationships
1469 instances OWL

MatOWL
Zhang et al (2009) (not available) OWL

MMOY
Zhang et al (2016)

544 metal concepts, 1781 related concepts,
9 relationships, 318 metal instances
1420 related instances

OWL

ELSSI-EMD ontology
CEN (2010)

35 concepts, 37 relationships,
33 instances OWL !

SLACKS ontology
Premkumar et al (2014) 34 concepts and 10 relationships at least2 OWL

1 103 instances out of 119 are elements in the periodic system.
2 The numbers are based on the high-level class diagram and an illustration of instances’
integration in SLACKS shown in (Premkumar et al (2014)).

independent of the electronic-structure
theory or molecular-simulation code
that was used to generate the data and
can thus be used as an exchange format.

Conclusion

The use of the materials data in a
materials design workflow requires
addressing several big data problems in-
cluding Variety, Variability and Veracity.
Semantic technologies are a key factor
in tackling some of these problems.
Currently, efforts have started in creat-
ing materials databases, ontologies and
standards. However, much work remains
to be done. To make full use of these
resources there is a need for integration
of different kinds of resources and

reasoning capabilities should be used, as
in the bioinformatics field in the 1990s
(Lambrix et al (2009)). Databases could
use ontologies to define their schemas
and enable ontology-based querying.
Integration of databases is enabled by
the use of ontologies. However, when
databases have used different ontologies,
alignments between different ontologies
are needed as well (Euzenat and Shvaiko
(2007)). Further, more effort should be
put on connecting ontologies and stan-
dards (as started in the CML, CEN and
NOMAD approaches), which may also
lead to connections between different
standards. Reasoning can be used in
different ways. When developing re-
sources reasoning can help in debugging
and completing the resources leading to
higher quality resources (Ivanova and
Lambrix (2013)). Reasoning can also
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be used during querying of databases
as well as in the process of connecting
different resources.
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