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Autonomous Systems and Stream Reasoning



Autonomous Systems



Autonomous Systems



Collaborative Unmanned Aircraft Systems



A principled approach to building collaborative
intelligent autonomous systems for complex missions.



Vision
A principled approach to building collaborative

intelligent autonomous systems for complex missions.
Challenges:
• Support humans and robots including legacy systems
• Support adjustable autonomy and mixed-initiative

interaction
• Manage tasks and information on many abstraction levels
• Coordinating control, reaction and deliberation
• Coordination of systems, resources and platforms
• Incomplete information at design time and run time
• Inspection, monitoring, diagnosis and recovery on many

abstraction levels



Autonomous Systems at AIICS, Linköping University

Micro UAVs
weight < 500 g,
diameter < 50 cm

Yamaha RMAX
weight 95 kg,
length 3.6 m

PingWing

LinkMAV

LinkQuad weight ~1 kg, diameter ~70cm



RMAX System Overview
 21 HP two-stroke engine
 3.6 meters length
 Maximum takeoff weight – 95 kg
 Radio controlled (backup pilot)
 Attitude sensor (YAS) & stabilization

system (YACS) 3xPC104 computers
 802.11 wireless bridge
 GPS, barometric altimeter
 Color & thermal cameras (PTU)
 Video transmitter & recorder
 Laser range finder





LinkQuad Dimensions
• Width: 68.5 cm
• Width (w/o props): 45.8 cm
• Top diameter: 68.5 cm
• Height: 20 cm
• Propeller size: 10” (25.4 cm)

Weight and Payload
• Empty weight: 950 g
• Payload capacity: 250 g
• Max take-off weight: 1250 g

Power System
• 4x brushless motors
• Custom designed ESC
• Battery modules (2.7Ah or 5.4Ah)
• Flight duration: up to 40 min.
depending on the configurationBattery module Twist and lock sensor modules



Stream Reasoning
• Autonomous systems produce and process

sequences of values incrementally created at
run-time.

• These sequences are natural
to model as streams.

• Stream reasoning is
incremental reasoning over streams.

• Stream reasoning approximates continuous
reasoning with minimal latency necessary
in order to react in a timely manner to
changes in the environment.

always
((not onroad(car1) ˅ vel(car1) ≤ 5m/s) →
eventually [0, 30s]
(always [0, 10s] onroad(car1)

˄ vel(car1) > 5m/s))

Temporal logics

GIS



HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems
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P. Doherty, J. Kvarnström, M. Wzorek, P. Rudol, F. Heintz and G. Conte. 2014.
HDRC3 - A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems.
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849–952.



My Contributions to HDRC3

Delegation and task allocation through constraint satisfaction
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A Traffic Monitoring Scenario

 Continuously gather information
from many different sources.

 Select the relevant information for
the current task.

 Derive higher-level knowledge
about the environment and the UAV.

 Correctly interpret what is going on.

 Continuously gather information
from many different sources.

 Select the relevant information for
the current task.

 Derive higher-level knowledge
about the environment and the UAV.

 Correctly interpret what is going on.



DyKnow
DyKnow is a stream-based knowledge

processing middleware framework that
provides

– a formal conceptual framework for
integrating different sensing and
reasoning approaches in a coherent
processing framework,

– stream reasoning
functionalities, and

– a distributed implementation
infrastructure.

Scenario
Recognition

Scenario
Recognition

GPSGPS

Pan-tilt unitPan-tilt unit

Color camColor cam

Thermal camThermal cam

IMUIMU UAV State
Estimation
UAV State
Estimation

Image
Processing

Image
Processing

Qualitative Spatial
Reasoning

Qualitative Spatial
Reasoning

Object Identification
and Classification

Object Identification
and Classification



DyKnow:
• Integrating information from distributed sources.

• Processing at many different levels of abstraction.

• Quantitative and qualitative processing.

• Bottom-up data processing and top-down model-based
processing.

• Managing uncertainty on different levels of
abstraction.

• Flexible configuration and reconfiguration.

• Declarative specification of the information being
generated and the available information processing
functionalities. Sensing

Qualitative models

Knowledge
fusion

Mixed quantitative
and qualitative models

Information
fusion

Quantitative models

Sensor
fusion

Reasoning



DyKnow:

Computational Unit

Stream
Generator

stream

stream

stream
stream

Source

Stream
Generator

stream

Image
Processing

Image
Processing

Camera states

Vision percepts

Color images

Thermal images
Color cameraColor camera

GPSGPS

Thermal cameraThermal camera
GPS coordinates

Color images
Thermal images



DyKnow:

sample period

delay

start time end time
valid time

available time

fluent stream

from 0 to 120s sample every 100ms max delay 200ms

FLUENT_STREAM_POLICY := FLUENT_STREAM_CONSTRAINT*
FLUENT_STREAM_CONSTRAINT :=

VALUE_APPROXIMATION_CONSTRAINT
|  CHANGE_CONSTRAINT
|  DELAY_CONSTRAINT
|  DURATION_CONSTRAINT
|  ORDER_CONSTRAINT



DyKnow:

A=1
B=2
C=3
D=4
E=5

S2= select A,
D as F%C%
from S1
where B=2

A=2
B=4
C=6
D=8
E=0

A=3
B=2
C=9
D=2
E=5

A=4
B=4
C=2
D=6
E=0

tv=1
ta=1

tv=2
ta=2

tv=3
ta=3

tv=4
ta=4

A=1
F3=4

A=3
F9=2

tv=1
ta=2

tv=3
ta=4

S1 S2



DyKnow:

A=1
B=2

S3=merge S1, S2

A=3
B=4

tv=1
ta=1

tv=2
ta=2

S1

S3
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B=4

A=4
B=2

tv=2
ta=2

tv=3
ta=3

S2

A=1
B=2

A=3
B=4

tv=1
ta=2

tv=2
ta=3

A=2
B=4

A=4
B=2

tv=2
ta=4

tv=3
ta=5



DyKnow:

A=1
B=2

A=3
B=4

tv=1
ta=1

tv=2
ta=2

S1

S3

C=4
D=4

C=6
D=2

tv=2
ta=2

tv=3
ta=3

S2

A=1
B=2
C=2
D=2
tv=1
ta=2

A=3
B=4
C=4
D=4
tv=3
ta=4

C=2
D=2

tv=1
ta=1

A=5
B=2

tv=3
ta=3

S3= sync S1, S2 with
sample_period=2



alwaysuav.((power_usage(uav) > M) →
((power_usage(uav) < f × M)
until[0, τ]

(always[0, τ’] power_usage(uav) ≤ M)))

s1s2s3 s0 Progress T/F

The semantics of these formulas is defined over infinite state sequences.
Progression is one technique to check whether the current prefix is
sufficient to determine the truth value of a formula.

DyKnow:

M

f ×M

time

power
usage

τ τ'



DyKnow:

on_road

o5
v5

o4
v4

o3
v3

o2
v2

o1
v1

o1o2o4o3o5

v1v2v4 v3v5velocity

Synchronize

st
re

am
s states



DyKnow:
chronicle overtake[?car1, ?car2] {

event(behind[?car1, ?car2]:(F, T), t1)
event(beside[?car1, ?car2]:(F, T), t2)
event(in_front_of[?car1, ?car2]:(F, T), t3)
t1 < t2
t2 < t3
t3-t1 in [0, 30s]

}

UAVcar1car1

car2
road

UAVcar1car1

car2 road

UAV

car1car1car2



The Sense-Reasoning Gap

Sensing

Qualitative models
Knowledge

fusion
Mixed quantitative

and qualitative models
Information

fusion
Quantitative models

Sensor
fusion

Reasoning

The sense-reasoning gap is the gap between the
noisy numerical data directly generated by sensors
and the crisp symbolic information that reasoning
functionalities normally assume to be available.



DyKnow:
The objective of the anchoring process is to connect symbols

to sensor data originating in the physical world
so that the symbols represent the objects in the world.

Sensors

Anchoring

Symbols

Physical objects

Background knowledge

car4



time = 37270
center_x = 1400
center_y = 330
road_seg = 83

time = 37270
center_x = 1400
center_y = 330
road_seg = 83

time = 37270
center_x = 1400
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road_seg = 83

time = 37270
center_x = 1400
center_y = 330
road_seg = 83

time = 37270
center_x = 1400
center_y = 330
road_seg = 83

time = 37270
center_x = 1400
center_y = 330
road_seg = 83

DyKnow:

time = 37270
center_px_x = 20
center_px_y = 49
size_px = 29
rgb = [188,29,200]

time = 37270
center_px_x = 20
center_px_y = 49
size_px = 29
rgb = [188,29,200]
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TruckObject



DyKnow Application:
Chronicle

Recognition
Chronicle

Recognition

Qualitative Spatial
Reasoning

Qualitative Spatial
Reasoning

Qualitative spatial relations
(close, behind, same_road, …)

Temporal Logic
Progression

Temporal Logic
Progression

Car objects

Image
Processing

Image
Processing

Vision percepts

Helicopter State
Estimation

Helicopter State
Estimation

Camera State
Estimation

Camera State
Estimation

Helicopter
states

Camera states

GPSGPS Pan-tilt unitPan-tilt unit

Color cameraColor camera

Thermal cameraThermal camera

IMUIMU

Sensor
processing

Symbolic reasoning
AA BB CC

DD EE

[0, 20] [5, 10]

[0, 10]

[10, 10]
[10, 20]

Source

Stream

Computational
unit

AnchoringAnchoring

Geographical
Information

System

Geographical
Information

System



Traffic Monitoring

Continuous streaming and merging of
information to detect traffic violations.

Continuous streaming and merging of
information to detect traffic violations.



Finding and Sharing Information

Platform 3

Platform 1 Platform 2

Platform 4

• Discover and broker information among agents.
• Refer to pieces of information among agents.
• Negotiate to make agents generate desired information.
• Share information among agents.

• Discover and broker information among agents.
• Refer to pieces of information among agents.
• Negotiate to make agents generate desired information.
• Share information among agents.



DyKnow Federations

Platform 1

Gateway
agent
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FIPA ACL

Direct
communication

Agent level

Platform
specific level

Interface
agent

DyKnow
federation

agent

Efficient streaming
with low latency

Set up streaming
using speech acts

Platform 2

Gateway
agent
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Agent level

Platform
specific level

Interface
agent

DyKnow
federation

agent



Sharing and Fusing Information

JDL Level 0

JDL Level 1

JDL Level 2

Platform 2

JDL Level 3

Platform 1



It’s a Streaming World!



It’s a Streaming World! 1/2



It’s a Streaming World! 2/2



Requirements on Streaming Systems 1/8
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Requirements on Streaming Systems 3/8



Requirements on Streaming Systems 4/8



Requirements on Streaming Systems 5/8



Requirements on Streaming Systems 6/8



Requirements on Streaming Systems 7/8



Requirements on Streaming Systems 8/8







Stream Reasoning Requirements Summary



Stream Reasoning Requires a Change of Paradigms!
• From persistent data

– to be stored and queried on demand

– a.k.a. one time semantics

• To transient data
– to be consumed on the fly by continuous queries

– a.k.a. continuous semantics



Continuous Semantics
window

input streams streams of answerRegistered
Continuous
Query

Dynamic
System



Approaches to Stream Reasoning



Processing and Reasoning with Streams
• Traditional DBMSs

– require data to be (persistently) stored and indexed before it could be processed
and

– process data only when explicitly asked by the users, that is, asynchronously with
respect to its arrival.

• Stream Processing

– Streams are usually unbounded.

– No assumption can be made on data arrival order.

– Size and time constraints make it difficult to store and process data stream
elements after their arrival; one-time processing is the typical mechanism used to
deal with streams.



Processing and Reasoning with Streams
• Two competing models

– the data stream processing model [Babcock et al. 2002] and

– the complex event processing model [Luckham 2001].

• DSMSs resemble DBMSs, especially in the way they process incoming data through a
sequence of transformations based on common SQL operators, like selections,
aggregates, joins, and all the operators defined in general by relational algebra.

• The complex event processing model views flowing information items as notifications
of events happening in the external world, which have to be filtered and combined to
understand what is happening in terms of higher-level events.

– Accordingly, the focus of this model is on detecting occurrences of particular
patterns of (low-level) events that represent the higher-level events whose
occurrence has to be notified to the interested parties.



Stream Reasoning – Approaches
• Data stream management systems

– Create new streams according to the following specification
• Complex event processing

– Detect complex events based on specifications
• Stream reasoning in the semantic web

– Continuous SPARQL queries over streaming RDF triples
• Temporal logic-based stream reasoning

– Run-time verification / Path checking
– Verifying that a stream satisfies a temporal logical formula

• Data flow systems
• Functional reactive programming



Stream Reasoning – Approaches
• Window-based, taking streams and turning them into relations over

which standard reasoning/processing can be made. DSMS and RSP are
both window-based.

• Event-based, define and detect complex events in streams of events.
Recognizing complex events ought to be a form of reasoning, it infers
implicit information, which is a reasonable definition of reasoning.

• Logic-based, evaluate temporal logical formulas over infinite streams.
• A Unified Model?

– It seems that window-based and logic-based can be combined through window-
based states.

– It seems that window-based and event-based can be combined, see e.g. EP-
SPARQL.



Representing Streams
• A stream is a potentially infinite sequence of elements.
• Timed vs Untimed

– A potentially infinite sequence of elements <e1, e2, e3, …>, implicit total order, no
explicit time

– A potentially infinite sequence of time-stamped elements <<t1, e1>, …> or <e1, e2,
e3, …> where e1 is a tuple containing at least a time-stamp and the sequence is
ordered based on the time-stamp. If not, then can represent that tuples arrive in the
“wrong” order.

• Typed vs Untyped
– The elements could have a uniform type or have different types. In the first case,

the streams are typed.
• Synchronous vs Asynchronous
• Single stream vs Multiple streams



Time
• Discrete time / Dense time

• Time-points / Time-intervals

• Relative time / Explicit time / Absolute time



Processing Time and Event Time



Windows
• Most stream based systems work on windows. They are basically sub-

streams (and can be interpreted as locally closed worlds).



Stream Reasoning Through Windows



Logic-Based Approaches
• Linear time logics: LTL < MTL < TPTL

• Branching time logics: CTL < CTL*

• Propositional vs Relational/First-order

• Discrete vs Dense time (point-wise and continuous)

– Model checking: Decidable vs Undecidable

• Finite  vs Infinite words (a stream is a finite prefix of an infinite word)



Model Checking vs Stream Reasoning
• Duality between specifying a system and Specifying the properties of the

system

• Model checking: Timed automata model of a system + Formula ->
True/False

• Path checking: Trace of the system + Formula -> True/False

• Stream reasoning: Stream + Formula -> True/False

• Stream reasoning as incremental formula evaluation

– Compile to automata

– Progression / Rewriting / Partial evaluation



Extensions / Research Challenges
• Asynchronous state information

• Implicit state information

– Closed world assumption

• Atemporal static background information

• Incomplete state information

– Missing state information

– Disjunctive state information

• Uncertain state information (non-determinism)

• Incorrect state information

• Predicted / Anticipatory state information

• Time-varying domains/vocabulary

• Non-monotonicity



Spatio-Temporal Logic-Based Stream Reasoning



Metric Spatio-Temporal Logic (MSTL)
• Metric Spatio-Temporal Logic (MSTL) is a modal logic based on MTL and

RCC-8 and uses the temporal operators
– F until I G
– always I F /I F (equivalent to F until I false)

– eventually I F /  I F (equivalent to true until I F), and

– next / Ο.

• Example: “It is always the case that if it rains, it will stop raining within
60 minutes”
– always ( rain → eventually [0, 60min] (rain))



alwaysuav.((power_usage(uav) > M) →
((power_usage(uav) < f × M)
until[0, τ]

(always[0, τ’] power_usage(uav) ≤ M)))

s1s2s3 s0 Progress T/F

The semantics of these formulas is defined over infinite state sequences.
Progression is one technique to check whether the current prefix is
sufficient to determine the truth value of a formula.

Stream Reasoning using Metric Temporal Logic

M

f ×M

time

power
usage

τ τ'



Metric Temporal Logic



Progression of Metric Temporal Logic



Progression of Metric Temporal Logic
F

F1

state1
p, q

state2
p, q

state3
p, q

prog

F2

prog

F

prog

always p eventually [0,3] q

(always p eventually [0,3] q)
 (eventually [0,2] q)

(always p eventually [0,3] q)
 (eventually [0,1] q)

always p eventually [0,3] q



Stream Reasoning using Metric Temporal Logic
always (¬p → eventually [0, 1000] always [0, 1000] p)

Pentium-M
1.4 GHz
1 GB RAM



Qualitative Spatial Reasoning
• Qualitative spatial reasoning (QSR) deals

with regions and relations between those
regions called spatial relations.

• Qualitative spatial representation provides
an abstract representation that handles
imprecision.

• Natural to humans in term of
communication.



Qualitative Spatial Reasoning with RCC-8
• The Region Connection Calculus RCC-8 uses eight JEPD relations:



• The temporal reasoning is extended with spatial reasoning using for example RCC-8. RCC-8
defines 8 primitive relations and a composition table for qualitative constraint reasoning based
on path consistency.

• Allows expressing conditions such as:

– uav, restricted_area always DC(uav, restricted_area)

– uav, urban_area always (PO(uav, urban_area) eventually [0, 2min] altitude(uav) > 100m)



• The temporal reasoning is extended with spatial reasoning using for example RCC-8. RCC-8
defines 8 primitive relations and a composition table for qualitative constraint reasoning based
on path consistency.

• Allows expressing conditions such as:

– uav, restricted_area always DC(uav, restricted_area)

– uav, urban_area always (PO(uav, urban_area) eventually [0, 2min] altitude(uav) > 100m)
DC(urban_area1, restricted_area1)
DC(urban_area1, restricted_area2)
DC(urban_area1, urban_area2)
DC(urban_area1, road1)
DC(urban_area1, road2)
EC(road1, restricted_area1)
EC(road1, restricted_area2)
PO(road1, urban_area2)
DC(road1, road2)
PO(uav1, road2)
PO(uav1, urban_area2) …



Composition Table Region Connection Calculus RCC8



Known: EC(a,c)  NTPP(c,b)

a
b

c

Deduced: PO(a,b)  TPP(a,b)
 NTPP(a,b)

b
a c

b
a c

DC(urban_area1, restricted_area1)
DC(urban_area1, restricted_area2)
DC(urban_area1, urban_area2)
DC(urban_area1, road1)
DC(urban_area1, road2)
EC(road1, restricted_area1)
EC(road1, restricted_area2)
PO(road1, urban_area2)
DC(road1, road2)
PO(uav1, road2)
PO(uav1, urban_area2) …



• To handle incomplete spatial information we extend the first order logic to a three
valued strong Kleene logic.

• The truth value of a spatial predicate P(a,b) given a set S of disjunctive base relations
that hold between a and b is:
– P(a,b) is true if P  S and |S|=1

– P(a,b) is unknown if P  S and |S|>1

– P(a,b) is false if P S
Known: EC(a,c)  NTPP(c,b)
Deduced: PO(a,b)  TPP(a,b)

 NTPP(a,b)

always (PO(a,b) eventually [0,2] DC(a,b))

A and B T F U A or B T F U not A
T T F U T T T T T F
F F F F F T F U F T
U U F U U T U U U U

PO(a,b) = U and DC(a,b) = F

always (PO(a,b) eventually [0,2] DC(a,b))
 (U  eventually [0,2] DC(a,b))



QSR

Progression

Sy
nc

hr
on

iz
at

io
n

Stream of
spatial relations

Static
spatial relations

Stream of
spatial relations

Other
streams

Stream
of states

Spatio-temporal
formulas

Spatio-temporal
formulas



Progression of Metric Spatio-Temporal Logic

F

F1

state’1
PO(a,b)
 TPP(a,b)
 NTPP(a,b)

state’2
DC(a,b)
 EC(a,b)

state’3
DC(a,b)

progr.

F2

progr.

F3

progr.

always (PO(a,b) eventually [0,2] DC(a,b))

always (PO(a,b) eventually [0,2] DC(a,b))
 (U  eventually [0,2] DC(a,b))

always (PO(a,b) eventually [0,2] DC(a,b))
 (U  eventually [0,1] DC(a,b))

always (PO(a,b) eventually [0,2] DC(a,b))

state1
NTPP(c,b) QSR

QSR

QSRstate3
NTPP(b,d)

state2
TPP(b,d)

EC(a,c)  EC(a,d)

PO(a,b) = U
DC(a,b) = F

PO(a,b) = F
DC(a,b) = U

PO(a,b) = F
DC(a,b) = T

EC(a,c)
 EC(a,d)

EC(a,c)
 EC(a,d)



Known: EC(a,c)  NTPP(c,b)

a
b

c

Deduced: PO(a,b)  TPP(a,b)
 NTPP(a,b)

b
a c

b
a c

DC(urban_area1, restricted_area1)
DC(urban_area1, restricted_area2)
DC(urban_area1, urban_area2)
DC(urban_area1, road1)
DC(urban_area1, road2)
EC(road1, restricted_area1)
EC(road1, restricted_area2)
PO(road1, urban_area2)
DC(road1, road2)
PO(uav1, road2)
PO(uav1, urban_area2) …



Known: EC(a,c)  NTPP(c,b)

a
b

c

Deduced: PO(a,b)  TPP(a,b)
 NTPP(a,b)

b
a c

b
a c

DC(urban_area1, restricted_area1)
DC(urban_area1, restricted_area2)
DC(urban_area1, urban_area2)
DC(urban_area1, road1)
DC(urban_area1, road2)
EC(road1, restricted_area1)
EC(road1, restricted_area2)
PO(road1, urban_area2)
DC(road1, road2)
PO(uav1, road2)
PO(uav1, urban_area2) …

static
dynam
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Spatio-Temporal Stream Reasoning in MSTL

• We have recently extended MSTL to also consider regions as spatial
objects.

• MSTL allows the next operator  to be used over regions to denote the
region at the next time-point.

• Examples: “It is always the case that if a car is speeding and tails another
car, they will eventually collide”



Intertemporal Spatial Reasoning
• Intertemporal spatial relations are problematic because they in many

cases cannot be observed:



Intertemporal Spatial Reasoning



Intertemporal Spatial Reasoning
• Extended spatial relation matrices are used for describing intertemporal

spatial relations:



Landmarks



Landmarks



Landmarks



The Choice of Landmark Matters!



Progression of MSTL Formulas
• Progression does not look into the future...

• Rewriting rules for dealing with intertemporal relations:

s1s2s3 s0 Progress T/F



Summary
• We have presented the Metric Spatio-Temporal Logic MSTL which

combines MTL with RCC-8.

• MSTL formulas can be incrementally evaluated over streams of states
through progression.

• MSTL supports spatial reasoning both within and between time-points.

• MSTL supports incomplete information through a three-valued logic
approach.

• The logic-based approach is very suitable for making safe autonomous
systems through for example execution monitoring with formal
guarantees.



Stream Reasoning for Safe Autonomous Systems



Application: Emergency Services Assistance

A devastating earthquake of high magnitude occurred on December, 26,
2004 off the west coast of Sumatra, Indonesia. The resulting Tsunami killed
thousands of people in southern India, Sri Lanka, Indonesia, Thailand, etc.

A devastating earthquake of high magnitude occurred on December, 26,
2004 off the west coast of Sumatra, Indonesia. The resulting Tsunami killed
thousands of people in southern India, Sri Lanka, Indonesia, Thailand, etc.



Search and Relief
Searching for injured people and delivering food, medicine and other
supplies are highly prioritized activities in disaster relief.
Searching for injured people and delivering food, medicine and other
supplies are highly prioritized activities in disaster relief.



Finding Injured People



Finding Injured People - Mission

Assumptions
• Optimal flight altitude: 35- 50 m
• Average flight velocity: 5m/s
• Human body size: 20 - 50 pixels

Context
• 11 live bodies / 2 dummies
• 2 UAVs for scanning
• 290 x 185 m







Finding Injured People - Result

Thermal and  color images

The algorithm runs in
25 frames / second

Saliency Map



Deliver Food and Supplies



Search and Rescue Mission



Execution Monitoring

always (eventually [0, t] (always [0,t’] speed(uav) < T))
It should always be the case that within t time units from now, an interval of
length t’  should start where the UAV’s speed stays below threshold T.

EXEC until [0, 5000] (¬EXEC ˄ al tude(uav) > 7)
The command should take less than 5 seconds to execute and when the execution
is finished the altitude of the UAV should be above 7 meters.

If things can go wrong they probably will!

This implies the need for continual monitoring of
an autonomous system and its environment in a
principled, contextual, task specific manner which
can be specified by the system itself!



Planning, Plan Execution & Execution Monitoring
[Kvarnström, Heintz and Doherty ICAPS 2008; Kvarnström, Heintz and Doherty JAAMAS 2009]

Execution
Monitor

TALplannerCommand
Executor

DyKnow

Motion
Planner

UAV

statesstate
policy

command
sequencestatus

run
TPstatus

FCL
commands

status

status

trajectory
request

trajectory

mission request

Task Proc.
Executor

Plan
Executor





DyKnow Application:
[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]

• Problem: High capability of distinguishing faults requires large number of tests and thus high
on-line computational demands.

• FlexDx
– Recognizes that not all test are needed at all times, e.g. no-fault case. Runs only tests needed

at the moment.

– The same capability of distinguishing faults as using all tests.
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• FlexDx
– Recognizes that not all test are needed at all times, e.g. no-fault case. Runs only tests needed

at the moment.

– The same capability of distinguishing faults as using all tests.

DyKnow Application:
[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]



Residual TestResidual TestResidualGenerator ResidualMonitor

DiagnosesTestSet

ConflictSetMediator

System
system observations residuals

last fault free time

test set

diagnoses
initial diagnosis

conflict set

CreateTests

• Problem: High capability of distinguishing faults requires large number of tests and thus high
on-line computational demands.

• FlexDx
– Recognizes that not all test are needed at all times, e.g. no-fault case. Runs only tests needed

at the moment.

– The same capability of distinguishing faults as using all tests.

DyKnow Application:
[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]



Fault occurs at time t=100, plot t ϵ [90, 110].

DyKnow Application:
[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]



Fault occurs at time t=100, plot t ϵ [90, 110].

DyKnow Application:
[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]



Grounding Logic-Based Stream Reasoning



Grounding Stream Reasoning in Robotic Systems

• A temporal logical formula contains a number of symbols representing
variables whose values over time must be collected and synchronized in
order to determine the truth value of the formula.

Given a functional system, such as a robot, producing streams the
grounding problem for logic-based stream reasoning is to connect
symbols in formulas to streams in the functional system so that the
symbols get their intended meaning.

forall x in UAV always(Speed[x] < 60)



Syntactic and Semantic Grounding

• Syntactic grounding: Use a direct mapping between symbols and
streams, for example by using stream names in the formulas. A formula
such as

forall x in UAV always(Speed [x] < 60)
would then have to be written something like

always((/uav1/uavstate.spd < 60)  (/uav2/uavstate.spd < 60))

• Semantic grounding: Annotate streams with their semantic content and
reason about how to connect symbols to streams using semantic web
technologies. We call this reasoning for semantic matching. It finds
the relevant streams by matching the ontological concepts used in a
formula to the ontological concepts associated with the streams.



Semantically Grounded Stream Reasoning



DyKnow Ontology



Semantically Grounded Stream Reasoning Example



Semantically Grounded Stream Reasoning Example



Semantically Grounded Stream Reasoning Example



Semantic Matching with Multiple Robots



DyKnow Semantically Grounded Stream Reasoning in ROS



Future Work



Probabilistic Stream Reasoning
• Dicult to integrate logical and probabilistic reasoning. Robotics systems

commonly do both separately in isolation.

• We are working on a formal interface between existing logical reasoning
and existing probabilistic reasoning methods:

– A formal framework with an explicit separation.

– A selection of important temporal and probabilistic concepts from
probability theory can be referred to at the logical level.

– Both retain strengths and computational complexities.



Probabilistic Stream Reasoning

• Each state contains facts at a single time point

– Truth values of predicates

– Observed numerical values of terms

– Stochastic estimates of terms (Green)

– Stochastic predictions of terms (Red)



Probabilistic Stream Reasoning



Probabilistic Stream Reasoning
• MSTL is extended with stochastic terms and a special term operator:



Probabilistic Stream Reasoning
• This allows us to express statements like:

– Is my perception too uncertain?

– Is my prediction too uncertain?

– Does my prediction match my observation well enough?

– Is my perception degrading?

– Is my ability to predict degrading?



Probabilistic Stream Reasoning



Unsupervised Learning of Activities



Unsupervised Learning of Activities



Activity Learning Example



 Activity transition graph State space graph

Unsupervised Learning of Activities



Research Directions

Distributed sensing and acting devices
Internet of Things

HumansInternet

Knowledge

Semantics

Machine learning

Qualitative and quantitative
multi-level information

Manage incompleteness,
uncertainty and inconsistency



Summary and Conclusions



Summary – Stream Reasoning
• Streams are potentially infinite sequences of elements.

• Stream reasoning is incremental reasoning over streams.

• Three different approaches:
– Window-based, taking streams and turning them into relations over which

standard reasoning/processing can be made. DSMS and RSP are both window-
based.

– Event-based, define and detect complex events in streams of events. Recognizing
complex events ought to be a form of reasoning, it infers implicit information,
which is a reasonable definition of reasoning.

– Logic-based, evaluate temporal logical formulas over infinite streams.

• Discussion: Can they be unified to a single approach?



Summary – Spatio-Temporal Stream Reasoning
• The Metric Spatio-Temporal Logic MSTL combines MTL with RCC-8.

• MSTL formulas can be incrementally evaluated over streams of states
through progression.

• MSTL supports spatial reasoning both within and between time-points.

• MSTL supports incomplete information through a three-valued logic
approach.

• The logic-based approach is very suitable for making safe autonomous
systems through for example execution monitoring with formal
guarantees.



Conclusions
• High level incremental reasoning over streaming

information is essential to autonomous systems for
example to provide formal safety guarantees.

• DyKnow is a practical framework for grounded
stream reasoning including support for spatio-
temporal reasoning.

• The reasoning is semantically grounded through a
common ontology and a specification of the
semantic content of streams relative to the ontology.

• Through DyKnow, ROS is extended with a powerful
stream reasoning capability available to a wide range
of robotic systems.

Temporal logics

GIS
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