TAILOR WP 4 - Paradigms & Representations

Luc De Raedt

PROBABILITY

WP 4

Different AI paradigms and representational paradigms

- Goals:
 - integrate these paradigms
 - integrate the involved communities
- Focus is on the **static** case, i.e., no time, no action, no dynamics, just like in a database
- Covers five core different communities including
 - Deep & Probabilistic Learning
 - Neuro-Symbolic Computation (NeSy)
 - Statistical Relational AI (StarAI)
 - Constraint Programming & Machine Learning
 - Knowledge graphs for reasoning
 - And apply ... in e.g. computer vision

Reasoning

Generally accepted as the TWO MAIN PARADIGMS FOR REASONING

Reasoning

Generally accepted as the TWO MAIN PARADIGMS FOR REASONING

Learning

THREE DIFFERENT PARADIGMS FOR LEARNING (there are two more — evolutionary and analogical, not tied to particular representations)

A lot of Deep

Learning

A lot of Deep (Probabilistic) Learning

THE POINT IS - A LOT OF ML FITS HERE

Neuro Symbolic Computation

EMBEDDINGS

Knowledge graphs and ontologies

Statistical Relational AI (StarAI) and Probabilistic Programming

Constraint Programming & Machine Learning e.g. Empirical Model Building (Milano @ IJCAI 19)

WP 4 Different Tasks

- Task 4.1: Integrated representations for learning and reasoning
- Task 4.2 Integrated approaches to learning and optimisation
- Task 4.3 Learning and reasoning with embeddings, knowledge graphs, & ontologies
- Task 4.4: Learning and reasoning for perception, spatial reasoning, and vision

Integrate

