
An Experimental Comparison of Classical, FOND and
Probabilistic Planning

Andreas Hertle and Christian Dornhege and Thomas Keller
and Robert Mattmüller and Manuela Ortlieb and Bernhard Nebel 1

Abstract. Domain-independent planning in general is broadly ap-
plicable to a wide range of tasks. Many formalisms exist that allow
the description of different aspects of realistic problems. Which one
to use is often no obvious choice, since a higher degree of expres-
siveness usually comes with an increased planning time and/or a de-
creased policy quality. Under the assumption that hard guarantees
are not required, users are faced with a decision between multiple ap-
proaches. As a generic model we use a probabilistic description in the
form of Markov Decision Processes (MDPs). We define abstracting
translations into a classical planning formalism and fully observable
nondeterministic planning. Our goal is to give insight into how state-
of-the-art systems perform on different MDP planning domains.

1 INTRODUCTION
Domain-independent planning is used to solve problems from vari-
ous domains, including tasks from real-world robotics applications.
Often, such tasks feature aspects that go beyond classical planning,
such as nondeterministic or probabilistic effects, partial observabil-
ity, etc. However, when modeling a problem, there is a tradeoff be-
tween modeling as many of these aspects as possible and finding
solutions fast. Different existing planning formalisms capture differ-
ent (combinations of) aspects of real-world problems. Modeling and
abstracting away different aspects, they also induce different solution
concepts. Which formalism is the best for a specific problem is not
always obvious. As long as the application allows it, a less expressive
formalism is chosen often in practice.

In this work, we study the question how to best deal with proba-
bilistic action outcomes when modeling and solving a planning task.
Classical planning formulations only model deterministic actions.
They are often used by embedding the planner in an execution-
monitoring-planning loop that replans on unexpected outcomes.
Fully observable nondeterministic (FOND) planning explicitly con-
siders nondeterministic actions and produces strategies that guaran-
tee to reach a goal. Probabilistic planning additionally considers out-
come probabilities and aims to maximize the expected accumulated
reward.

Since different formulations give different guarantees on the so-
lution, an entirely fair comparison is impossible. We therefore com-
pare classical planning, FOND planning and probabilistic planning
experimentally and emphasize differences in solution quality, plan-
ning time and the ability to avoid deadend states of the considered
algorithms. Since our planning systems [7, 16, 11] require different
levels of abstraction regarding the input, we also provide abstracting

1 University of Freiburg, 79110 Freiburg, Germany, email: {hertle, dornhege,
tkeller, mattmuel, ortlieb, nebel}@informatik.uni-freiburg.de

translations between the planning formalisms.Our goal is to show
how state-of-the-art planning systems cope with different problems
in a realistic setting, a problem that users are commonly faced with
when applying planning to solve actual tasks, which also sheds some
light on claimed advantages in speed or solution quality.

We model three domains: one originally used in probabilistic plan-
ning, one from FOND planning, and a classical planning domain that
is derived from a robotic planning scenario. Probabilistic action out-
comes of the latter two are added in a first step, such that all domains
are available as a Factored MDP [1]. These are then translated into
corresponding FOND and classical planning formulations following
the set of rules described in Sec. 4, and evaluated with three state-of-
the-art planning systems in Sec. 5. Prior to that, we describe related
work and give formal definitions for the used planning formalisms.

2 RELATED WORK

Classical planners have been successfully integrated in robotic sys-
tems – a real-world domain known for unexpected outcomes. Kael-
bling et al.[8] developed a robot planning system that integrates task
and motion planning. This system uses a hierarchical regression plan-
ner where a refined prefix is executed directly. They argue that “there
are few catastrophic or entirely irreversible outcomes”. Following
similar arguments, Nebel et al. [18] and Keller et. al [12] demonstrate
how a classical planner embedded in a continual planning loop solves
complex mobile manipulation tasks on a robot. Replanning is used to
deal with execution failures and unexpected situations. In their KVP
system, Gaschler et al. [4] combine the power of a symbolic plan-
ner with efficient geometric computations to create a framework for
knowledge based planning in a real robot environment.

In recent years, nondeterministic planners have been improved
in efficiency. Recently, compilation approaches that compute strong
cyclic plans with classical planners became popular [14, 3, 17].
Mattmüller et al. [16] show how pattern database heuristics can
be used in fully observable nondeterministic domains to guide the
search more efficiently towards goal states. Little and Thiébaux [15]
investigate the notion of probabilistic interestingness, where they in-
vestigate the effectiveness of replanning or compilation approaches
to solve probabilistic planning tasks. Keller and Eyerich [11] devel-
oped PROST, a domain independent probabilistic planning system
based on the UCT? algorithm [13], which is able to improve the
quality of the solution policy by identifying unreasonable actions and
actively searching for dead ends and goals in the MDP with a reward
lock detection procedure.

3 PLANNING FORMALISMS
In this section, we describe the planning formalisms we use to spec-
ify classical, FOND, and probabilistic planning tasks.

3.1 Classical Planning
A classical SAS+ planning task is a tuple Π = 〈V, s0, s?,O〉 con-
sisting of the following components: V is a finite set of state vari-
ables v, each with a finite domain Dv and an extended domain
D+
v = Dv] {⊥}, where ⊥ denotes the undefined or don’t-care

value. A partial state is a function s with s(v) ∈ D+
v for all v ∈ V .

We say that s is defined for v ∈ V if s(v) 6= ⊥. A state is a partial
state s that is defined for all v ∈ V . The set of all states s over V
is denoted as S. Depending on the context, a partial state sp can be
interpreted either as a condition, which is satisfied in a state s iff s
agrees with sp on all variables for which sp is defined, or as an up-
date on a state s, resulting in a new state s′ that agrees with sp on all
variables for which sp is defined, and with s on all other variables.
The initial state s0 of a problem is a state, and the goal description
s? is a partial state. A state s is a goal state iff s? is satisfied in s. O
is a finite set of actions of the form a = 〈pre, eff 〉, where the pre-
condition pre and the effect eff are partial states. The application of
an outcome eff to a state s is the state app(eff , s) that results from
updating s with eff . An action is applicable in s iff its precondition
is satisfied in s. The application of a to s is app(a, s) = app(eff , s)
if a is applicable in s, and undefined otherwise. Solutions to a clas-
sical planning task Π = 〈V, s0, s?,O〉 are plans, i.e. sequences of
a0, a1, . . . , an, where ai ∈ O, i = 0, . . . , n, ai is applicable in si,
app(eff i, si) results in si+1 for i = 0, . . . , n− 1, and s? is satisfied
in sn+1.

3.2 Nondeterministic Planning
A fully observable nondeterministic (FOND) SAS+ planning task
is a tuple Π = 〈V, s0, s?,O〉 with the same V , s0, and s? as a
classical planning task and nondeterministic actions O of the form
a = 〈pre,Eff 〉 with preconditions pre as before, but finite sets
Eff of possible effects, the nondeterministic outcomes of a. Each
eff ∈ Eff is a partial state as before. The application of a set Eff to
a state s is the set of states app(Eff , s) = {app(eff , s) | eff ∈ Eff }
that might be reached by applying a nondeterministic outcome from
Eff to s. The application of a to s is app(a, s) = app(Eff , s) if a
is applicable in s, and undefined otherwise. Solutions to a planning
task Π are now strategies, i.e., mappings π : Sπ → O ∪ {⊥} for a
set of states Sπ ⊆ S such that π(s) = ⊥ iff s is a goal state and that
for all nongoal states s in Sπ , the action π(s) is applicable in s and
Sπ contains all states in app(π(s), s). A strategy π is a strong cyclic
plan (“trial-and-error strategy”) for a planning task Π iff s0 ∈ Sπ
and for each state s reachable from state s0 following strategy π, a
goal state is reachable from s following strategy π.

3.3 Probabilistic Planning
A factored, finite-horizon MDP [1] with initial state and goal is
a seven-tuple 〈V,O, s0, s?, P,R,H〉, where the set of states S is
induced by the set of state variables V and the remaining steps
h ∈ {0, . . . , H} as S = 2V × {0, . . . , H}. O is a finite set of
actions, s0 ∈ S is the initial state, s? is a goal description as
above, P : S × O × S → [0, 1] is the transition function which
gives the probability P (s′|a, s) that applying action a ∈ O in state

s ∈ S leads to state s′ ∈ S, R : S × O → R is the reward func-
tion, and H ∈ N is the horizon which specifies the number of de-
cisions before each run terminates. For the purpose of this paper,
we assume that the reward function has a special structure, specifi-
cally that the reward reflects (unit) action costs and numbers of un-
satisfied goals. More formally, we let unsat(s) be the number of
variables v such that s?(v) is defined and s(v) 6= s?(v). Then,
R(s, a) = −(unsat(s)+1), if s is not a goal state, andR(s, a) = 0,
otherwise.

4 TRANSLATION BETWEEN PLANNING
FORMALISMS

Conversion from the probabilistic MDP formalism to the nondeter-
ministic and classical planning formalism follows a set of rules that
we present here. The conversion process could be completely au-
tomated and does therefore not require any domain-specific knowl-
edge. However, in this paper we convert the domains manually fol-
lowing those rules.

All three planning formalisms work on the same finite set of states
S. Given the goal specification for an MDP is derived from a partial
state s? as described in Sec. 3.3, we use that same partial state s?
as the goal state for classical and FOND planning. The major differ-
ences in the formalisms now lie in how actions and action costs are
derived from a given MDP.

4.1 Translating MDP to FOND Planning
An MDP action a is translated to a set of FOND actions. First, we
compute all possible predecessors, in which a could have been ap-
plied.

Pre = {s|P (s′|a, s) > 0; s, s′ ∈ S} (1)

Each such state potentially can produce multiple outcomes. We ob-
tain a set of effect states Eff i for each state prei ∈ Pre .

Eff i = {s′|P (s′|a, prei) > 0; s′ ∈ S} (2)

For each state prei ∈ Pre we produce a FOND action with outcomes
Eff i, so that the MDP action a results in a set of FOND actions
{〈prei,Eff i〉|prei ∈ Pre}. The actions obtained with these rules
have full states as preconditions and effects. However, logical sim-
plifications can drastically reduce the number of generated actions
by summarizing the full states into partial states. In practice often
one MDP action translates to one FOND action.

4.2 Translating MDP to Classical Planning
For converting MDP actions to classical actions we determine prede-
cessors prei ∈ Pre and effect outcomes Eff i from an MDP action
a analogously to the FOND translation. In contrast to FOND, clas-
sical actions allow only one deterministic effect eff . There are two
commonly used determinizations: all-outcome determinization and
most-likely determinization. Both assume that a specific effect can
be chosen and plan accordingly.

An all-outcome determinization creates a separate classical action
for each possible effect eff ∈ Eff i. For each action in the MDP, we
therefore obtain a set of actions with an entry for each predecessor
prei ∈ Pre:

{〈prei, eff 〉|eff ∈ Eff i} (3)

Even though there are techniques that only lead to a polynomial
blowup of the number of actions in the determinization [10], this

Response Time [s] Reward
eff max MYND eff max MYND PROST

1 8 ± 4 1 -151 ± 72 -66 ± 8 -62 ± 17
2 1 ± 1 0 -9 ± 3 -11 ± 6 -9 ± 4
3 16 ± 3 1 -391 ± 103 -109 ± 34 -85 ± 25
4 124 ± 93 3 -1141 ± 24 -399 ± 56 -355 ± 65
5 75 ± 31 3 -894 ± 35 -294 ± 64 -283 ± 46
6 9 ± 4 0 -172 ± 80 -126 ± 29 -67 ± 14
7 6 ± 3 0 -86 ± 39 -46 ± 14 -48 ± 16
8 3 ± 2 0 -16 ± 8 -10 ± 5 -10 ± 6
9 41 ± 6 2 -908 ± 146 -290 ± 94 -172 ± 35

10 39 ± 33 156 -2203 ± 18 -885 ± 187 -677 ± 97
11 1 ± 1 0 -10 ± 5 -15 ± 8 -18 ± 15
12 57 ± 12 4 -1191 ± 93 -301 ± 54 -237 ± 45
13 163 ± 53 15 -1481 ± 146 -341 ± 74 -275 ± 47
14 38 ± 8 2 -614 ± 160 -179 ± 44 -165 ± 68
15 128 ± 100 40 -2717 ± 61 -1015 ± 277 -826 ± 148
16 3 ± 1 0 -24 ± 10 -20 ± 7 -18 ± 9
17 478 ± 192 102 -2316 ± 125 -646 ± 200 -416 ± 76
18 230 ± 78 15 -1807 ± 80 -527 ± 111 -394 ± 81
19 466 ± 154 90 -2038 ± 116 -604 ± 202 -497 ± 90
20 101 ± 74 52 -2871 ± 29 -1144 ± 219 -814 ± 151

Table 1. Average response time and rewards for the EARTHOBSERVATION domain, the average of 100 runs is shown. Time values for MYND include offline
planning time.

can still be prohibitively large in practice. An alternative is the most-
likely determinization, which only considers the effect with the high-
est probability. For a predecessor prei ∈ Pre the most-likely effect
eff max is determined from all possible outcomes Eff i.

eff max = argmax
eff∈Eff i

P (eff |a, prei) (4)

Now for each predecessor prei ∈ Pre only a single most-likely ac-
tion is created as 〈prei, eff max〉. Similarly to FOND we apply logical
simplifications when possible to reduce the number of distinct ac-
tions for both determinizations.

As planners aim for minimal cost plans a meaningful action cost
that considers the operator cost and probability p = P (eff |a, prei)
for an all-outcome operator, or p = P (eff max|a, prei) for a most-
likely determinized operator is beneficial to improve the quality of
resulting plans. Under the assumption that either that outcome hap-
pens with probability p or the state is unchanged with 1− p, we use
the expected cost, when retrying an action with unit cost until the
desired outcome is reached.

∞∑
i=1

(1− p)i−1 · p · i =
1

p
(5)

If action outcomes with unit cost have probability p we therefore use
1
p

as the operator cost in the classical planning formulation. Other
examples for combining operator cost and probability are to use the
negative logarithm of p, which produces the most-likely plans (ig-
noring cost) or a weighted combination of cost(a) and− log(p) [9].

4.3 Theoretical and Practical Properties of
Translations and Planning Algorithms

Classical planning, FOND, and probabilistic planning differ both in
their theoretical and their practical computational properties. On the

theoretical side, classical planning with all-outcome determinization,
FOND planning and probabilistic planning are guaranteed to pre-
serve MDP goal paths in the translated model. For classical plan-
ning with most-likely determinization, this is not the case. All goal
paths can be lost in the determinization. Classical planning with all-
outcome determinization and probabilistic planning have the prop-
erty that MDP plan existence implies that the translated models still
have solutions. Classical planning with most-likely determinization
and FOND planning do not have this property. The major advantage
of probabilistic planning is the guarantee to find a reward-optimal so-
lution in the limit of long deliberation time per step. None of the other
approaches has the same guarantee. On the other hand, given that we
usually do not compute optimal MDP policies online, offline FOND
planning is the only approach that is guaranteed to avoid dead-ends
at execution time. It does so at the expense of a significant amount of
offline planning time that the other approaches avoid. Finally, at exe-
cution time, the high offline planning time is compensated for by fast
state-action table lookups. Online planning speed (average response
time) of classical (re-)planning and online probabilistic planning are
incomparable, since the latter can use an arbitrary timeout for each
step and return the best action so far, whereas classical planning has
to expend at least the amount of time necessary to find some classical
plan.

5 EVALUATION

We use three different domains, each one originating from a different
planning formalism to give a balanced evaluation. Each domain has
been formulated as a factored MDP and was translated to classical
and FOND planning.

Response Time [s] Reward
Eff ? eff max MYND Eff ? eff max MYND PROST

1 3 ± 1 2 ± 0 1 -27 ± 1 -27 ± 1 -27 ± 1 -75 ± 44
2 16 ± 6 7 ± 3 1 -82 ± 7 -81 ± 4 -84 ± 4 -218 ± 92
3 109 ± 34 34 ± 9 143 -134 ± 11 -132 ± 8 -156 ± 7 -419 ± 18
4 125 ± 45 113 ± 54 3 -123 ± 7 -127 ± 6 -146 ± 6 -396 ± 72
5 367 ± 187 218 ± 88 4 -190 ± 13 -191 ± 9 -217 ± 10 -805
6 530 ± 195 335 ± 127 5 -283 ± 16 -279 ± 11 -286 ± 14 -1005
7 312 ± 165 223 ± 109 3 -187 ± 14 -184 ± 7 -240 ± 8 -805
8 470 ± 193 299 ± 132 11 -307 ± 32 -278 ± 11 -310 ± 8 -1505
9 613 ± 259 492 ± 175 14 -413 ± 18 -421 ± 18 -460 ± 17 -1805

10 1106 ± 244 611 ± 291 134 -604 ± 59 -967 ± 656 -645 ± 18 -2105

Table 2. Average response time and rewards for the MOBILEMANIPULATION domain, the average of 100 runs is shown. Time values for MYND include
offline planning time.

5.1 Domains

MobileManipulation. In the MOBILEMANIPULATION domain,
an autonomous service robot operates in a house. The robot is
equipped with two arms and sensors to perceive the environment.
There are multiple rooms with a number of objects located on tables.
The goal is to tidy up the rooms, i.e. find all objects, pick them up
and bring them to a specified destination table. In addition all tables
should be wiped clean. Within a room, the robot can move freely
between tables. Between rooms doors might need to be opened. The
robot traverses through open doors with arms either close to the robot
body or not. With retracted arms, success probabilities are higher (0.9
in comparison to 0.4). When close to a table the robot can choose to
perceive object locations increasing the success probabilities for ma-
nipulation actions from 0.3 to 0.9. Objects can be picked up with
either hand and brought to any table. Manipulation can go wrong, as
the robot might be unable to grasp an object or might topple another
object on the table. Should an object happen to fall to the floor, the
robot will not be able to recover it. Only tables cleared of all objects
can be wiped with a sponge.

TriangleTireworld. The TRIANGLETIREWORLD domain was in-
troduced by Little and Thiébaux [15] and is a special case of the
IPC TIREWORLD domain, in which a car has to drive from an ini-
tial to a goal location along directed edges. In each step, a tire can
go flat probabilistically (we use p = 0.2). Before moving further, it
has to be fixed, which is only possible if a spare tire is present in the
current location. Only a subset of the locations contain a spare, so
success is only guaranteed if the car follows a path such that every
location along the path (except the goal) has a spare. The TRIANGLE-
TIREWORLD domain is designed for offline planners to outperform
replanners. This is achieved by requiring a particular structure of the
roadmap graph: The locations form a triangle with corners A, B and
C, the start is A, the goal is B, and the only safe path with spares
in all locations is the maximal detour from A via C to B. Replan-
ners trying to find shortest paths fromA toB have a high probability
of getting stuck, whereas offline planners should find and follow the
only safe path. Instances of the TRIANGLETIREWORLD domain vary
in their numbers of locations.

EarthObservation. The EARTHOBSERVATION domain models a
satellite orbiting the earth. It can take pictures of the landscape below
with a camera. The landscape is subdivided into square regions of in-

terest forming a grid wrapped around a cylindrical projection of the
earth surface. The camera focuses on one region at a time and can be
shifted north or south. It can take a picture of the region currently in
focus. The focus may not be shifted while taking a picture. Regard-
less whether the focus is shifted or a picture is taken, the satellite
travels eastward around the earth, shifting the focus one grid cell to
the east in addition to the other effects in each step. The objective
is to take pictures of certain regions in a limited timeframe with as
few shifts as possible. Taking a picture of a region does not guaran-
tee good image quality: the worse the weather, the lower the chance
of success. Over time the visibility in each region can change proba-
bilistically, and changes between similar levels of visibility are more
likely than vast changes. Apart from the weather change probabili-
ties, which vary between 0.01 and 0.5, instances of the EARTHOB-
SERVATION domain differ in the numbers of grid cells and imaging
objectives.

5.2 Planners

We use state-of-the-art planners from the field of classical plan-
ning (FAST DOWNWARD), fully observable nondeterministic plan-
ning (MYND) and probabilistic planning (PROST). We give a short
overview of the underlying approaches.

FAST DOWNWARD. For classical planning, we use the FAST

DOWNWARD planning system [7] in the LAMA 2011 configuration.
In this setting, the planner first looks for a suboptimal plan with
Greedy Best First search. When a plan is found, the search engine
is switched to weighted A* to look for plans of higher quality. We let
the planner search until an optimal plan is found or the timeout of 90
seconds is reached. Since we only produce classical plans for proba-
bilistic problems, we have to deal with unexpected results when ex-
ecuting a plan on the plan simulator. Therefore, we wrap an execute-
monitor-replan loop around FAST DOWNWARD. When monitoring
determines that a plan is invalid, a new planning process is initiated
for the current situation.

MYND. For offline planning, we use the FOND variant of the
MYND planner [16] that uses LAO* search [5] guided by the canon-
ical PDB heuristic [2, 6]. We use the goal variables as singleton pat-
terns for the pattern collection. The planner outputs strong cyclic
plans in the form of state-action tables that are then interpreted by

Response Time [s] Reward
Eff ? eff max MYND Eff ? eff max MYND PROST

1 0 0 0 -2 -2 -5 -5 ± 1
2 0 0 0 -4 -4 -12 -9 ± 1
3 1 1 0 -6 -6 -19 ± 2 -14 ± 1
4 1 1 2 -8 -8 -25 ± 1 -21 ± 2
5 2 1 5 -10 -10 -31 ± 2 -28 ± 2
6 2 1 10 -12 -12 -37 ± 1 -31 ± 2
7 5 2 78 -14 -14 -44 ± 2 -36 ± 2
8 16 2 n/a -16 -16 n/a -41 ± 3
9 60 3 n/a -18 -18 n/a -45 ± 2

10 94 3 n/a -20 -20 n/a -52 ± 3
11 97 5 n/a -22 -22 n/a -57 ± 3
12 99 7 n/a -24 -24 n/a -60 ± 3
13 100 8 n/a -26 -26 n/a -66 ± 3
14 102 10 n/a -28 -28 n/a -70 ± 3
15 103 13 n/a -30 -30 n/a -76 ± 3

Table 3. Average response time and rewards for the TRIANGLETIREWORLD domain, the average of 100 runs is shown. Time values for MYND include
offline planning time.

an execution simulator. For each single planning task, we set an of-
fline planning time limit of 30 minutes. Lookup times during plan
simulation are negligible.

PROST. We use the PROST planning framework [11] for MDP
planning, equipped with the UCT? algorithm [13] as used in the con-
figuration that won IPPC 2014. This search procedure combines dy-
namic programming, heuristic search and Monte-Carlo tree search to
an algorithm that is asymptotically optimal in the limit, but which is
also able to make decisions under tight time constraints in an online
fashion. In our experiments, a time limit of one second per simula-
tion step was used. The heuristic is the base heuristic of PROST [11],
which is based on an iterative deepening search in the most-likely
determinization.

5.3 Experiments

In this paper we compare three planning paradigms that not only dif-
fer in their expressivity but also have unique plan representations. To
find common ground to evaluate the quality of the produced plans we
use Scott Sanner’s rddlsim2, the simulator of the International Proba-
bilistic Planning Competition (IPPC). For each of the three planning
domains we provide between 10 and 20 instances to be solved. Ev-
ery instance is simulated 100 times with a timeout of 30 minutes per
instance. For each domain and planning formulation we record the
number of dead ends, the average response time and the average re-
ward for each instance when no dead end was reached. The average
response time is the accumulated time to produce an action for a sim-
ulation run. For the Classical formalization solved by FAST DOWN-
WARD we denote the all-outcome determinization as Eff ? and the
most-likely determinization by eff max in tables.

The EARTHOBSERVATION domain does not have dead ends. The
all-outcome determinization ran into memory limitations and thus
was not applicable. Response times and rewards are given in Tab. 1.
Since PROST is an online planner, its planning time per decision is
a parameter and hence not illustrated in any of our Tables (we set

2 https://code.google.com/p/rddlsim/

(a) MOBILEMANIPULATION

Eff ? eff max MYND PROST
1 0 0 0 0
2 29 0 0 0
3 56 0 0 0
4 68 0 0 0
5 88 0 0 0
6 67 0 0 0
7 20 0 0 0
8 52 0 0 0
9 76 0 0 0

10 78 0 0 0

(b) TRIANGLETIREWORLD

Eff ? eff max MYND PROST
1 15 15 0 0
2 41 41 0 0
3 62 62 0 0
4 79 79 0 0
5 86 86 0 1
6 90 90 0 2
7 95 95 0 0
8 96 96 n/a 4
9 97 97 n/a 0

10 98 98 n/a 20
11 99 99 n/a 9
12 99 99 n/a 9
13 99 99 n/a 2
14 99 99 n/a 2
15 99 99 n/a 10

Table 4. Number of deadends reached in 100 iterations.

it to one second per step). Classical and FOND planning are more
dependent on the problem structure as they have to find a plan first.
The most-likely determinization here suffers from the problem that
the most likely result for taking an observation with bad weather is
that no picture is taken. Thus as long as there is one patch with bad
weather no proper plans are found. The rewards in Tab. 1 illustrate
this clearly. MYND and PROST perform better than the most-likely
determinization.

We see a different effect for the MOBILEMANIPULATION setting.
Obviously, MYND never ends up in a dead-end (see Tab. 4), but
the most-likely determinization is also well-suited to avoid this case.
This is due to the fact that the most likely outcome of ’risky’ actions
always leads to a dead-end, so FAST DOWNWARD never considers
this option. PROST performs comparably bad in the MOBILEMA-
NIPULATION domain since its heuristic maximizes the reward in the
next couple of steps rather than lead it to a goal state. Unlike the other
domains, a large number of actions must be performed until there is
a positive effect on the reward formula. Starting with instance five,
it doesn’t perform any meaningful actions. Response times in Tab. 2
show that the MYND planner is consistently faster besides problem
three, while the rewards are similar for all planners but PROST.

For the TRIANGLETIREWORLD domain we observe that classi-
cal planning runs into dead-ends early on, while PROST solves most
problems such that no or only a few runs end in a dead end state (see
Tab. 4). The response times in Tab. 3 show the expected behavior on
this domain for those runs not leading to a dead end. No FOND strat-
egy could be found for problem instances eight and higher, while
FAST DOWNWARD still produces optimistic plans and PROST still
manages to find a safe path to the goal in most instances. FAST

DOWNWARD is fastest finding optimal weak plans efficiently being
extremely optimistic. The rewards in Tab. 3 show this explicitly. If
a plan was produced the reward always was maximal. The FOND
planner must be pessimistic and thus gains lower rewards and solves
fewer instances. However, there are no dead ends for the solved prob-
lems. In this domain, the tradeoff between dead-end avoidance and
planning time is most obvious.

6 CONCLUSION

We evaluated three different planning approaches on distinctly dif-
ferent domains with probabilistic outcomes. Our results indicate that
more expressive planning formulations are not necessarily slower for
realistic problem sizes. Each planner showed different behavior de-
pendent on the specific domain. It should be noted that classical plan-
ning performs faster, when most actions are deterministic. However,
in the presented challenging settings a clear advantage based on com-
putation times cannot be seen. If more expressive features are desired
a richer planning formalism does not need to be prohibitively slow;
nondeterministic or probabilistic planning formalisms can show bet-
ter overall performance.

ACKNOWLEDGEMENTS

This work was supported by the German Aerospace Center (DLR)
as part of the Kontiplan project (50 RA 1010), by the German Re-
search Foundation (DFG) as part of the Transregional Collaborative
Research Centers SFB/TR 14 AVACS and SFB/TR 8 Project R7,
and the PACMAN project within the HYBRIS research group (NE
623/13-1).

REFERENCES
[1] Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic Dynamic Pro-

gramming with Factored Representations. Artificial Intelligence (AIJ)
121(1–2), 49–107 (2000)

[2] Culberson, J.C., Schaeffer, J.: Searching with pattern databases. In: Ad-
vances in Artificial Intelligence. pp. 402–416. LNCS, Springer-Verlag
(1996)

[3] Fu, J., Ng, V., Bastani, F.B., Yen, I.L.: Simple and fast strong cyclic
planning for fully-observable nondeterministic planning problems. In:
Proc. 22nd International Joint Conference on Artificial Intelligence (IJ-
CAI 2011). pp. 1949–1954 (2011)

[4] Gaschler, A., Petrick, R.P.A., Kröger, T., Knoll, A., Khatib, O.: Robot
task planning with contingencies for run-time sensing. In: ICRA Work-
shop on Combining Task and Motion Planning (2013)

[5] Hansen, E.A., Zilberstein, S.: LAO*: A heuristic search algorithm
that finds solutions with loops. Artificial Intelligence 129(1–2), 35–62
(2001)

[6] Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-
independent construction of pattern database heuristics for cost-optimal
planning. In: AAAI Conference on Artificial Intelligence (AAAI 2007).
pp. 1007–1012 (2007)

[7] Helmert, M.: The fast downward planning system. Journal of Artificial
Intelligence Research (JAIR) 26, 191–246 (2006)

[8] Kaelbling, L., Lozano-Perez, T.: Hierarchical task and motion planning
in the now. In: IEEE Conference on Robotics and Automation (ICRA)
(2011)

[9] Kaelbling, L., Lozano-Perez, T.: Integrated task and motion planning in
belief space. International Journal of Robotics Research (2013)

[10] Keller, T., Eyerich, P.: A Polynomial All Outcomes Determinization for
Probabilistic Planning. In: Proceedings of the 21st International Confer-
ence on Automated Planning and Scheduling (ICAPS 2011). pp. 331–
334. AAAI Press (June 2011)

[11] Keller, T., Eyerich, P.: PROST: Probabilistic Planning Based on UCT.
In: Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS 2012). pp. 119–127. AAAI Press
(2012)

[12] Keller, T., Eyerich, P., Nebel, B.: Task planning for an autonomous ser-
vice robot. In: Proceedings on the 33rd Annual German Conference on
Artificial Intelligence (KI). pp. 358–365. Springer Verlag (2010)

[13] Keller, T., Helmert, M.: Trial-based Heuristic Tree Search for Finite
Horizon MDPs. In: Proceedings of the 23rd International Conference
on Automated Planning and Scheduling (ICAPS 2013). pp. 135–143.
AAAI Press (2013)

[14] Kuter, U., Nau, D.S., Reisner, E., Goldman, R.P.: Using classical plan-
ners to solve nondeterministic planning problems. In: Proceedings of
the International Conference on Automated Planning and Scheduling
(ICAPS). pp. 190–197 (2008)

[15] Little, I., Thiébaux, S.: Probabilistic planning vs replanning. In: In
ICAPS Workshop on IPC: Past, Present and Future (2007)

[16] Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database
heuristics for fully observable nondeterministic planning. In: Interna-
tional Conference on Automated Planning and Scheduling (ICAPS).
pp. 105–112 (2010)

[17] Muise, C.J., McIlraith, S.A., Beck, J.C.: Improved non-deterministic
planning by exploiting state relevance. In: Proceedings of the 22nd In-
ternational Conference on Automated Planning and Scheduling (ICAPS
2012) (2012)

[18] Nebel, B., Dornhege, C., Hertle, A.: How much does a household robot
need to know in order to tidy up your home? In: AAAI Workshop on
Intelligent Robotic Systems (2013)

