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Outline

* Introduction to Autonomous Systems as an application area for stream reasoning
o It’s a Streaming World! Other Stream Reasoning Applications

» Related work: Data Stream Management Systems, Complex Event Processing and
Stream Reasoning for the Semantic Web

» Spatio-Temporal Logic-Based Stream Reasoning using Metric Temporal Logic through
Progression over complete information

e Spatio-Temporal Logic-Based Stream Reasoning with Incomplete Information

« Execution Monitoring through Stream Reasoning for Safe Autonomous Systems
* Grounding Logic-Based Stream Reasoning for Autonomous Systems

» Future Work: Probabilistic and Anticipatory Stream Reasoning

 Summary and Conclusions
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Autonomous Systems and Stream Reasoning

LINKOPINGS
II." UNIVERSITET



Autonomous Systems
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Autonomous Systems
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Collaborative Unmanned Aircraft Systems
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A principled approach to building collaborative
intelligent autonomous systems for complex missions.
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Vision

A principled approach to building collaborative
intelligent autonomous systems for complex missions.

Challenges:
Support humans and robots including legacy systems
Support adjustable autonomy and mixed-initiative
Interaction
Manage tasks and information on many abstraction levels Z==

Coordinating control, reaction and deliberation
Coordination of systems, resources and platforms
Incompl ete information at design time and run time

| nspection, monitoring, diagnosis and recovery on many

. -
abstraction levels
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Autonomous Systems at AlICS, Linkoping University

Micro UAVs
weight <500 g,
diameter <50 cm

Yamaha RMAX
weight 95 kg,
length 3.6 m

LinkQuad weight ~1 kg, diameter ~70cm
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RMAX System Overview

= 3xPC104 computers

= 802.11 wireless bridge

= GPS, barometric altimeter

= Color & thermal cameras (PTU)
= Video transmitter & recorder

= Laser range finder

21 HP two-stroke engine
3.6 meters length
Maximum takeoff weight — 95 kg

Radio controlled (backup pilot)

Attitude sensor (YAS) & stabilization
system (YACS)
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SELECTED AUTONOMOUS FUNCTIONALITIES

VERSITY, SWEDEN

JEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
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LinkQuad

Battery module Twist and lock sensor modules

Dimensions

« Width: 68.5 cm

« Width (w/o props): 45.8 cm
» Top diameter: 68.5 cm

» Height: 20 cm

* Propeller size: 10” (25.4 cm)

Weight and Payload

« Empty weight: 950 g

» Payload capacity: 250 g

» Max take-off weight: 1250 g

Power System

* 4x brushless motors

» Custom designed ESC

 Battery modules (2.7Ah or 5.4Ah)

e Flight duration: up to 40 min.
depending on the configuration
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Stream Reasoning

 Autonomous systems produce and process
sequences of values incrementally created at
run-time.

 These sequences are natural
to model as streams.

* Stream reasoning is
incremental reasoning over streams.

* Stream reasoning approximates continuous
reasoning with minimal latency necessary
in order to react in a timely manner to always

((not onroad(car1) V vel(car1) < sm/s) —

changes in the environment. eventually [0, 305]

(always [0, 10s] onroad(car1)
A vel(cara) > gm/s))

Temporal logics
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HDRC3: A Distributed Hybrid Deliberative/Reactive Architecture for Autonomous Systems

A

° Deliberative

Transitio
=

Time requirements / Knowledge

Control Tnsiion Reactive
e

High-level

Low-level

DyKnow

Platform Server

High-level

Hierarchical Concurrent State Machines

Stream-based Processing

Low-level

Control Kernel

Visual Landing B8 m

B Traj Following
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P. Doherty, J. Kvarnstrom, M. Wzorek, P. Rudol, F. Heintz and G. Conte. 2014.
HDRC3 - A Distributed Hybrid Deliberative/Reactive Architecture for Unmanned Aircraft Systems.
In K. Valavanis, G. Vachtsevanos, editors, Handbook of Unmanned Aerial Vehicles, pages 849-952.




My Contributions to HDRC3

Delegation
Delegate(A, B, task, constraints)

Adjustable Mixed-Initiative
Autonomy Interaction
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eventually [o, 305] o
(always [o, 105] onroad(cara) Visual Landing Traj Following
A vel(car1) > gm/s))
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A Traffic Monitoring Scenario

from many different sources.

Select the relevant information for
the current task.

Derive higher-level knowledge
about the environment and the UAV.

Correctly interpret what is going on.
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DyKnow

DyKnow is a stream-based knowledge
processing middleware framework that
provides

— a formal conceptual framework for
integrating different sensing and
reasoning approaches in a coherent
processing framework,

— stream reasoning
functionalities, and

— a distributed implementation
infrastructure.

Color cam

[ Qualitative Spatial ]

Reasoning

[ Object Identification
_ and Classification

|

Thermal cam

p
Image
Processing

.

IMU

GPS

P
UAV State
Estimation

T

Pan-tilt unit
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DyKnow: Requirements

C . C L Reasonin
Integrating information from distributed sources. o

Processing at many different levels of abstraction. Qualitative models

L oL . Knowledge
Quantitative and qualitative processing. % fusion
Bottom?up data processing and top-down model-based Mixed quantitative
processing. and qualitative models
Managing uncertainty on different levels of % Information
abstraction. fusion
Flexible configuration and reconfiguration. Quantitative models
Declarative specification of the information being % % Sensor

. . : : fusion
generated and the available information processing
functionalities. Sensing
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DyKnow: Sources and Computational Units
4

\ Color images
Source Colorcamera —— J

3! _
e2 Thermal images
o g
[ Stream I 4’ Thermal camera ——

—Jq GPS coordinates

Generator E\) GPS —
re
J

\

( . \ Vision percepts
stream | COMputational Unit

Color images

stream Thermal :mag_e? Image
= Stream ==>| Processing
stream Generator
——>\ / Camera states
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DyKnow: Policy

from O to 120s sample every 100ms max delay 200ms

start time sample period end time

| | | | | | | | | | | » valid time
\\ N\\ \\ \\\ \ . available time
delay fluent stream

FLUENT_STREAM_POLICY := FLUENT_STREAM_CONSTRAINT*
FLUENT_STREAM_CONSTRAINT :=
VALUE_APPROXIMATION_CONSTRAINT
| CHANGE_CONSTRAINT
| DELAY_CONSTRAINT
| DURATION_CONSTRAINT
| ORDER_CONSTRAINT

LINKOPINGS
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DyKnow: Select

[ S2=select A,
D as Fo%C%
from S1
\ where B=2

W

N

.

-t
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DyKnow: Merge
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DyKnow: Sync
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DyKnow: Logic-based Stream Reasoning

power
usage

always Yuav.((power_usage(uav) > M) -
((power_usage(uav) < fx M)
until[0, T]
(always[0, T'] power_usage(uav) £ M)))

The semantics of these formulas is defined over infinite state sequences.
Progression is one technique to check whether the current prefix is
sufficient to determine the truth value of a formula.

T/F
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DyKnow: Generating State Streams
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DyKnow: Chronicle Recognition

chronicle overtake[?carl, ?car2] {
event(behind[?carl, ?car2]:(F, T), t1)
event(beside[?carl, ?car2]:(F, T), t2)
event(in_front_of[?carl, ?car2]:(F, T), t3)
tl<t2
t2 <13
t3-t1in [0, 30s]
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Reasoning

Qualitative models

c Knowledge
fusion

Mixed quantitative
and qualitative models

‘ Information jassr IS e

Quantitative models

Sense-Reasoning Gap
A

c = SeNsor | The sense-reasoning gap is the gap between the
fusion noisy numerical data directly generated by sensors

and the crisp symbolic information that reasoning

functionalities normally assume to be available.

\ Sensing
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DyKnow: Anchoring

The objective of the anchoring process is to connect symbols
to sensor data originating in the physical world
so that the symbols represent the objects in the world.

Symbols
card

Sensors

Bckgrund knowlee

PH\'/"i'c'éfl" objects
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DyKnow: Bridging the Sense-Reasoning Gap

time = 37270
center_x = 1438
center_y =336
size m=2
color =red

~

WorldObject

time = 37270
road_seg =183
pos_on_seg = 23
next_seg =143
lane = right

— |

On-RoadObject

Fusion
(compunit)

o~

time = 37270
center_px_x = 20
center_px_y = 49
size_px = 29
rgb = [188,29,200]

VisualObject

{Motortytlae“ Truck I

Carobiect) | ohieet Object
1 1 ]

time = 37270
max_acc = 2
type = volvo

time = 37270
max_acc = 1.5
type = scania

CarObject

e maae e ettt
Radar Visual Laser Range Thermal
Object Object Finder Object Object |

=
=
s}
=

TruckObject

raw sensor data

time = 37270
center_px_Xx =25
center_px_y = 45
size_px = 24
heat = 137

ThermalObject
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DyKnow Application: Traffic Monitoring

N

Quialitative spatial relations
(close, behind, same_road, ...)
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Recognition
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Reasoning
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Multi UAV Traffic Monitoring

B
Reu'angeby:j 49

Use case: Continuous streaming and merging of }
information to detect traffic violations.

‘.'
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Finding and Sharing Information

& )
/Platform 1\ Platform 2

é{ c '?‘?"f 1] \[ = J ﬁ_f
o

4

\S

DyKnow
Federation (

Platform 4

Flatform 3

 Discover and broker information among agents.
» Refer to pieces of information among agents.

* Negotiate to make agents generate desired information.

« Share information among agents. '
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DyKnow Federations

DyKnow
federation

Agent level Gateway

Platform agent
specific level

S

FIPA ACL
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using speech acts
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Sharing and Fusing Information
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It’s a Streaming World!
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It’s a Streaming World! 1/2

= QOil operations

= Traffic

= Financial

——————————————————————————————— [Sin(nlnlalu(a]=[=|=[sI=]a]=]=[a[=[=[=] 1 J=|=]a]=[=[=[=]=]=]=]=]=]
e
L
= Generate data streams! COEOEOOE0000000000NEO00RO00000000
SIR[S][s[w[s]u][a] [s[s[s[u[s]sfafa] | [s[s| Je| [s[a]s[=[s]
luin(slsls] |s([s| {s[s[s|a|afafal | ] [s| |s[ {s[s(s[s] |s]s]
0O000OEOEO000000C0ONEEEOECOOO0OC0mO0
IO000000000000E0ONEEO000000000MO0
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It’s a Streaming World! 2/2

= What is the expected time to failtiré
turbine's barring starts to vibrat
detected in the last 10 minut

= Is public transportation = .
where the people are? |

= Who are the best available agents to
route all these unexpected contacts

= Who is driving the discussion
about the top 10 emerging topics ?

E. Della Valle, S. Ceri, F. van Harmelen, D. Fensel It's a Streaming World! Reasoning
upon Rapidly Changing Information. IEEE Intelligent Systems 24(6): 83-89 (2009)

OB http://emanueledellavalle.org/Teaching/srt2015 htmi
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Requirements on Streaming Systems 1/8

A system able to answer those queries must be ableto ™

. handle massive datasets

. Kplcal oil production platform is €
with about 400.000 sensors

e Telecom data is the most siverds
source in urban are, in Milano thefe ase..
1.8 million mobile usersm‘, e

* A global contact centre of a Telecom =
operator counts 500 millions of che

e Facebook alone has 1.1 billion
of active users

[@‘f)’ http://lemanueledellavalle.org/Teaching/srt2015.html
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Requirements on Streaming Systems 2/8

B —

A system able to answer those queries must be able to

= process data streams on the fly

e The sensors on typical oil product
platform generates 10,000 obse
per minute with peaks of 100

e The mobile users in M‘il'a"’.eratgs Al
20,000 call/sms/data connectionss == = S
per minute with peaks of jo ¥

— ¥

. Aé;lobal contact centre receives
10,000 contacts per minute with
peaks of 30,000 c/m

e Facebook, as of May 2013, observes
3 millions "I like" per minute

r@“l. http://lemanueledellavalle.org/Teaching/srt2015.html
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Requirements on Streaming Systems 3/8

A system able to answer those queries must be ableto ™

= cope with heterogeneous dataset

e The sensors on typical oil production
have been deployed over 10 yi
by 10s of different produce

e Tens of data sources aré-iermally

needed to make sense of an.urbam ==
phenomena A 2 - ¥

of offices owned by different subsidi_ /
companies engaged yearly

e Each social network has its own
data model, APIs, ..
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Requirements on Streaming Systems 4/8

A system able to answer those queries must be able to

= cope with incomplete data
e 10s of sensors and networking links
broke down daily

e Coverage is incomplete &=  _
L i ..
o P

—

e Only standard cases are covered by
fully machine processable data records:
100s of contacts per minute are
manage ad-hoc

o Conversations happen outside the
social networks, too!

- http:/lemanueledellavalle.org/Teaching/srt2015.html|

©.
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Requirements on Streaming Systems 5/8

A system able to answer those queries must be able to

= cope with noisy data
e Sensor out-of-operating range

¢ Faulty sensors

e Irony, sarcasm, ...

@ﬂ’_‘ http://femanueledellavalle.org/Teaching/srt2015.html
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Requirements on Streaming Systems 6/8

A system able to answer those queries must be able to

= provide reactive answers

e detection of dangerous situations:
must occur within minutes

e recommendations to citizéAgHhust . . -
be performed in few seconds & ==

J W&'

'.‘ .*“. - . - -

-

e routing a contact through each step of
the decision tree must take less than
second ’

e Search autocompleting may_need
to be updated every few minutes

(@O nttp:/lemanueledellavalle.org/Teaching/srt2015.htmi
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Requirements on Streaming Systems 7/8

T gt

A system able to answer those queries must be able to

= support fine-grained information access
e Identify a turbine among thousands >

Locate a bus among tham’_e,. > .

e Contact an agent among thousands

» Identify an opinion maker among
thousands of influencers for a topic

http:/lemanueledellavalle.org/Teaching/srt2015.html
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Requirements on Streaming Systems 8/8

B

A system able to answer those queries must be able to

= integrate complex domain models of
e operational and control process

e various city aspects SR

.
!ﬁﬂ ’ . I“'

___:jﬂigl .

¥

-

« contact management, contract types,
agent skills, contactor profiles, ...

e topics, user profiles, ...

@__. 0] http://lemanueledellavalle.org/Teaching/srt2015.html
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It's estimated that

2.5 QUINTILLION BYTES
[ 2.3 TRILLION GIGABYTES |
of data are created each day

a
be, A
o 6 BILLION ":‘f}t‘ g
s ; -& s

phones S
2 J‘

40 ZETTABYTES

[ 43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300 1"‘)
times from 2005 200 -

Eiﬂuaﬁ% -

The
FOURV’s

Maost companies in the
U.S. have at least

100 TERABYTES

| 100,000 GIGABYTES |
of data stored

WORLD POPULATION: 7 BILLION
bre Ird

Velocity, Variety and Veracity

Modern cars have close to
100 SENSORS

| that monitor items such as
fuel level and tire pressure

The New York Stock Exchange
captures

1TB OF TRADE
INFORMATION

during each trading session

Velocity

ANALYSIS OF
STREAMING DATA

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
cONNECTIONS Y Y

YYYorYYYY
s AR

As of 2011, the global size of
data in healthcare was

By 2014, it's anticipated
there will be

estimated to be 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[ 161 BILLION GIGABYTES | HEALTH MONITORS

4 BILLION+
HOURS OF VIDED

are watched on
YouTube each menth

fou
B¢
o Pl

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

30 BILLION
PIECES OF CONTENT

are shared on Facebook
every menth

1 IN 3 BUSINESS
LEADERS

don't trust the information
they use to make decisions

Poor data quality costs the US
econemy around

$3.1 TRILLION A YEAR

Veracity

UNCERTAINTY
OF DATA

in one survey were unsure of
how much of their data was
inaccurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, |IBM, MEPTEC, QAS
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Stream Reasoning Requirements Summary

A system able to answer those queries must be able to ™
* handle massive datasets X
= process data streams on the fly X
= cope with heterogeneous dataset X
= cope with incomplete data X | X
= cope with noisy data X
= provide reactive answers
= support fine-grained information access | x| X
* integrate complex domain models X

In Big Data terms - § E g g

2222
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Stream Reasoning Requires a Change of Paradigms!

 From persistent data
— to be stored and queried on demand
— a.k.a. one time semantics
 To transient data
— to be consumed on the fly by continuous queries

— a.k.a. continuous semantics

LINKOPINGS
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Continuous Semantics

window

Dynamic
System

Ooooooodm
OO0O0O0O0OO0OmO

streams of answer

Registered
Continuous

Query

input streams
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Approaches to Stream Reasoning
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Processing and Reasoning with Streams

e Traditional DBMSs

— require data to be (persistently) stored and indexed before it could be processed
and

— process data only when explicitly asked by the users, that is, asynchronously with
respect to its arrival.

» Stream Processing
— Streams are usually unbounded.
— No assumption can be made on data arrival order.

— Size and time constraints make it difficult to store and process data stream
elements after their arrival; one-time processing is the typical mechanism used to
deal with streams.

LINKOPINGS
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Processing and Reasoning with Streams

* Two competing models
— the data stream processing model [Babcock et al. 2002] and
— the complex event processing model [ Luckham 2001].

 DSMSs resemble DBMSs, especially in the way they process incoming data through a
sequence of transformations based on common SQL operators, like selections,
aggregates, joins, and all the operators defined in general by relational algebra.

* The complex event processing model views flowing information items as notifications
of events happening in the external world, which have to be filtered and combined to
understand what is happening in terms of higher-level events.

— Accordingly, the focus of this model is on detecting occurrences of particular
patterns of (low-level) events that represent the higher-level events whose
occurrence has to be notified to the interested parties.

LINKOPINGS
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Stream Reasoning — Approaches

e Data stream management systems

— Create new streams according to the following specification
* Complex event processing

— Detect complex events based on specifications
e Stream reasoning in the semantic web

— Continuous SPARQL queries over streaming RDF triples
 Temporal logic-based stream reasoning

— Run-time verification / Path checking

— Verifying that a stream satisfies a temporal logical formula
e Data flow systems
* Functional reactive programming

LINKOPINGS
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Stream Reasoning — Approaches

 Window-based, taking streams and turning them into relations over
which standard reasoning/processing can be made. DSMS and RSP are

both window-based.

 Event-based, define and detect complex events in streams of events.
Recognizing complex events ought to be a form of reasoning, it infers
implicit information, which is a reasonable definition of reasoning.

 Logic-based, evaluate temporal logical formulas over infinite streams.
e A Unified Model?

— It seems that window-based and logic-based can be combined through window-
based states.

— It seems that window-based and event-based can be combined, see e.g. EP-
SPARQL.
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Representing Streams

» A stream is a potentially infinite sequence of elements.

Timed vs Untimed

— A potentially infinite sequence of elements <e1, €2, e3, ...>, implicit total order, no
explicit time

— A potentially infinite sequence of time-stamped elements <<t1, e1>, ...> or <el, e2,
e3, ...> where e1 is a tuple containing at least a time-stamp and the sequence is
ordered based on the time-stamp. If not, then can represent that tuples arrive in the
“wrong” order.

Typed vs Untyped

— The elements could have a uniform type or have different types. In the first case,
the streams are typed.

Synchronous vs Asynchronous

Single stream vs Multiple streams
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II." UNIVERSITET



Time

e Discrete time / Dense time
* Time-points / Time-intervals

* Relative time / Explicit time / Absolute time
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Processing Time and Event Time

Event Time

LINKOPINGS
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Windows

* Most stream based systems work on windows. They are basically sub-
streams (and can be interpreted as locally closed worlds).

Key1l KeyZ key3 Key1 KeyZ Key3 Key1l Key2 Key3

Sliding Sessions
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Stream Reasoning Through Windows

Sliding wmdows
Relational algerbra

stream to-relation
relatlon to-relation

@.

relation-to-stream £C.
infinite I<S,T>I | Sq I

unbounded | I ! <52> I finite
sequence bag
N <87
Stream Relation R(t)
Mapping: T = R

*Stream operators
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Logic-Based Approaches

e Linear time logics: LTL < MTL < TPTL

* Branching time logics: CTL < CTL*

* Propositional vs Relational/First-order

* Discrete vs Dense time (point-wise and continuous)
— Model checking: Decidable vs Undecidable

« Finite vs Infinite words (a stream is a finite prefix of an infinite word)
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Model Checking vs Stream Reasoning

« Duality between specifying a system and Specifying the properties of the
system

* Model checking: Timed automata model of a system + Formula ->
True/False

« Path checking: Trace of the system + Formula -> True/False
e Stream reasoning: Stream + Formula -> True/False
e Stream reasoning as incremental formula evaluation

— Compile to automata

— Progression / Rewriting / Partial evaluation
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Exten5|ons / Research Challenges

Asynchronous state information

* Implicit state information

— Closed world assumption
* Atemporal static background information
* Incomplete state information

— Missing state information

— Disjunctive state information
e Uncertain state information (non-determinism)
» Incorrect state information
» Predicted / Anticipatory state information
e Time-varying domains/vocabulary

* Non-monotonicity
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Spatio-Temporal Logic-Based Stream Reasoning

LINKOPINGS
II.“ UNIVERSITET



Metric Spatio-Temporal Logic (MSTL)

e Metric Spatio-Temporal Logic (MSTL) is a modal logic based on MTL and
RCC-8 and uses the temporal operators

— Funtil ;|G

— always ; F / []; F (equivalent to F until  false)

— eventually ; F/ O F (equivalent to true until ; F), and
— next / O.

« Example: “It is always the case that if it rains, it will stop raining within
60 minutes”

— always ( rain - eventually [0, 60min] (—rain))
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Stream Reasoning using Metric Temporal Logic

power
usage

always Yuav.((power_usage(uav) > M) -
((power_usage(uav) < fx M)
until[0, T]
(always[0, T'] power_usage(uav) £ M)))

T T

time

The semantics of these formulas is defined over infinite state sequences.
Progression is one technique to check whether the current prefix is
sufficient to determine the truth value of a formula.

T/F
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Metric Temporal Logic

Definition 3 (Truth). The statement that a spatio-temporal
formula ¢ holds in M = (I, <. D,U, R, V) at time-point
L € T is defined recursively:
M, = [(o)iff [(0o) € V() for any property [(0)
Mt =EVx € s[f(x)]iff Vo € v(s) : M,t = f(0)
Mt |=3dx e s[f(x)]iff o € v(s) : M,t = f(0)
Mt E—oilf M, t = o
MtE¢VYIt M tEdor M, t EW
Mt = Dl i@ ifE ¥ £ 8o MG 0
.e/\/ljt ‘: O[tl;m]@iﬂ‘ Htl < t, el t;g : M,?f, }: Q)
Mt E Ooiff M, suc(t) = ¢
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Progression of Metric Temporal Logic

Definition 4 (Progression of monitor formulas) The following algorithm is used for progres-

sion

of monitor formulas. Special cases for [J and ¢ can also be introduced for performance.

procedure Progress(¢, t.n,7)
ifg=f@)=mv
if 7 = Trans(|t] ¢) return T else return |
if $ = —¢, return —Progress(¢;, 7,n,7)
if = ¢ @ ¢> return Progress(¢, t,n,7) ® Progress(¢,, t,n.7)
if » = Vx.¢ // where x belongs to the finite domain X
return /\ ._y Progress(¢[x +> ¢],7,n,Z)
if = dx.¢ // where x belongs to the finite domain X
return \/ ._y Progress(¢[x +> cl, 7, n,Z)
if ¢ contains no tense operator
if 7 |= Trans(¢) return T else return |
if‘;b = ¢ U[r| 02| Lo}
if 0 < O return L
elsif O € [11, 72] return Progress(¢,, 7, n. ) VvV

(PI’OQI‘QSS((ﬁ[ s Ty Ny I) A (‘PI UTI] —n,To—n| ¢2))
else return Progress(¢, 7,7, Z) A (¢1 Uiry—n, 1y —n) ¢2)
LINKOPINGS
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Progression of Metric Temporal Logic

F always p — eventually [0,3] q

state, :
ro

p’ —|q |$
F. (always p — eventually [0,3] q)
@1 A (eventually [0,2] q)

state2
Sa o
%
F., (always p — eventually [0,3] q)
A (eventually [0,1] g)

4
state,
—p, g E>

= always p — eventually [0,3] q
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Stream Reasoning using Metric Temporal Logic

always (-p — eventually [0, 1000] always [0, 1000] p)

160 T T T T
pfalse 100ms then true 1000mMs  ——+—
p false 1000ms then true 1000mMs ——e—
140+ p false 100ms then true 4000mMs —%— 7
5 p always true —e—
s 120
17
T W
w2100
9 =}
5 @
2 » 80t
a =
e E
L w 60 .
EE Pentium-M
%} an L 1.4 GHz
% 1 GB RAM

20 r

0 500 1000 1500 2000 2500 3000 3500

number of formulas
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€ ncroreco

Qualitative Spatial Reasoning oo

e Qualitative spatial reasoning (QSR) deals
with regions and relations between those
regions called spatial relations.

* (Qualitative spatial representation provides
an abstract representation that handles
imprecision.

e Natural to humans in term of
communication.
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Qualitative Spatial Reasoning with RCC-8

 The Region Connection Calculus RCC-8 uses eight JEPD relations:

(x)(r ) (x] ) \ zv \ &)

ADCY

XECY X TPPY X NTPPY

x()r ) Yy ) Ty LD

XPOY XEQY ATPPiY XNIPRiY
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Spatio-Temporal Stream Reasoning in DyKnow
[Heintz and de Leng ECAI 2014]

» The temporal reasoning is extended with spatial reasoning using for example RCC-8. RCC-8
defines 8 primitive relations and a composition table for qualitative constraint reasoning based
on path consistency.

» Allows expressing conditions such as:
— VYuav, restricted_area always DC(uav, restricted_area)

— VYuav, urban_area always (PO(uav, urban_area) — eventually [0, 2min] altitude(uav) > 100m)
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Spatio-Temporal Stream Reasoning in DyKnow
[Heintz and de Leng ECAI 2014]

» The temporal reasoning is extended with spatial reasoning using for example RCC-8. RCC-8
defines 8 primitive relations and a composition table for qualitative constraint reasoning based
on path consistency.

» Allows expressing conditions such as:
— VYuav, restricted_area always DC(uav, restricted_area)

— VYuav, urban_area always (PO(uav, urban_area) — eventually [0, 2min] altitude(uav) > 100m)

Sl DC(urban_areal, restricted_areal)
DC(urban_areal, restricted_area2)
{DC(urban_areal, urban_area2)
DC(urban_areal, roadl)
DC(urban_areal, road2)

P EC(road1l, restricted_areal)
EC(roadl, restricted_area?)
PO(roadl, urban_area?2)
DC(roadl, road?2)

PO(uavl, road2)

PO(uavl, urban_area?) ...
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Composition Tab

e Region Connection Calculus RCC8

DC EC PO TPP NTPP TPPi NTPPi | EQ
| - [ lE R [ [ o | o [
EC [TppiNTPRi TPPTPPIEG | TPENTPP | WiPp | |POTPPNTPP| DCEC | DC | EC
PO |ppiNTPR| TPRNTRRL | © | POTPRNTPR| POTPRNTRP | g (o frppiirop| PO
PP | DC DC EC ?g}fﬁf';% TPPNTPP NTPP ngfglg,ﬁgé 'PPCF;EP?'I"E’% PP
NTPP| DC DC ?E%T‘E% NTPP NTPP PFS'PEIST'ES' «  |NTPP
TPPi TDP%ENCT’E% o potprinTPRi| PO TER PP | po TPPNTPP | TRRINTPPI | NTPPI | TPPI
NTPPi EPCF;EST’E% PO TPPI NTPPI[PO TPPi NTPPI[PO TPPi NTPPi fP%E?é‘ng% NTPPi | NTPPi |NTPPI
EQ | DC EC PO PP NTPP PRI NTPPI | EQ
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Spatio-Temporal Stream Reasoning in DyKnow
[Heintz and de Leng ECAI 2014] TEP

| NTFP
Known: EC(a,c) A NTPP(c,b) ,‘“ b
-
Deduced: PO(a,b) v TPP(a,b) @ y @

v NTPP(a,b)

EQ
b Dc EC PO - n
Oy
(96 Qe 9 o
TPFI

X DC(urban_areal, restricted_areal)
§ DC(urban_areal, restricted_area2)
DC(urban_areal, urban_area?2)
DC(urban_areal, roadl)
DC(urban_areal, road2)

P EC(road1l, restricted_areal)
EC(roadl, restricted_area?)
PO(roadl, urban_area?2)
DC(roadl, road?2)

PO(uavl, road2)

PO(uavl, urban_area?) ...
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Spatio-Temporal Stream Reasoning in DyKnow
[Heintz and de Leng ECAI 2014]

* To handle incomplete spatial information we extend the first order logic to a three
valued strong Kleene logic.

AandB| T F U AorB | T F U not A
T T F U T T T T T F
F F F F F T F U F T
u u F U u T U U u u

o The truth value of a spatial predicate P(a,b) given a set S of disjunctive base relations
that hold between a and b is:

— P(a,b)istrueif P € Sand |S|=1
— P(a,b) is unknown if P € S and |S|>1
— P(a,b)isfalseif P ¢S

always (PO(a,b) — eventually [0,2] DC(a,b)) Known: EC(a,c) A NTPP(c,b)
Deduced: PO(a,b) v TPP(a,b)
always (PO(a,b) — eventually [0,2] DC(a,b)) v NTPP(a,b)

A (U v eventually [0,2] DC(a,b)) PO(a,b) = U and DC(a,b) = F
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Spatio-Temporal Stream Reasoning in DyKnow
[Heintz and de Leng ECAI 2014]

Static
spatial relations
Stream of @ Stream of Spatio-temporal
i i spatial relations formulas
spatial relations P _
jl> jl> S Stream ‘
= of states
N
Other > | & > Progression
<
streams Q
>
5
-

Spatio-temporal
formulas
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Progression of Metric Spatio-Temporal Logic
[Heintz and de Leng ECAI 2014]

EC(a,c) A EC(a,d) F always (PO(a,b) — eventually [0,2] DC(a,b))

state, state’; @ PO(a,b) = U
NTPP(c,b;> » PO(a,b) E> DC(a,b) =F
EClac) v TPP@b) y
A EC(a,d) v NTPP(a,b) F1 always (PO(a,b) — eventually [0,2] DC(a,b))
A (U v eventually [0,2] DC(a,b))

state state’ PO(a,b) = F
TPP(b,gl) |j\> - DC(a,é) DCéa,bg =U
EC(a,c) v EC(@b) always (PO(a,b) — eventually [0,2] DC(a,b))

A EC(a,d) 2 A (U v eventually [0,1] DC(a,b))

i U
tat tate’ _
e LR B 2as PO = F

= always (PO(a,b) — eventually [0,2] DC(a,b))
3
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Spatio-Temporal Stream Reasoning in DyKnow
[Heintz and de Leng ECAI 2014] —

| NTFP
Known: EC(a,c) A NTPP(c,b) ,‘“ b
-
Deduced: PO(a,b) v TPP(a,b) @ y @

v NTPP(a,b)

EQ
b D EC PO - &
Oy
(96 Qe 9 e
TPFI

S DC(urban_areal, restricted_areal)
M DC(urban_areal, restricted_area2)
DC(urban_areal, urban_area?2)
DC(urban_areal, roadl)
DC(urban_areal, road2)

P EC(road1l, restricted_areal)
EC(roadl, restricted_area?)
PO(roadl, urban_area?2)
DC(roadl, road?2)

PO(uavl, road2)

PO(uavl, urban_area?) ...
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Spatio-Temporal Stream Reasoning in DyKnow
[Heintz and de Leng ECAI 2014] -

Known: EC(a,c) A NTPP(c,b) , -.,

Deduced: PO(a,b) v TPP(a,b) @ - "
v NTPP(a,b) @H» H o

Y

EQ
b DC EC PO
(o) X
TPEL

e DC(urban_areal, restricted_areal)
M DC(urban_areal, restricted_area2)
{DC(urban_areal, urban_area2)
DC(urban_areal, roadl)
DC(urban_areal, road2)

pe EC(road1l, restricted_areal)
EC(roadl, restricted_area?)
PO(roadl, urban_area?2)
DC(roadl, road?2)

PO(uavl, road2)

PO(uavl, urban_area?) ...

J11e1S

dlweuAp
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Mean CPU time for A(v.E(deg),4.0)
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Mean CPU time for Ay(v.E(deg),4.0,0.25)

[P
T

1400 -

1200 b
1000 k="
400

500 |

s



Mean CPU time for Ajv.E(deqg).4.0) Mean CPU time for Aylv E{deg).4.0.0.25)

1600
1400
1200
1000

800

tims)
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GO0
400
200
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1{ms}

percentage increase
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Spatio-Temporal Stream Reasoning in MSTL
[de Leng and Heintz AAAI 2016]

* We have recently extended MSTL to also consider regions as spatial
objects.

 MSTL allows the next operator to be used over regions to denote the
region at the next time-point.

« Examples: “It is always the case that if a car is speeding and tails another
car, they will eventually collide”

Ve [Ve[er # o A Car(cr) A Car(c) —
(L(PO(Ocr, @) A Speeding(ci) — OPO(c1, 2)))]]
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Intertemporal Spatial Reasoning

[de Leng and Heintz AAAI 2016]
« Intertemporal spatial relations are problematic because they in many

cases cannot be observed:
DC(A,B)

PO(OA, OB) PO(A,B)
A
\ j
’ . ."'\‘
J'Jllrr 3
[ B
B /
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Intertemporal Spatial Reasoning
[de Leng and Heintz AAAI 2016]

Observation at ti: Observation at ty:
A B A B
B|{DC} {EQ} B| PO} 1EQ}
" A [
B
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Intertemporal Spatial Reasoning
[de Leng and Heintz AAAI 2016]

« Extended spatial relation matrices are used for describing intertemporal
spatial relations:

A B OA (OB
A {EQ} {DC} R R
B {DC} {EQ} Rs Rag
(OA| Rg Rs {EQ} {PO}
OB| Rs Re {PO} {EQ} |
Rg = {DC, PO, EC. EQ., TPP, TPPL NTPP, NTPPI'}

MflLJfg —
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Landmarks
[de Leng and Heintz AAAI 2016]

Definition (Landmarks)

Landmark regions LM are regions
that are assumed to be rigid,

i.e. EQ(X,(OX). LM is also called a
frame of reference. )
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Landmarks
[de Leng and Heintz AAAI 2016]

Example for landmark LM = {A}:

{EQ} {DC} {EQ} Rs
{DC} {EQ} Rg  Rs
{EQ} Re {EQ} {PO}
Re Rs {PO} {EQ}

Mfl Ut _
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Landmarks

[de Leng and Heintz AAAI 2016]

Example for landmark LM = {A}:

{EQ}  {DC} {EQ} {PO}
{DCy  {EQy  {DC} Rg\{EQ}
{EQ}  {DC}  {EQ}  {PO;
PO} Re\{EQ} (PO}  {EQ;

Mt1Ut2 -
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The Choice of Landmark Matters!

[de Leng and Heintz AAAI 2016]
The choice of LM affects the inferred intertemporal relations:

{EQ} {DC} {EQ}  {PO}
{DC}  {EQ}  {DC} Rg\{EQ}
{EQy  {DC}  {EQ}  {PO}
{PO} Re\{EQ} {PO}  {EQ}

(EQ}  {DC} Rs\{EQ} {DC}
EM=1B5L M=o\ (EQ} (PO} {EQ} (PO}
(DC}  {EQ} {PO}  {EQ}]

LM = [A}, MuV® —
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Progression of MSTL Formulas

[de Leng and Heintz AAAI 2016]
* Progression does not look into the future...

OO e

* Rewriting rules for dealing with intertemporal relations:
R(OX,0Y) = OR(X,Y)
R(X,QY) = QRO X, Y)
R(OX,Y)= OR(X,O7Y)
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Summary

We have presented the Metric Spatio-Temporal Logic MSTL which
combines MTL with RCC-8.

MSTL formulas can be incrementally evaluated over streams of states
through progression.

MSTL supports spatial reasoning both within and between time-points.

MSTL supports incomplete information through a three-valued logic
approach.

The logic-based approach is very suitable for making safe autonomous
systems through for example execution monitoring with formal
guarantees.
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Stream Reasoning for Safe Autonomous Systems
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Application: Emergency Services Assistance

THAILAND / Northern Khao Lak Bay 1:12.500 G artactne S

IKONOS - January 30, 2003 - PRE-DISASTER IMAGE IKONOS - December 29, 2004 - POST-DISASTER IMAGE

ANDAMAN SEA 2 ¥ ANDAMAN SEA ¥ g ] A

A devastating earthquake of high magnitude occurred on December, 26,
2004 off the west coast of Sumatra, Indonesia. The resulting Tsunami killed
thousands of people in southern India, Sri Lanka, Indonesia, Thailand, etc.
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Search and Relief

Searching for injured people and delivering food, medicine and other
supplies are highly prioritized activities in disaster relief.
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Finding Injured People
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Finding Injured People - Mission

Assumptions

e Optimal flight altitude: 35- 50 m
* Average flight velocity: 5m/s

* Human body size: 20 - 50 pixels

Emergency Services Training School
Revinge, Sweden

1 Sq Km
Context
* 11 live bodies / 2 dummies
e 2 UAVs for scanning
*290x 185 m
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ALGORITHM RESULTS




Finding Injured People - Result

p“ q z D s

il &
--------www
SAFE A e Tl I
.L.;o‘ 12L ﬁ“ﬁ

Thermal and color images

The algorithm runs in
25 frames / second
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Deliver Food and Supplies
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Search and Rescue Mission

SupplyDepot

el ¥

n

BodyPos

SupplyDepot

L)
)

CarrierDepot

!

Multiple UAVs, different carrying capacities
Multiple carrier and supply depots
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Execution Monitoring

If things can go wrong they probably will!

This implies the need for continual monitoring of
an autonomous system and its environment in a
principled, contextual, task specific manner which
can be specified by the system itself!

always (eventually [0, t] (always [0,t’] speed(uav) < T))
It should always be the case that within t time units from now, an interval of
length t’ should start where the UAV’s speed stays below threshold T.

EXEC until [0, 5000] (-EXEC A altitude(uav) > 7)
The command should take less than 5 seconds to execute and when the execution
is finished the altitude of the UAV should be above 7 meters.
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Planning, Plan Execution & Execution Monitoring

[Kvarnstrom, Heintz and Doherty ICAPS 2008; Kvarnstrom, Heintz and Doherty JAAMAS 2009]

Pl ’ mission request ’_ﬁ
/ an ™
e » P, ’ '
s‘a\‘/ Executor |‘ an "equ

/ o\'\G\J est

I command

| sequence Plap
Command TALplanner
Executor
s| |T .

z 066 trajectory
Execution Task Proc. request ,  Motion
Monitor status Executor trajectory Planner

Il FCL
status
commands
UAV
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COMMAND: START_TAKEOFF
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DyKnow Application: Diagnosis
[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]

Diagnosis System

—

Observations Diagnosis decision

T TT

e Problem: High capability of distinguishing faults requires large number of tests and thus high
on-line computational demands.

e FlexDx

— Recognizes that not all test are needed at all times, e.g. no-fault case. Runs only tests needed
at the moment.

S

— The same capability of distinguishing faults as using all tests.
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DyKnow Application: Diagnosis

[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]

oaf o.af \
Fl

0.6 0.8

dual
dual

04 04

2 Lo K

o o

1 1 1 1 1 1
0 2 4 5 g 10 12 14 18 18 20 [ 2 4 5 g 10 12 14 18 18 20
t[s] ts]

e Problem: High capability of distinguishing faults requires large number of tests and thus high
on-line computational demands.

e FlexDx

— Recognizes that not all test are needed at all times, e.g. no-fault case. Runs only tests needed
at the moment.

— The same capability of distinguishing faults as using all tests.
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DyKnow Application: Diagnosis

[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]

system observations w@siduals
‘ System ResidualGenerator J ResidualMonitor TW
= =
N = = J
Y
{} last fault free time
[ CreateTests } ’ ConflictSetMediator }7
testset /[\

conflict set

TestSet H&M Diagnoses
P

e Problem: High capability of distinguishing faults requires large number of tests and thus high
on-line computational demands.
 FlexDx

— Recognizes that not all test are needed at all times, e.g. no-fault case. Runs only tests needed
at the moment.

— The same capability of distinguishing faults as using all tests.
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DyKnow Application: Diagnosis

[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]

. . 2 2 2 2
= 4 states (01, 01,02, (2)
' o Ofyki o DA o 0 o o R
= 1 actuator u(t) and 3 sensors y;(t) Ly il L ek “M#ﬂ -
2 5y -2 -2
= § single faults, one for sach model
; 90 100 110 30 100 110 90 100 110 90 100 110
equation
= measurement noise, 1/;(t) 2 2 2 2 ,M‘W‘P"
= 13 minimal tests (corresponds to 20 “’4""*'1'#\*‘»;\ 2 UI‘H'WM"N%,I S U I T
submodels with redundancy 1) 2 ARy ) 'Mﬂw ) 2
) _ 90 100 110 90 100 110 90 100 110 90 100 110
J101(t) — ku(t) — o A1(t) — M(t)
_ _ 2 2 2 2
Ms(t) = op(61(t)  62(2)) | aa(f2(t)  62(t)) p‘“”l*“
Lby(1) A508) + NLTE - == oy 2 OHphesi = 0 W‘“WMW S L
202(1) = —aafa(t) + Ms(1) ) WW o M i a8
= el + (1) 9 100 110 9% 100 110 90 100 110 90 100 110
ya =01 | (1) My ——
il N , .
ys U2+us( / o w8
. ! 4 92 - Of lewﬁm
T]_ — \\’a’f \.-" \J,"' \ —11T 7 9 .ﬁﬁjﬂﬂ
\ % 100 110
I Fault occurs at time t=100, plot t € [90, 110].

u
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DyKnow Application: Diagnosis

[Heintz, Krysander, Roll and Frisk DX 2008; Krysander, Heintz, Roll and Frisk CDC 2008 and EAAI 2010]

: . 2 2 2 2
= 4 states (H] H]_.H}Hg) i i .“‘MIM . .
o Ol o O &7 0 s g
= 1 actuator u(t) and 3 sensors y;(t) Wiy b 1
= 6 single faults, one for each model = B = =
e ' 9 100 110 90 100 110 9 100 110 9 100 110

equation
= measurement noise, v;(t) 2 2 2 2 ¢
= 13 minimal tests (corresponds to oo oW, 2 D %. S o——dbaw = o ——

submodels with redundancy 1) 9 | 2 ' ) )

N01(t) = ku(t) — a101(t) — Ms(t)
, , 2 2 2 2
M_q(t) = ng(ﬁ](t) — (ig(t)) - r|3(r‘)1(t) — ﬁz(t)) _ ) - 5 _ N “_ﬂ
afia(t) = —aaba(t) + Mi(1) ghi L b ek e _Z_W“*w |
n= '?1 +(t) 90 100 110 %0 100 110 90 100 110 90 100 110
y2 = 01 +12(t) My  —— J
y3 = 02 + v3(t) % “
YA N
1 / I o )
90 100 110
Fault occurs at time t=100, plot t € [90, 110].
u
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Grounding Logic-Based Stream Reasoning
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Grounding Stream Reasoning in Robotic Systems
[de Leng and Heintz FOfAI 2015, Heintz IROS 2014; de Leng and Heintz FUSION 2013]

« A temporal logical formula contains a number of symbols representing
variables whose values over time must be collected and synchronized in
order to determine the truth value of the formula.

forall xin UAV always(Speed[x] < 60)
Given a functional system, such as a robot, producing streams the
grounding problem for logic-based stream reasoning is to connect
symbols in formulas to streams in the functional system so that the
symbols get their intended meaning. /sensor Vision percepts

. Color camera }_>
processing | Image
| Thermal camera ,_> Processing
Camera states
Helicopter State | Helicopter [ Camera State
Estimation states Estimation
T T

- it )
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Syntactic and Semantic Grounding
[de Leng and Heintz FOfAI 2015, Heintz IROS 2014; de Leng and Heintz FUSION 2013]

« Syntactic grounding: Use a direct mapping between symbols and
streams, for example by using stream names in the formulas. A formula
such as

forall x in UAV always(Speed [X] < 60)
would then have to be written something like
always((/uavl/uavstate.spd < 60) A (/luav2/uavstate.spd < 60))

e Semantic grounding: Annotate streams with their semantic content and
reason about how to connect symbols to streams using semantic web
technologies. We call this reasoning for semantic matching. It finds ’
the relevant streams by matching the ontological concepts usedina

formula to the ontological concepts associated with the streams. Semantic

Web
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Semantically Grounded Stream Reasoning
[de Leng and Heintz FOfAI 2015, Heintz IROS 2014; de Leng and Heintz FUSION 2013]

l//’"\\j
/ 7 —
FSeature __.-t.?%'f_"" Semantics DyKnow
/,’j pecs Manager o Ontology
/ Stream ? )
f Spec / |

Stream Processing_....é (c
Engine f 5
(s

: _
/ Istream

/

\

; §
(s)

Stream Space
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DyKnow Ontology

[deLeng and Heintz FOfAI 2015, Heintz IROS 2014; deLeng and Heintz FUSION 2013]

( Stream pb———is=aiConstant Stream'

7 { .Sample G 'C omplex Transformatio-r_\'_ ;

/’/ - iga—
i ==

/ '7 Transformatlon ([ Source
; fiian t e _igea— = h T -
f} //fls' 0 — 15=3
/ 'Computatlonal Unrt' =} { Sink )

[ / -

/ is-3~ } — — — ——
” - ( 'Stream Space' <}—%8———{ 'Stream Universe' _
- q‘\/}/ii&__-—-' = S ——

& T —is-a_ —— _— —
1 'x\ ——— Feature ) ( 'Stream Annctation'
1 J_‘S_-n 2 e =50 g
AN\ ~ — - —
\ \ N — __I§=a—
1\ s-a T

\ ‘._ l—ls_g \
\ \ Annotatlon <: Descrlptlon Sequence

\ \ — e — -s-3 ——
\ g2 \\---, — oy T S e
\\ \\ _ Specification \ ( Trensformatnon Annotatlon

. — = -
~_ ~—— - S —
‘-——_{;:J\/Sort ) (_Constraint )

No e

“~_ "Transformation Specification’

. = =

T 'Stream Speciﬁcntion;
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Semantically Grounded Stream Reasoning Example
[deLeng and Heintz FOfAI 2015, Heintz IROS 2014; deLeng and Helntz FUSION 2013]

e T
/ : /
/ GeoLocation | ; — DyKnow Ontology
/ humant g Semantics
/ /, Manager |
o P
//' humanDetector a :Transformation ; ||
y ‘hasAmotation [
7 ‘hasOutput Annatation [
s :describesFeature :ImagePosition ;
‘describesSort :Hu
/ <spec:cu type="humanCoordinates™> I - -
// <SPEecicu typefhl.nwi)emw':-“ :hasinputAnnotation |
<specicu type=rgbCam"> ‘describesFeature :RawRGBCam ;

</spec.cu> ~ :describesSort :self ;
<spec.cu type=TrCam™ nextSegment [

CU: humanCoordinates0; </spec:cie -hasinputAnnotation [

Type: humanCoordinates; <jspeccu> :describesFeature

Out: dyknow_stream7,; <spec.cu type="gpsimuTo3D "> :RawiRCam ;

In: [ dyknow_stream5, <spec.cu type="gps™> :descrbesSort :self

dyknow_streams | </specicue 1
<spec.cu type=Tmu™> |
\ <Jspecele ]
<Ispec.cu> =
<Jspec.cus :hasName “humanDetector™ string .

l

Stream Processing Ki\
Engine —> hunla_nCoordln_atJe?Ob
i @emmom ) D gps[muTcGDO /,

Idyknow_stream? b e
/ (rg_l:i:ainlof ) / |rCam0 /
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Semantically Grounded Stream Reasoning Example

[deLeng and Heintz FOfAI 2015, Heintz IROS 2014; deLeng and Hemtz FUSION 2013]

f_.'— / -
/ Geolocation |  gomantine DyKnow Ontology
/ [ﬂumanl (
/ Manager i
//
/ humanDetector a :Transformation ;
H ‘hasAmnotation [
Vd ‘hasOutput Annat ation [
// -describesFeature ImagePosition ;
:describesSort :Human
V4 <speccu type="humanCoordinates™ L “
// <spec.cu type="humanDetector > ‘hasinputAnnotation |
<spec.cu type=TrgbCam™> :describesFeature :-RawRGBCam ;
</specci> :describesSort :self ;
I cenac i tvna=TTr"am™s _! Py e
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—— —— —_— -
oo : W i) Tort
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Semantically Grounded Stream Reasoning Example
[deLeng and Heintz FOfAI 2015, Heintz IROS 2014; deLeng and Helntz FUSION 2013]

e

e

_.../ DyKnow Ontology

-

—

% ~—»|  Semantics
(Human) Manager

// Pl

/ — e
// humanDetector a :Transformation ; 1
3 ‘hasAmotation [
Vd :hasOutput Annctation [
/s :describesFeature :ImagePosition ;
o ﬂmsﬂ!t -
/ <spec:cu type="humanCoordinates™> I i A
i <spec.cu type="humanDetector™> :hasinputAnnotation [
<spec:.cu type=TrgbCam™> :describesFeature :RawRGBCam ;
</spec.cu> ~ :describesSort :self ;
<specicu type=TirCam™> nextSegment [
CU: humanCoordinates0; </specicu> -hasinputAnnotation [
Type: humanCoordinates; </specicu> :describesFeature
Out: dyknow_stream7,; <spec.cu type="gpsimuTo3D "> :RawiRCam ;

In: [ dyknow_stream5,
dyknow_streams |

<specicu type=gps™>
</speccie

<spec.cu type=Tmu™>
<specicue
</spec.cu>
<spec.cu>

:describesSort :self
|
]
. |
“hasName “humanDetector™string .

'

Stream Processing K_‘L\
Engine " hunzagCoordm_m;;,ob
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Semantic Matching with Multiple Robots
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DyKnow Semantically Grounded Stream Reasoning in ROS
[Heintz IROS 2014]

Semantic Grounding

Stream Reasoning
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Future Work
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Probabilistic Stream Reasoning

* Dicult to integrate logical and probabilistic reasoning. Robotics systems
commonly do both separately in isolation.

 We are working on a formal interface between existing logical reasoning
and existing probabilistic reasoning methods:

— A formal framework with an explicit separation.

— A selection of important temporal and probabilistic concepts from
probability theory can be referred to at the logical level.

— Both retain strengths and computational complexities.
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Probabilistic Stream Reasoning

l—v.&‘tream Time

Predictive Time

« Each state contains facts at a single time point
— Truth values of predicates
— Observed numerical values of terms
— Stochastic estimates of terms (Green)

— Stochastic predictions of terms (Red)
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Probabilistic Stream Reasoning




Probabilistic Stream Reasoning

 MSTL is extended with stochastic terms and a special term operator:

Observed feature value: ® Altitude[uavl

Estimated feature value: ®,  Altitude[uavl

Predicted feature value: ®, Altitude[uavl]
Example:

O(Pr((Altitude[roof A] — @gpAltitude[uavl]) > 2m) > 0.99)
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Probabilistic Stream Reasoning

e This allows us to express statements like:
— Is my perception too uncertain?
— Is my prediction too uncertain?
— Does my prediction match my observation well enough?
— Is my perception degrading?

— Is my ability to predict degrading?
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Probabilistic Stream Reasoning

f.: Observation

A

b, : Truth

Logic
Reasoner

TF: Temporal Model

[Query L]

pry: Probability

X¢|¢: Estimation

Probability

Predictor

x> Prediction

Reasoner

[Query ((x)]

(7]

5: <T:O~F:}__3XDTP>
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Unsupervised Learning of Activities
[Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]

-

Slow down

Acceleration
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Unsupervised Learning of Activities
[Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]
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Activity Learning Example
[Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]

Local likelihood for each activity
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Activity with maximurn local likelihood
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Unsupervised Learning of Activities
[Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]

Stream of states of
individual objects

{..., (object id,
state,
time point), ...}

Reasoning

Detect

Predict

%

State space graph
Activity transition graph

B

Activity learning

Create

L
Merge

L
Update

State space graph

Activity transition graph
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Research Directions
Knowledge

Qualitative and guantitative

) . . Semantics
multi-level information

Internet Humans

Manage incompleteness,

. . . Machine learning
uncertainty and inconsistency

Distributed sensing and acting devices
Internet of Things

LINKOPINGS
ll." UNIVERSITET



Summary and Conclusions
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Summary — Stream Reasoning

e Streams are potentially infinite sequences of elements.
o Stream reasoning is incremental reasoning over streams.

» Three different approaches:

— Window-based, taking streams and turning them into relations over which
standard reasoning/processing can be made. DSMS and RSP are both window-

based.

— Event-based, define and detect complex events in streams of events. Recognizing
complex events ought to be a form of reasoning, it infers implicit information,
which is a reasonable definition of reasoning.

— Logic-based, evaluate temporal logical formulas over infinite streams.

e Discussion: Can they be unified to a single approach?
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Summary — Spatio-Temporal Stream Reasoning

» The Metric Spatio-Temporal Logic MSTL combines MTL with RCC-8.

e MSTL formulas can be incrementally evaluated over streams of states
through progression.

e MSTL supports spatial reasoning both within and between time-points.

e MSTL supports incomplete information through a three-valued logic
approach.

* The logic-based approach is very suitable for making safe autonomous
systems through for example execution monitoring with formal
guarantees.

LINKOPINGS
II." UNIVERSITET



Conclusions

e High level incremental reasoning over streaming
information is essential to autonomous systems for
example to provide formal safety guarantees.

* DyKnow is a practical framework for grounded
stream reasoning including support for spatio-
temporal reasoning.

o The reasoning is semantically grounded through a

common ontology and a specification of the —me | IR
L] . E . .
semantic content of streams relative to the ontology. < ST
e OntologyManager
. . Manager : :
» Through DyKnow, ROS is extended with a powerful ~._
stream reasoning capability available to a wide range : A

of robotic systems.

Stream Reasoning
Engine

Stream Reasoning
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