
A causal framework for understanding
optimisation algorithms

Alberto Franzin[0000−0002−4066−0375] and Thomas Stützle[0000−0002−5820−0473]

IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium
{afranzin,stuetzle}@ulb.ac.be

1 Introduction

Over the last decades, plenty of exact and non-exact methods have been pro-
posed to tackle NP-hard optimisation problems. Despite the wide success of
these methods, however, understanding their behaviour is still an open research
question of fundamental interest [2]. Stochastic Local Search (SLS) algorithms
mostly provide no guarantees on the running time or the quality of the solution
returned [4]. Theoretical analyses of SLS behaviour are limited to specific cases
or unrealistic assumptions such as infinite running time. The internal behaviour
of branch-and-bound, the basis for state-of-the-art exact algorithms, is chaotic,
and therefore it is almost impossible to predict the performance of a solver on
a problem instance. Yet, all these algorithms are routinely used with success in
countless applications. Thus, the gap between theoretical analyses and practical
results is still very large.

In recent years, however, the adoption of rigorous experimental practices led
many researchers to develop mathematical and statistical tools to gain insights
in algorithmic behaviour. Several works now employ systematic experiments,
qualitative comparisons between algorithms, or computational statistical tech-
niques. Data-driven analyses have led to the development of algorithms that
leverage the knowledge obtained on data collected on specific problems to make
informed decisions during the search process. Automatic algorithm selection and
configuration techniques are used to relieve practitioners of the burden of run-
ning extensive computational experiments and making unbiased decisions on the
choice, respectively, of an algorithm and of a parameter configuration that are
likely to perform well on an instance. However, they generate data about the
effectiveness of each algorithm or parameter choice in the scenarios considered.
This data can not only be used to drive the configuration process, but it can
also be used to study algorithmic behaviour.

On the problem side, fitness landscape analysis aim to understand how the
solution space of a certain problem instance impacts on the performance of a
search algorithm. For example, it is easier for an algorithm to converge to a good
solution in a smooth landscape, rather than on a more rugged one with lots of
locally optimal solutions with poor quality.

In the literature, however, little work has been done to formally connect
these related areas of research. The main issue lies in the difficulty of generaliz-
ing the many results obtained for specific problems, instances and algorithms to



2 A. Franzin, T. Stützle

other scenarios. In turn, this difficulty arises from the huge number of options
we can choose from, on the stochasticity of the algorithms and instances, and
on the computational burden of generating usable information, for example by
computing features for a given problem. Algorithm selection usually relies on
problem-specific instance features, so insights obtained for e.g. Traveling Sales-
man Problem (TSP) instances are not easily transferrable to SAT, QAP, or
other combinatorial optimisation problems. Algorithm configuration can make
an algorithm improve its performance, but current tools do not offer many expla-
nations for their results, and common benchmarks are used mainly to raise the
bar. The data generated can help in understanding algorithm performance, but
to obtain insights the practitioner still needs to carefully inspect the outcome.
Fitness landscape analyses are usually difficult to translate into an algorithm
implementation or selection.

In this work, we propose a causal framework to represent the interaction
between the entities involved in the resolution of an optimisation problem, and
show how several approaches proposed to study algorithmic behaviour can be
represented on this framework. With such models we can formally represent a
theory or set of beliefs we hold about a certain system. A causal model [6] can be
represented as a directed acyclic graph (DAG) whose nodes are the variables of
the system under study. The variables can be divided into exogenous variables,
whose values are determined by reasons external to the model, and endogenous
variables, whose values are determined only by a subset of the other variables.
The arcs encode the causal relationship between the variables, so that the value
of an endogenous variable is probabilistically determined by the value of its
parent nodes.

2 Causal models for SLS algorithms

Causal models provide an appropriate framework for this task, for several rea-
sons. First, they explicitely encode the causality relationships between entities,
and in our case such relationships are intuitively clear. In fact, we are convinced
that in many works aimed at understanding algorithmic behaviour the authors
already implicitely assume such causality relationships. On causal models we can
perform inference, that is, estimate some unobserved variables given the value
of other observed ones; and this is precisely how we consider the various tasks
of algorithm selection and configuration, and several of approaches mentioned
above. Causal models can also be used to analyse data collected from different
sources and experiments.

While in this work we focus on trajectory-based SLS algorithms for non-
constrained combinatorial optimisation problems, our framework can be ex-
tended to include other methods and different problem classes. We start from
four working hypotheses, each one building on the previous one.

(H1) An algorithm can be divided into basic components and parameters.
We take a component-based view of SLS algorithms [3,7], that is, we consider



A causal framework for understanding optimisation algorithms 3

an algorithm as a set of basic building blocks, each one possibly coming with
a set of parameters, combined together in a certain way.

(H2) Separation between algorithm- and problem-specific components.
Following (H1), algorithmic blocks are divided in problem-specific and algorithm-
specific. Problem-specific components are the parts of a SLS that require
specific knowledge of the problem under study, while algorithm-specific com-
ponents are all the components that define what a SLS is and can be used
across different unrelated problems. Thus, a SLS is defined by its algorithmic-
specific components and their combination, and an instantiation of a SLS
for a problem is the combination of the algorithm-specific components with
a set of problem-specific components.

(H3) An algorithm operates a traversal of the search space. A SLS works
by traversing solutions in a search space. The problem-specific components
of a SLS are needed to (i) select one starting point of this traversal, and to
(ii) evaluate another solution in the search space, relative to the current one.
The separation of the problem-specific components of (H2) can be considered
the simulation of an oracle that gives us the desired information about a so-
lution when polled. Thus, we can ideally assume to have complete knowledge
of the entire search space, turning any optimisation problem into a search
problem for which we do not need additional knowledge on the problem any-
more. This assumption lets us bridge the insights we obtain across different
problems.

(H4) Identification of optimal algorithm behaviour. For obtaining opti-
mal results on a search space, an algorithm needs to reach an optimal tradeoff
and alternance of exploration and exploitation behaviour. This optimal be-
haviour differs for different landscapes, but several different algorithm can, in
principle, reach this desired behaviour. In practice, we assume we can iden-
tify and configure an algorithm that obtains results that are “good enough”
for our purpose.

Starting from these four working hypothesis, we build our causal framework.
We consider problems and instances as given inputs to tackle, using an algo-
rithm built starting from the basic components; the efficiency of the algorithm
depends also on the computational environment (such as machine power or run-
ning time). These factors are the causes for the effects, the results obtained.
What relates the inputs to the results, is how efficiently the algorithm can tra-
verse the search space, that is, how it can efficiently balance diversification and
intensification, based on the characteristics of the instance. These characteristics
can be represented by the features and the fitness landscape.

The general causal framework representing the theory is shown in Figure 1.
In the general framework each node is actually a macro-node representing a set
of nodes, grouped together by their function.

High-level entities I represents the problem instances. P represents the prob-
lems. Following (H2), PA is the set of problem-specific components and algo-
rithms (e.g. initial solutions, neighbourhoods, heuristics), and SA the set of



4 A. Franzin, T. Stützle

I P PA SA

A

C

F L

R

Fig. 1: A generic causal framework representing the interaction between prob-
lems, instances, algorithms and results. Arcs represent the causal relationships
between the high-level nodes. In a practical application, not all the nodes might
be observed, and not all the nodes might be present, depending on the specific
instantiation of the problem under study.

algorithm-specific components that compose the search part of the algorithm.
Components in PA and SA include both algorithmic functions such as neigh-
bourhoods, acceptance criteria, . . . , but also numerical parameters.

A is the set of algorithms that we can use for solving an instance ip ∈ I of
problem p ∈ P ; differently from PA and SA, an algorithm a ∈ A is an instantiated
and fully configured one. The separation of A from its components collected in
PA and SA follows from (H1).

C represents the set of computational factors that impact an actual imple-
mentation of any algorithm a ∈ A, such as the computational power, running
time, random seed, but also quality of the implementation, and any other pos-
sible factor affecting the computation.

F contains both the set of instance features, such as the instance size, and
the problem-specific features. L represents instead the fitness landscape and the
search space features, e.g. the ruggedness or the number of local optima.

Finally, R models the results that can be obtained by an algorithm a ∈ A
on an instance ip for a problem p ∈ P , under the computational environment
specified in C.

Causal relationships {I, P, PA, SA, C} form the set of exogenous variables, the
ones we set when we tackle an optimisation problem; {F, L, A, R} are the endoge-
nous variables, whose value depends on other variables, either deterministically
or in a probabilistic way.

In F we include features defined solely on the instance itself and by both
instance and problem, so we have incoming arcs from I and P . These features
do not depend on the algorithm we choose, but are instead properties that arise
when we define a specific problem instance.



A causal framework for understanding optimisation algorithms 5

In L, landscape features arise from the contribution of P and I; their differ-
entiation from L is somewhat arbitrary, but by grouping them into a separate
set we reflect in a clear way our working hypothesis (H3) and their “dynamic”
characterization with respect to “static” features represented in F . In L we can
include probing statistics or other features obtained with a phase of search space
traversal by some search algorithm; for them we include arcs from PA and SA
to L. Note, however, that the features generated using elements in PA are con-
sidered mere properties of the landscape, and not an evaluation of the algorithm
(components). Thus, we do not include any arc to F or L from A, as it represents
the algorithm used to produce the results, and not from C as we do not assume,
in principle, a limitation on the possibility of computing features.

According to (H1) and (H2), an algorithm in A can be instantiated combining
components from PA and SA, hence the incoming arcs.

Finally, the results R for an instance in I of a problem in P depend on the
performance of an algorithm in A, under the computational environment repre-
sented in C; however, following our working hypothesis (H3), once an algorithm
from A has been instantiated, it operates on a search space (here represented by
L) and can be considered, at that point, unaware of the specific problem that
generated F and L. In other words, F and L provide an intermediate (mediator)
level of “reasons” that can help us in understanding the performance of A for
I under the computational environment specified in C. The relationship here
is probabilistic, for the stochastic nature of the algorithms and of the compu-
tational environment (hardware faults, etc.) that make effectively impossible to
relate deterministically the causes with the results.

At this higher level, we do not need to assume any inter-node connection,
that is, the nodes composing the high-level entities are not directly connected to
each other, since they are defined either as exogenous variables, or as determined
by other entities. Causal and inferential reasoning is as in any causal model [6].
Since there is no edge inside each macro-node, all the flows of information we
define on the framework apply also when we “open” the macro-nodes into their
constituting nodes.

3 Algorithm selection and configuration in the framework

The main goal of this work is to show how this causal framework can relate
several existing approaches, in particular considering them as inference problems.
For example, the Algorithm Selection Problem (ASP) requires to find the best
algorithm in a portfolio of available ones (in our framework, a ∈ A) for a given set
of instances (from I), which are characterized by a set of features (represented in
F and L). With (H1) and (H2) we assume that we can instantiate at least one,
and possibly more, algorithms from A. Since the selection is made by observing
the results R for the alternatives evaluated, we can define ASP as the inference
task of finding a ∈ A given the observed variables in {R, F, L, C}.

Similarly, the Algorithm Configuration Problem (ACP) requires to find an
optimal set of parameters and components (in SA and PA) for a given set of



6 A. Franzin, T. Stützle

instances (in I) of a problem in P , under computational constraints specified in
C. The usual black box formulation of ACP does not make use of any feature,
but makes the choice based only on the observed results R. Hence, the ACP
can be formulated as the problem of inferring values for the variables in PA, SA
given the observed variables in {P, I, R, C}.

Therefore, we can clearly see the relationship between ASP and ACP. They
are both inference problems based on problem and instances, whose outcome
depends on the results (in fact, the racing algorithm proposed in 1994 for model
selection was subsequently used for configuring algorithms [1]). They instead
differ in (i) whether we use fully configured algorithms (in A, for ASP) or building
blocks (in PA and SA, for ACP), and (ii) if we can observe (and use in the
selection or configuration process) some features in F or L. The separation is,
however, neither crisp nor immutable. Some configurators can indeed make use
of features [5]. By observing any feature in F or L in a configuration or PbO
task we open the black box and move towards a selection setting; by allowing
the configuration of numerical parameters of the algorithms in a portfolio for
a selection task we have the CASH problem [8], instantiated as PA, PA given
{R, F, L, C}.

We have defined a causal framework that models the causal relationships
between the entities involved when tackling an optimisation problem. As first
examples, we have shown how we can model ACP and ASP as inference tasks.
However, several other approaches can be described according to this framework,
thus contributing towards an improved ability of understanding and explaning
how SLS algorithms work.

References

1. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. GECCO 2002.

2. Cook, W.J.: Computing in combinatorial optimization. In: Steffen, B., Woeginger,
G. (eds.) Computing and Software Science: State of the Art and Perspectives, LNCS,
vol. 10000, pp. 27–47. Springer, Cham (2019).

3. Hoos, H.H.: Programming by optimization. Communications of the ACM 55(2),
70–80 (Feb 2012).

4. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA (2005)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. LION 2011.

6. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press,
2nd edn. (2009)

7. Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In:
Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, Springer (2019).

8. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined
selection and hyperparameter optimization of classification algorithms. In: SIGKDD
2013.


	A causal framework for understanding optimisation algorithms

