
PREGO: An Action Language for Belief-Based
Cognitive Robotics in Continuous Domains

Vaishak Belle and Hector Levesque1

This paper is an abridged version of one appearing in the 2014
AAAI Conference on Artificial Intelligence [5].

Abstract. The area of cognitive robotics is often subject to the crit-
icism that the proposals investigated in the literature are too far re-
moved from the kind of continuous uncertainty and noise seen in ac-
tual real-world robotics. This paper proposes a new language and an
implemented system, called prego, based on the situation calculus,
that is able to reason effectively about degrees of belief against noisy
sensors and effectors in continuous domains. It embodies the rep-
resentational richness of conventional logic-based action languages,
such as context-sensitive successor state axioms, but is still shown
to be efficient using a number of empirical evaluations. We believe
that prego is a powerful framework for exploring real-time reactivity
and an interesting bridge between logic and probability for cognitive
robotics applications.

1 INTRODUCTION
Cognitive robotics, as envisioned in [16], is a high-level control
paradigm that attempts to apply knowledge representation (KR)
technologies to the reasoning problems faced by an autonomous
agent/robot in an incompletely known dynamic world. This is a chal-
lenging problem; at its core, it requires a clear understanding of the
relationships among the beliefs, perception, and actions of the agent.
To that end, sophisticated knowledge-based proposals for reasoning
about action and change have been investigated in the literature, as
demonstrated in [7, 24, 30, 13], among many others. One major crit-
icism leveled at this line of work, however, is that the theory seems
far removed from the kind of continuous uncertainty and noise seen
in robotic applications when real sensors and effectors are deployed.
The interpreters are often propositional or resort to the closed-world
assumption, and at best, only allow limited forms of incomplete in-
formation [24, 25]. Rather surprisingly, very little attention has been
devoted to the integration of action languages with probability den-
sities or degrees of belief. As far as we know, there has yet to emerge
a simple specification language that, (a) has the desirable features
of popular action formalisms such as context-dependent successor
state axioms [24], (b) allows for expressing discrete and continuous
noise in effectors and sensors, and most significantly, (c) is equipped
with an effective computational methodology for handling projec-
tion [24], the reasoning problem at the heart of planning and agent
programming. For real-time reactivity, it is also desirable that the rea-
soning that is needed (under suitable representational stipulations) be
as practical as common filtering techniques [32].

1 Dept. of Computer Science, University of Toronto, Canada; email: {vaishak,
hector}@cs.toronto.edu

This paper proposes a system called prego as a first step in this di-
rection. Informally, the language of prego is built from the following
components:

• symbols for the fluents over which one can define a (continuous
or discrete) probability distribution;

• action symbols for effectors and sensors, possibly noisy;
• specifications for the preconditions of actions, successor state of

fluents, and the results of sensing operations.

In this paper, we study the formal foundations of prego, as well as
a computational methodology for projecting belief, that is, for com-
puting degrees of belief after any sequence of actions and sensing
operations.2 We show that the language of prego can be interpreted
as a situation-suppressed dialect of the situation calculus [24], and
that the embodied projection mechanism is a special form of goal
regression. From a logical point of view, prego’s handling of conti-
nuity and uncertainty goes beyond the capabilities of popular inter-
preters for KR action languages. From a probability point of view,
prego allows successor state and sensing axioms that can be arbitrar-
ily complex [24], making it not only significantly more expressive
than probabilistic formalisms [6], but also current probabilistic plan-
ning formalisms, e.g. [27]. To the best of our knowledge, a develop-
ment of this kind has not been considered in this generality before.
prego is fully implemented; for empirical evaluations of its behavior
on non-trivial projection tasks, see [5].

We structure the paper as follows. We first introduce prego and
discuss some very simple belief change examples. We then intro-
duce the background logical language of the situation calculus and
study prego’s techniques. Then, related work and conclusions are
presented.

2 PREGO
The prego language is a simple representation language with a LISP-
like syntax.3 A domain in prego is modeled as a basic action theory
(or BAT) made up of the following five expressions (which we will
illustrate immediately below):4

1. (define-fluents fluent fluent . . .)
A list of all the fluents to be used in the BAT. These can be thought
of as probabilistic variables, whose values may or may not be
known.

2 For simplicity, only projection is considered for the language. High-level
control structures [17], such as recursion and loops, is left for the future.

3 The system is realized in the racket dialect of the scheme family
(racket-lang.org). Note that the technical development does not hinge
on any feature unique to this programming language.

4 For space reasons, we omit action preconditions in this paper.

h

Figure 1. Robot moving towards a wall.

2. (define-ini-p-expr expr)
Here, expr is an expression mentioning the fluents from (1) that
should evaluate to a number between 0.0 and 1.0. It indicates the
probability density given to any initial state in terms of the values
of the fluents in that state.

3. (define-ss-exprs fluent act expr act expr . . .)
This determines the successor-state expressions for the given flu-
ent fluent. The act parameters are of the form (name var var . . .)
where the vars are the arguments of the action and are used in the
corresponding expr. The idea is that if the action takes place, the
new value of the fluent is the value of expr. If an action does not
appear on the list, the fluent is unchanged by the action.

4. (define-l-exprs act expr act expr . . .)
The format of act and expr are as in (3). For each act, the expr is a
numerical expression like in (2) and determines the likelihood of
that action. If an action does not appear on the list, it is assumed
to have a likelihood of 1.0.

5. (define-alts act altfn act altfn . . .)

The format of the act is as in (3) and (4). The altfn is a function
of one argument that produces noisy versions of act for that argu-
ment. If an action does not appear on the list, then it is exact, that
is, without a noisy version.

To illustrate these, let us consider the simple scenario depicted in
Figure 1, where a robot is moving in a 1-dimensional world towards
a wall. Its distance to the wall is given by a fluent h. Suppose:

• The robot initially does not know how far it is from the wall, but
that the distance satisfies 2 ≤ h ≤ 12. In other words, the robot
believes that the initial value of h is drawn from a (continuous)
uniform distribution on [2,12].

• The robot has a distance sensor aimed at the wall. The sensor is
noisy in that the value z read on the sensor differs from the actual
value of h, but in a reasonable way. We assume that the likelihood
of getting z is given by a normal distribution whose mean is the
true value h.

• The robot has an effector for moving exactly z units towards or
away from the wall, but this motion stops when the wall is reached.

A BAT for this domain is shown in Figure 2. We have a single fluent
h and two actions: a sensing action sonar, and a physical action fwd.
Note that we can use racket arithmetic (e.g. max and -) and any other
function that can be defined in racket (e.g. the predefined UNIFORM
and GAUSSIAN). Note also that the expr terms are quoted expres-
sions where fluents appear as free variables. (We use backquote and
comma to embed the action argument z in the expression.)

Once the fluents are defined (here only h), the designer provides
the initial joint distribution over the fluents using any mathemati-
cal function (here, a uniform distribution over one variable).5 The
successor state axiom says that the value of h after a fwd action is

5 For simplicity, full joint distributions are assumed; when additional structure
is available in the form of conditional independencies, then belief networks,
among others, can be used [22].

(define-fluents h)

(define-ini-p-expr ‘(UNIFORM h 2 12))

(define-ss-exprs h
(fwd z) ‘(max 0 (- h ,z)))

(define-l-exprs
(sonar z) ‘(GAUSSIAN ,z h 4.0))

Figure 2. prego’s input for the simple robot domain.

obtained by subtracting z from the previous value or 0, whichever
is higher. The likelihood expression says that the sonar readings are
expected to be centered on the value of h with a standard deviation
of 4.0. Since the physical action fwd is assumed to be noise-free,
define-alts is not used in this BAT.

Let us now turn to a noisy version of fwd. The idea here is that the
agent might attempt a move by 3 units but end up actually moving
3.094 units. Unlike sensors, where the reading is nondeterministic,
observable, but does not affect fluents, the outcome of noisy actions
is nondeterministic, unobservable and changes fluent properties.

To model this, we imagine a new action symbol nfwd with two ar-
guments: the first captures the intended motion amount, and the sec-
ond captures the actual motion amount. Then, the ss-exprs block
for the fluent h would include:

(nfwd x y) ‘(max 0 (- h ,y))

That is, the true value of h changes according to the second argument,
not the first. Since the robot does not know the actual outcome, all
it knows is that (nfwd 3 z) occurred for some value of z, which is
captured using define-alts:

(define-alts
(nfwd x y) (lambda (z) ‘(nfwd ,x ,z)))

Finally, to indicate that this noisy move has (say) Gaussian noise, we
would include the following in the l-exprs block:

(nfwd x y) ‘(GAUSSIAN ,y ,x 1.0)

In other words, the actual amount moved is normally distributed
around the intended value with a variance of 1.

Using PREGO

prego can be used to reason about what is believed after any sequence
of physical or sensing actions. We use

(eval-bel expr actions)

where expr is any Boolean expression (with the fluents as free vari-
ables) and actions is a list of the actions that occurred. For example,
after moving 4 units towards the wall, the robot believes it is as likely
as not to be within 3 units:

> (eval-bel (< h 3) ((fwd 4)))
0.5

Note that prego is handling a mixed distribution here. After the ac-
tion, the possibility that h = 0 must be accorded a weight of .2
(i.e. from all points where h ∈ [2, 4] initially), while points where
h ∈ (0, 8] retain a density of .1.

Likewise, suppose we are interested in the agent’s beliefs after
sensing the value 5 on its sonar. Clearly, its beliefs should sharpen
around 5, and if the robot obtained a second reading of 5.12, its belief
would sharpen further. If we were to plot prego’s computed beliefs
for the fluent h after the sequence ((sonar 5) (sonar 5.12)), we
would obtain Figure 3. In the following sections, we justify these
results and also discuss examples involving the noisy effector.

0 2 4 6 8 10 12 14

Figure 3. Beliefs about h initially (solid red), after sensing 5
(magenta markers) and after a second sensor reading (blue squares).

Before ending this section, note that, as mentioned, the language
allows arbitrary context-dependent successor-state and likelihood
specifications [24]. For example, imagine a binary fluent wet which
says whether the floor is wet or not. Assume that, initially, it is very
likely to be wet:

(define-ini-p-expr
’(* (UNIFORM h 2 12)

(DISCRETE wet #t .8 #f .2)))

Then to model a noisy move whose reliability depends on whether or
not the floor is wet, we might have:

(define-l-exprs
(nfwd x y) ‘(GAUSSIAN ,y ,x (if wet 4.0 1.0)))

which says that the actual motion is determined by a Gaussian dis-
tribution with variance 4 when the floor is wet but with a variance 1
when the floor is dry. What makes the language rich is that there can
be physical actions (e.g. mopping up and spilling coffee) that affect
this context, as well as sensing actions (e.g. observing a reflection on
the floor) that sharpen the agent’s belief about the context.

3 LOGICAL FOUNDATIONS
The prego language can be interpreted as a dialect of the situation
calculus, extended to reason about degrees of belief. We will not go
over that language here, except to note:

• it is many-sorted, with sorts for physical actions, sensing actions,
situations, and objects (for everything else);

• a set of initial situations correspond to the ways the world might
be initially — a constant S0 denotes the actual one;

• there is a distinguished binary symbol do such that do(a1 · · · an, s)
denotes the situation resulting from performing actions a1 through
an at situation s.

Fluents capture changing properties about the world. Here we assume
that f1, . . . , fk are all the fluents in the language,6 and that these take
no arguments other than a single situation term. Note that this is not
a propositional theory in that we allow the values of these fluents to
range over any set, including the reals R.

We following two notational conventions. First, we often sup-
press the situation argument in a logical expression φ or use a dis-
tinguished variable now, and we let φ[s] denote the formula with that
variable replaced by s. Second, we use conditional if-then-else ex-
pressions in formulas throughout, possibly mentioning quantifiers.
We take some liberties with the scope of variables in that f =

If ∃x. φ Then t1 Else t2 is to mean ∃x [φ∧ f = t1]∨[(f = t2)∧¬∃x. φ].

Basic Action Theory
As hinted in prego’s presentation, a domain theory D is for-
mulated as a BAT [24] which includes sentences D0 describing
what is true initially, successor state axioms (SSA) of the form
∀a, s. f (do(a, s)) = SSA f (a)[s], and precondition axioms. For ex-
ample, the effect of the fwd action, from the robot domain above,
would be expressed as:7

h(do(a, s)) = (If ∃z(a = fwd(z))
Then max(0, h − z) Else h)[s]

so as to incorporate Reiter’s solution to the frame problem.
For the task of projection, we are interested in the entailments of

D. Entailment is wrt standard Tarksi models, but we assume that the
obvious interpretations are assigned to arithmetic symbols, =, and
real constants, such as π and e.

Noise and Degrees of Belief
Our account of probabilistic uncertainty is based on [2, 1], but aug-
mented here to also deal with continuous noisy effectors. These ex-
tensions to the situation calculus still benefit from Reiter’s solution
to the frame problem. They also generalize the Scherl and Levesque
[29] proposal, where actions and sensors are noise-free and beliefs
are strictly categorical, that is, non-numeric.

Mirroring prego’s presentation, our account involves 3 distin-
guished symbols: l, alt and p. D would now contain l-axioms of the
form l(α(~x), s) = Lα(~x)[s], and alt-axioms of the form alt(a, u) = a′.
For example, nfwd is modeled by including the appropriate SSA and
the following inD:8

l(nfwd(x, y), s) = N(y; x, 1)[s]. (1)

alt(nfwd(x, y), z) = nfwd(x, z). (2)

Finally, the distinguished symbol p can be seen as a numeric variant
of the accessibility relation in epistemic logics. Intuitively, p(s′, s) is
the density that the agent attributes to s′ when at s [2]. As part ofD0,

6 Non-logical symbols, such as fluent and action symbols, in the situation
calculus are italicized, e.g. fluent h in prego is h in the language of the
situation calculus.

7 Free variables are implicitly assumed to be quantified from the outside.
Note that SSAs are formulated here using conditional expressions, but they
macro expand to Reiter’s formulation.

8 We use N and U as abbreviations for mathematical formulas defining a
Gaussian and uniform density respectively.

the modeler would provide the probability distribution on the agent’s
initial worlds, using a sentence of the form

p(s, S0) = INIT(f1, . . . , fk)[s].

For example,
p(s, S0) = U(h; 2, 12)[s] (3)

embodies the initial uncertainty of our robot from Figure 1.
Given such axioms in D, the degree of belief in any situation-

suppressed φ in s is defined using the abbreviation:

Bel(φ, s) �
1
γ

∫
f1 ,..., fk

∫
u1 ,...,un

Density(φ, s∗)

where the normalization factor γ is the numerator but with
φ replaced by true, and if s = do(a1 · · · an, S0) then s∗ =

do(alt(a1, u1) · · · alt(an, un), S0).
The idea behind Density is simple. Starting from s, the density

of do(a1 · · · an, s) is the p-value of s times the likelihoods of each
ai. By integrating over ~u, alt(ai, ui) is taken into account, and so, all
possible successors resulting from noisy actions are also considered.9

For space reasons, we omit the definition; see [2]. We simply note
that the belief change mechanism subsumes Bayesian conditioning
[22], as used in the robotics literature [32].

4 COMPUTING PROJECTION
The projection mechanism seen in eval-bel is built on a special
form of goal regression. In other words, we begin by finding a
situation-suppressed expression r such that

D |= Bel(φ, do(a1 · · · an, S0)) = r[S0].

Because onlyD0 is needed to calculate r[S0], this reduces the calcu-
lation of belief after actions and sensing to a calculation in the initial
situation in terms of INIT.

Such a regression operator is formulated in [3]. They show how
Bel-expressions about the future reduce to Density-expressions about
S0. However, their proposal does not deal with noisy effectors. More-
over, their Density-expressions expand into formulas that quantify
over initial situations. Consequently, considerable logical machinery
is needed to further simplify these sentences to a purely numerical
formula.

What we propose here is a new treatment that not only general-
izes to both noisy acting and sensing, but one that involves only
mathematical (as opposed to logical) expressions. Roughly, this is
achieved by processing the logical terms in the goal in a modular
fashion wrt the situation-suppressed RHS (also interpreted as logical
terms) of the axioms inD. The result is a Boolean expression (about
S0), where fluents are free variables, that can be evaluated using any
software with numerical integration capabilities. In other words, no
logical consequence finding is necessary.

Definition Given a BATD, a situation-suppressed expression e, and
an action sequence σ, we define R[e, σ] as a situation-suppressed
formula e′ as follows:

1. If e is a fluent:

• if σ = ε (is empty), then e′ = e;

9 For discrete fluents and discrete noisy effectors, one would replace
∫

f and∫
u by

∑
f and

∑
u respectively. Let us also remark that both summations and

integrals can be defined as terms in the logical language, as shown in [2].

• if σ = σ′ · a then e′ = R(SSAe(a), σ′).

2. If e is a number, constant or variable, then e′ = e.
3. If e is Bel(φ, now) then

e′ =
1
γ

∫
~f

INIT × G[φ, σ]

where G is an operator for obtaining a (mathematical) expression
from the belief argument φ, defined below.

4. Else e is (e1 ◦ e2 ◦ . . . ◦ en) and

e′ = (R[e1, σ] ◦ R[e2, σ] ◦ . . . ◦ R[en, σ])

where ◦ is any mathematical operator over expressions, such as
¬, ∧, =, +, If, N , etc.

As in [24], fluents are simplified one action at a time using appro-
priately instantiated SSAs. The main novelty here is how Bel is re-
gressed using INIT, the RHS of the p-axiom in D0, with the argu-
ment φ handled separately, and how R works over arbitrary mathe-
matical functions in a modular manner; e.g. R[N(t1; t2, t3), σ] would
give us N(R[t1, σ];R[t2, σ],R[t3, σ]). Now, G:

Definition LetD and σ be as above. Given any situation-suppressed
fluent formula φ, we define G[φ, σ] to be a situation-suppressed ex-
pression e as follows:

1. If σ = ε, then e = If φ Then 1 Else 0.
2. Else, σ = σ′ · α(t); let α(t′) = alt(α(t), u) and

e =

∫
u
R[Lα(t′), σ′] × G[R[φ, α(t′)], σ′].

Essentially,G integrates over all possible outcomes for a noisy action
using alt. The likelihood of these outcomes is determined using Lα,
the RHS of the l-axioms.

For our main theorem, R is shown to have this property:

Theorem 1 Let D and σ be as above, and let e be any situation-
suppressed expression. Then

D |= e[do(σ, S0)] = (R[e, σ])[S0].

When e is a belief formula, this allows us to reduce the belief calcu-
lation to the initial situation, as desired:

Corollary 2 LetD, φ and σ be as above. Then

D |= Bel(φ, do(σ, S0)) = (R[Bel(φ, now), σ])[S0].

From Specification to PREGO
R is a reduction operator that takes as input any Boolean expression
(where fluents are free variables) and outputs a new one, leading to
a surprisingly straightforward implementation that exactly follows
Definitions 4 and 4. We demonstrate this using a BAT. LetD include
the situation calculus counterparts for our robot domain, i.e. (1), (2),
(3) and:

l(sonar(z), s) = N(z; h, 4)[s] (4)

h(do(a, s)) = (If ∃x, y (a = nfwd(x, y))
Then max(0, h − y) Else h)[s] (5)

Assume now that the robot senses 5 initially on the sonar, and then it
attempts a noisy move of 2 units away from the wall (by providing

a negative argument to nfwd). In reality, assume a move of 2.1 units
occurs. (As we shall see, the second argument of nfwd determines
the change to the h fluent, but does not affect beliefs about h, and so
it can be any arbitrary number.) Suppose we are further interested in
the robot’s beliefs about φ = (h ≤ 7). R works as follows:

R[Bel(φ, now), do(sonar(5) · nfwd(−2,−2.1), S0)]

=
1
γ

∫
h
U(h; 2, 12) × G[φ, sonar(5) · nfwd(−2,−2.1)]

=
1
γ

∫
h
U(h; 2, 12) ×

∫
u

(
R[Lnfwd(−2, u), sonar(5)] ×
G[R[φ, nfwd(−2, u)], sonar(5)]

)
=

1
γ

∫
h
U(h; 2, 12) ×

∫
u
N(u;−2, 1) × G[ψ, sonar(5)]

=
1
γ

∫
h
U(h; 2, 12) ×

∫
u
N(u;−2, 1) × N(5; h, 4) × G[ψ, ε]

where ψ = (R[φ, nfwd(−2, u)]) = (max(0, h − u) ≤ 7), and G[ψ, ε] =

If ψ Then 1 Else 0.
In the prego system, the supporting regression can be examined

using a second function, regr-bel, as follows:

> (regr-bel (<= h 7) ((sonar 5) (nfwd -2 -2.1)))
’(/
(INTEGRATE (h u)
(* (UNIFORM h 2 12) (GAUSSIAN u -2 1.0)
(GAUSSIAN 5 h 4.0)
(if (<= (max 0 (- h u)) 7) 1.0 0.0)))

(INTEGRATE (h w)
(* (UNIFORM h 2 12) (GAUSSIAN w -2 1.0)
(GAUSSIAN 5 h 4.0))))

The answer is a quotient of two integrals (or summations in the dis-
crete case), where the denominator is the normalization factor. The
integrand of the numerator is a product of four terms: the first com-
ing from INIT, the next two coming from the noisy acting and sens-
ing, and the final due to the regression of the argument of Bel. What
eval-bel then does is to evaluate these integrals numerically using
Monte Carlo sampling [21]:10

> (eval-bel (<= h 7) ((sonar 5) (nfwd -2 -2.1)))
0.47595449413426844

5 RELATED WORK

The prego framework is based on the situation calculus. While this
language is quite expressive, popular interpreters either make the
closed-world assumption, or only allow certain kinds of disjunctive
knowledge [24, 9, 8]. In other words: no degrees of belief. The no-
table exception to this is the MDP-inspired dtgolog and related pro-
posals [24]. Although a full comparison is difficult since dtgolog
implements a particular planning methodology while prego is just
a specification language, there are significant differences: dtgolog is
for fully observable domains and only supports discrete probabilities.
There has been recent work on POMDP extensions [28, 36]. How-
ever, they assume discrete noise in effectors, and make other strong
structural assumptions, such as context-free (strips-style) actions. In

10 For standard distributions such as N and U, points can be generated for
f1, . . . , fk (i.e. the fluents) and u1, . . . , un (i.e. the new integration vari-
ables introduced for noisy actions) using INIT and the l-axioms respec-
tively. These points are then tested for the regression of the argument to
Bel (e.g. G[ψ, ε] above).

our view, context-dependent SSAs are one of the reasons to consider
using a language like the situation calculus in the first place.

While the situation calculus has received a lot of attention, there
are, of course, other action languages; e.g. see [31, 33, 14] for treat-
ments on probabilities in other formalisms. They are, however, lim-
ited to discrete probabilities. Thus, we differ from these and many
others [23, 18, 12, 11] in being able to address continuity in a general
way, except for [2] that we build on. See [1, 2] for more discussions.
In addition, prego is seen to be more expressive than current proba-
bilistic planning languages [15, 35, 27]. Other continuous models for
planning, such as [19], are procedural rather than declarative, and do
not support contextual SSAs. As argued in [1], the same representa-
tional limitations also apply to most probabilistic formalisms, such
as Kalman Filters and Dynamic Bayesian Networks [6].11 Finally,
recent work on relational probabilistic languages [26, 20] and prob-
abilistic programming [10] feature sophisticated stochastic models,
but do not handle actions.

6 CONCLUSIONS

This paper proposed a new declarative representation language, and
studied a formal and computational account for projection with de-
grees of beliefs. The language allows for discrete and continuous
fluents, noisy actions and noisy sensors. It incorporates important
features of action languages, thereby providing an interesting bridge
between realistic robotic concerns, on the one hand, and logic-based
representation languages, on the other. In [5], we also discuss em-
pirical studies that demonstrate why we feel that the prego system is
powerful enough to explore real-time reactivity in cognitive robotics
applications. To the best of our knowledge, no other proposal of this
generality has been investigated.

There are two main avenues for the future. First, progression. The
regression system in prego maintains the initial state, and is appro-
priate for planning. For some applications, it is desirable to periodi-
cally update the system [34]. Following [4], we would like to explore
progression in prego and perhaps evaluate that against particle filters
[32]. Second, in a companion paper, we intend to consider the equiv-
alent of golog’s program structures for prego.

REFERENCES
[1] F. Bacchus, J. Y. Halpern, and H. J. Levesque, ‘Reasoning about noisy

sensors and effectors in the situation calculus’, Artificial Intelligence,
111(1–2), 171 – 208, (1999).

[2] V. Belle and H. J. Levesque, ‘Reasoning about continuous uncertainty
in the situation calculus’, in Proc. IJCAI, (2013).

[3] V. Belle and H. J. Levesque, ‘Reasoning about probabilities in dynamic
systems using goal regression’, in Proc. UAI, (2013).

[4] V. Belle and H. J. Levesque, ‘How to progress beliefs in continuous
domains’, in Proc. KR, (2014).

[5] V. Belle and H. J. Levesque, ‘PREGO: An Action Language for Belief-
Based Cognitive Robotics in Continuous Domains’, in AAAI, (2014).

[6] X. Boyen and D. Koller, ‘Tractable inference for complex stochastic
processes’, in Proc. UAI, pp. 33–42, (1998).

[7] G. De Giacomo, H.J. Levesque, and S. Sardina, ‘Incremental execution
of guarded theories’, ACM Transactions on Computational Logic, 2(4),
495–525, (2001).

[8] Yi Fan, Minghui Cai, Naiqi Li, and Yongmei Liu, ‘A first-order inter-
preter for knowledge-based golog with sensing based on exact progres-
sion and limited reasoning’, in Proc. AAAI, (2012).

11 As shown in [3], when the BAT is restricted to normally-distributed fluents
and effectors, regression can be shown to yield expressions identical to
a Kalman filter. However, Kalman filters only maintain the current world
state, and so they correspond to a kind of progression [34].

[9] A. Finzi, F. Pirri, and R. Reiter, ‘Open world planning in the situation
calculus’, in Proc. AAAI, pp. 754–760, (2000).

[10] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith
Bonawitz, and Joshua B. Tenenbaum, ‘Church: a language for gener-
ative models.’, in UAI, pp. 220–229. AUAI Press, (2008).

[11] Henrik Grosskreutz and Gerhard Lakemeyer, ‘ccgolog – a logical lan-
guage dealing with continuous change’, Logic Journal of the IGPL,
11(2), 179–221, (2003).

[12] Henrik Grosskreutz and Gerhard Lakemeyer, ‘Probabilistic complex
actions in golog’, Fundam. Inform., 57(2-4), 167–192, (2003).

[13] Andreas Herzig, Jerome Lang, and Pierre Marquis, ‘Action representa-
tion and partially observable planning using epistemic logic’, in Proc.
IJCAI, pp. 1067–1072, (2003).

[14] Luca Iocchi, Thomas Lukasiewicz, Daniele Nardi, and Riccardo Rosati,
‘Reasoning about actions with sensing under qualitative and probabilis-
tic uncertainty’, ACM Transactions on Computational Logic, 10, 5:1–
5:41, (2009).

[15] N. Kushmerick, S. Hanks, and D.S. Weld, ‘An algorithm for probabilis-
tic planning’, Artificial Intelligence, 76(1), 239–286, (1995).

[16] H. Levesque and R. Reiter. High-level robotic control: Beyond plan-
ning. Position paper at AAAI Spring Symposium on Integrating
Robotics Research, 1998.

[17] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl, ‘Golog: A
logic programming language for dynamic domains’, Journal of Logic
Programming, 31, 59–84, (1997).

[18] P. Mateus, A. Pacheco, J. Pinto, A. Sernadas, and C. Sernadas, ‘Prob-
abilistic situation calculus’, Annals of Math. and Artif. Intell., 32(1-4),
393–431, (2001).

[19] Nicolas Meuleau, Emmanuel Benazera, Ronen I. Brafman, Eric A.
Hansen, and Mausam, ‘A heuristic search approach to planning with
continuous resources in stochastic domains’, J. Artif. Intell. Res. (JAIR),
34, 27–59, (2009).

[20] B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and
A. Kolobov, ‘BLOG: Probabilistic models with unknown objects’, in
Proc. IJCAI, pp. 1352–1359, (2005).

[21] Kevin P Murphy, Machine learning: a probabilistic perspective, The
MIT Press, 2012.

[22] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference, Morgan Kaufmann, 1988.

[23] D. Poole, ‘Decision theory, the situation calculus and conditional
plans’, Electron. Trans. Artif. Intell., 2, 105–158, (1998).

[24] R. Reiter, Knowledge in action: logical foundations for specifying and
implementing dynamical systems, MIT Press, 2001.

[25] Raymond Reiter, ‘On knowledge-based programming with sensing
in the situation calculus’, ACM Trans. Comput. Log., 2(4), 433–457,
(2001).

[26] M. Richardson and P. Domingos, ‘Markov logic networks’, Machine
learning, 62(1), 107–136, (2006).

[27] S. Sanner, ‘Relational dynamic influence diagram language (rddl): Lan-
guage description’, Technical report, Australian National University,
(2011).

[28] S. Sanner and K. Kersting, ‘Symbolic dynamic programming for first-
order pomdps’, in Proc. AAAI, pp. 1140–1146, (2010).

[29] R. B. Scherl and H. J. Levesque, ‘Knowledge, action, and the frame
problem’, Artificial Intelligence, 144(1-2), 1–39, (2003).

[30] T.C. Son and C. Baral, ‘Formalizing sensing actions–a transition func-
tion based approach’, Artificial Intelligence, 125(1-2), 19–91, (2001).

[31] M. Thielscher, ‘Planning with noisy actions (preliminary report)’, in
Proc. Australian Joint Conference on Artificial Intelligence, pp. 27–45,
(2001).

[32] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, MIT Press,
2005.

[33] J. Van Benthem, J. Gerbrandy, and B. Kooi, ‘Dynamic update with
probabilities’, Studia Logica, 93(1), 67–96, (2009).

[34] S. Vassos and H. Levesque, ‘On the Progression of Situation Calculus
Basic Action Theories: Resolving a 10-year-old Conjecture’, in Proc.
AAAI, pp. 1004–1009, (2008).

[35] H. Younes and M. Littman, ‘PPDDL 1. 0: An extension to pddl for ex-
pressing planning domains with probabilistic effects’, Technical report,
Carnegie Mellon University, (2004).

[36] Z. Zamani, S. Sanner, P. Poupart, and K. Kersting, ‘Symbolic dynamic
programming for continuous state and observation POMDPs.’, in NIPS,
pp. 1403–1411, (2012).

