
Hybrid Reasoning for Geometric Rearrangement of
Multiple Movable Objects on Cluttered Surfaces

Giray Havur and Guchan Ozbilgin and Esra Erdem and Volkan Patoglu1

Abstract. We introduce a novel computational method for geomet-
ric rearrangement of multiple movable objects on a cluttered surface,
where objects can change locations more than once by pick and/or
push actions. This method consists of four stages: (i) finding ten-
tative collision-free final configurations for all objects (all the new
objects together with all other objects in the clutter) while also try-
ing to minimize the number of object relocations, (ii) gridization of
the continuous plane for a discrete placement of the initial configura-
tions and the tentative final configurations of objects on the cluttered
surface, (iii) finding a sequence of feasible pick and push actions
to achieve the final discrete placement for the objects in the clutter
from their initial discrete place, while simultaneously minimizing the
number of object relocations, and (iv) finding feasible final configu-
rations for all objects according to the optimal task plan calculated
in stage (iii). For (i) and (iv), we introduce algorithms that utilize lo-
cal search with random restarts; for (ii), we introduce a mathematical
modeling of the discretization problem and use the state-of-the-art
ASP reasoners to solve it; for (iii) we introduce a formal hybrid rea-
soning framework that allows embedding of geometric reasoning in
task planning, and use the expressive formalisms and reasoners of
ASP. We illustrate the usefulness of our integrated AI approach with
a scenario that cannot be solved by the existing approaches.

1 INTRODUCTION

Natural human environments (such as refrigerator shelves, desks
and tables) are often cluttered. While performing everyday chores at
home, rearrangement of such clutter needs to be routinely performed
either to unclutter the environment or to make space for new objects.

Geometric rearrangement planning with multiple movable objects
is a challenging problem, since this task not only requires manipu-
lation of objects lying around on the cluttered surface, but also ne-
cessitates manipulation of the new objects to be placed. Furthermore,
since the order of manipulation actions matters (it may not be pos-
sible to place an object before making enough space for it), and a
feasible plan may require a single object be moved multiple times
(for instance, to swap places of two or more objects in the clutter),
geometric reasoning alone is not sufficient to solve these problems;
planning of manipulation actions (i.e. pick-and-place, push opera-
tions), need to be integrated with the continuous geometric problem.

Motivated by these challenges, we introduce a novel multi-stage
computational method that integrates various approaches of AI. Our
method consists of four stages: tentative continuous placement, dis-
crete placement, hybrid planning, and feasible continuous placement.

1 Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul,
Turkey

Initial Con�guration Tentative Final Con�guration

Initial Con�guration Feasable Final
Con�guration

(a
) T

en
ta

tiv
e

Co
nt

in
uo

us
 P

la
ce

m
en

t
(d

) F
ea

si
bl

e
Co

nt
in

uo
us

 P
la

ce
m

en
t

(b
) D

is
cr

et
e

Pl
ac

em
en

t
(c

) H
yb

rid
 P

la
nn

in
g

x1

x1

x1
x2

1 2

3 4

5 6

Figure 1. Tight Placement Scenario

Figure 1 illustrates our approach on a sample problem where a rect-
angular box is placed into a cluttered drawer; figures show perspec-
tive views of 3-D objects.

Tentative continuous placement stage finds tentative collision-
free final configurations for all objects (all the new objects together
with all other objects in the clutter) while also trying to minimize the
number of object relocations. Note that neither the order of move ac-
tions, nor the feasibility of achieving this tentative goal configuration
through these actions are considered at this stage. For a tentative con-
tinuous placement, we introduce a local search algorithm that tries to
maximize the total area of the surface covered by objects. This al-
gorithm utilizes a random sampling based collision detection to de-
cide where to place objects on the surface, and in which orientation.
Heuristics and random restarts are considered to avoid local optima.
A tentative continuous placement for a tight placement sample sce-
nario is depicted in Figure 1(a).

Discrete placement stage takes as input, the initial configura-
tions and the tentative final configurations of all objects on the clut-

tered surface, and divides the surface into a minimum number of non-
uniform grid cells. During gridization of the continuous plane, an ob-
ject is allowed to (partially) span multiple grid cells as long as each
grid cell contains the center of mass (or centroid) of a single object.
For discrete placement, we formalize the optimal gridization prob-
lem in Answer Set Programming (ASP) [18, 4]—an expressive logic-
based formalism, and compute solutions using the award-winning,
state-of-the-art ASP solver CLASP [15, 17]. Discrete placement for
the sample scenario is depicted in Figure 1(b).

Hybrid planning stage aims to find a sequence of feasible move
actions (i.e., pick and push actions) to achieve the final discrete place-
ment of the objects in the clutter from their initial discrete placement,
while simultaneously minimizing the number of object relocations.
New objects are not considered at this stage as they can be placed to
their (tentative) final locations on the surface after the clutter has been
rearranged. We formulate the discrete rearrangement problem for the
relocated objects, as a hybrid planning problem in the spirit of [14],
and use the expressive formalisms and efficient solvers of ASP to
solve it. As illustrated in [13], ASP provides a formal hybrid planning
framework that combines high-level representation and logic-based
reasoning with low-level geometric reasoning and feasibility checks
to find optimal feasible plans. So, to increase feasibility of (discrete)
plans, we embed some geometric constraints on continuous place-
ment of objects (e.g., availability of a collision-free space on the table
for each manipulation action, taking into account the other objects in
the clutter) in the logical formalism of ASP. An optimal task plan for
the tight placement scenario is depicted in Figure 1(c).

Feasible continuous placement stage finds feasible final con-
figurations for all objects according to the optimal task plan. Even
though hybrid planning stage performs some continuous geometric
checks to increase feasibility of calculated task plans, due to com-
putationally intractable nature of the problem, embedding all con-
tinuous reasoning tasks in the domain description is not feasible. For
feasible continuous placement, we introduce a local search algorithm
that tries to minimize the number of collisions in an execution of the
hybrid plan. This algorithm utilizes a random sampling based colli-
sion detection for objects that are manipulated, and random restarts
to avoid local optima. Feasible continuous placement for the tight
placement scenario is depicted in Figure 1(d).

In both continuous placement stages, our approach can utilize
domain-specific constraints, such as placing an object (e.g., a moni-
tor) in a specific area on the surface (e.g., in the corner of the table).
In the hybrid planning stage, it can take into account domain-specific
constraints as well: for instance, some objects may be heavy and can-
not be picked by the robot but pushed.

Our framework also features several re-planning loops: In particu-
lar, if the local search algorithm can not find a feasible placement
after a predetermined number of random re-initializations, then it
identifies the problematic manipulation action and asks the hybrid
planner to return a new discrete plan that does not involve that action.
This replanning loop continues until a feasible continuous placement
is found, or the hybrid planner can not return any task plan. If no
task plan can be found, then the whole framework is randomly re-
initialized with a new tentative continuous placement.

It is important to emphasize here the tight coupling between task
planning and geometric reasoning in hybrid planning. The logic-
based reasoner guides the probabilistic geometric reasoner by find-
ing an optimal task-plan; if there is no feasible geometric solution
for that task-plan then the geometric reasoner guides the task planner
by modifying the planning problem with new temporal constraints.

Also, we embed geometric reasoning in logic-based reasoner as de-
scribed above while computing a task-plan; in that sense the geomet-
ric reasoner guides task planner to find geometrically feasible solu-
tions.

We show the applicability of our integrated AI approach to geo-
metric rearrangement planning, with different scenarios that cannot
be solved by the existing approaches.

A longer version of this paper has appeared in Proc. of the 2014
IEEE International Conference on Robotics and Automation [16].

2 RELATED WORK

The computational problem of geometric rearrangement with multi-
ple movable objects and its variations (like navigation among mov-
able obstacles [23, 21], or nonprehensile manipulation under clut-
ter [10, 11]) have been studied in literature subject to several re-
strictions due to their high computational complexity. Indeed, even a
simplified variant with only one movable obstacle is proved to be NP-
hard [25, 8]. The most common assumption that has been applied in
most of the related literature is the restriction of manipulation plans
to monotone plans–plans in which an object can be moved at most
once. However, such a limitation causes failure when an object needs
to be manipulated more than once, as seen in the scenario presented
in Figure 1.

Some related works relax this monotonicity assumption by search-
ing a manipulation solution in the robot C-space [24, 3, 5], or in the
combined space of the robot and the objects altogether [2]. However,
these methods are not computationally feasible for the problems with
high-dimensional configuration spaces or with large number of mov-
able objects.

Manipulation of the movable objects depends also on types of ma-
nipulation action. For instance, Cosgun et al. [7] tries to place an
object on a cluttered surface, by first grasping the object, and then
allowing this object to push other objects in the clutter to create a
space for itself. Dogar and Srinivasa [10, 11] can accommodate both
pick and place actions and non-prehensile actions such as pushes.
However, these approaches are also restricted to monotone plans.

In this paper, unlike many of the related studies in literature [23,
21, 2, 19, 22], our focus is to introduce a computational framework
for general manipulation plans without the restriction of monotone
plans. We consider pick and place actions as well as push actions.
Furthermore, our approach computes feasible and optimal task plans,
thanks to hybrid reasoning aspect of our method.

3 GEOMETRIC REARRANGEMENT WITH
MULTIPLE MOVABLE OBJECTS PROBLEM

The geometric rearrangement with multiple movable objects (GR-
MMO) problem is defined by

• the geometric model g(S) of a surface S that details its size and
shape along with the obstacles, including non-movable objects, on
it,

• a set OC of movable objects on the (possibly cluttered) surface S
and the set g(OC) of their geometric models,

• a set ON of new objects to be placed on the surface S (OC∩ON =
∅) and the set g(ON) of their geometric models,

• a set W of continuous placement constraints on objects (e.g., a
monitor may be forced to be in the corner of the table),

• a set H of task planning constraints on objects (e.g., some objects
may be heavy and cannot be picked by the robot but pushed),

• the initial collision-free configuration CI of all objects in OC on
the surface S relative to g(S), and

• a set A of manipulation actions ai(Oj) (1 ≤ i ≤ q) that can be
used to relocate a set Oj objects (Oj ⊆ OC ∪ON) on the surface
S, where q = |A|.

A solution to a GRMMO problem〈
g(S), OC , g(OC), ON , g(ON), CI ,W,H,A

〉
consists of

• a collision-free final configuration CF for all objects ON ∪OC on
the surface S relative to g(S), and

• a feasible manipulation plan P ∗ given as a sequence of manipula-
tion actions ai(oj) that can be applied to rearrange the objects in
ON ∪OC from CI to CF .

Without placing any restriction on the nature of manipulation
plans, we continue our discussion with two different manipulation
actions that can (re)locate a single object at a time, namely, pick-and-
place and push with oj ∈ OC ∪ ON . Note that our computational
method does not depend on these assumptions and supports a diverse
set of, possibly concurrent, actions including non-prehensile and un-
certainty reducing manipulation actions [11] For simplicity, we also
consider the surface S to be flat.

We obtain the geometric model of an object o with the help of
function g(o) and we abuse this notation to also operate on sets of
objects. A continuous placement constraint Wo on an object o de-
termines the area that can be sampled to find a collision-free final
configuration for o. A task planning constraint Ho on an object o
contains domain-specific information about o to be used during hy-
brid planning as a fact.

Tentative Continuous Placement

Discrete Placement

Hybrid Planning

Feasible Continuous Placement

Geometric Reasoning Task Planning

O , g(O), O , g(O), WC

H, A

C N N g(S), C I

Figure 2. Computational method for geometric rearrangement with multi-
ple movable objects on cluttered surfaces

4 AN INTEGRATED AI APPROACH TO
GRMMO

We propose a novel computational method to solve GRMMO prob-
lems, that consists of four stages as depicted in Figure 2. These stages
utilize local search and automated reasoning algorithms as follows.

4.1 Tentative Continuous Placement

The tentative continuous placement (TCP) problem is a relaxation
of the GRMMO problem in which the set of manipulation actions A,
their order, and task planning constraints H are not considered. A so-
lution to a TCP problem

〈
g(S), OC , g(OC), ON , g(ON), CI ,W

〉
is a tentative collision-free final configuration C̃F for all objects
ON ∪OC on the surface S relative to g(S).

We attack this problem by a local search strategy over search
states, which are configurations of objects on the cluttered surface.
Our local search algorithm aims to maximize an aggregate cost func-
tion that increases with new object placements and footprint area of
new objects in the clutter, while decreasing the relocations of objects
in the clutter.

First, we identify the set OR of objects that are initially on the
surface and that needs to be relocated according to W . Then, we
initialize the set OP of objects to be placed: OP = ON . With the
local search algorithm, the objects in OP are placed on the cluttered
surface one by one. Essentially, due to the cost function, the objects
in OP are ordered according to their footprint area, and the search
algorithm tries to place them sequentially using random sampling,
starting with the largest one.

To place an object o on the cluttered surface, the surface is ran-
domly sampled until a collision-free configuration is found or a sam-
pling threshold is exceeded. If a collision-free configuration is found
for an object o, then it is removed from OP . If a collision-free con-
figuration cannot be found within the sampling threshold, then the
object o′ that collided with o most frequently during random sam-
pling is removed from the surface and added to the set OP . By this
way, the local search algorithm tries to avoid local optima, and allows
relocation of objects that are already on the surface.

The search continues until all objects are placed or a local maxima
is reached. In case of a local maxima, the search is restarted with
random initialization.

Note that solution to TCP problem returns only tentative collision-
free final configurations for all objects (all the new objects together
with all objects in the clutter), but feasibility of achieving this ten-
tative goal configuration through a sequence of manipulation actions
cannot be guaranteed at this stage. For that, we need to decide for
the order of manipulations well. This motivates the following two
stages of our method: to discretize the initial/tentative configurations
of objects efficiently to be able to do task planning.

4.2 Discrete Placement

A gridization of a surface with respect to a configuration of objects,
like in Figure 3(a), can be obtained by iteratively dividing the mid-
way of two closest objects’ centers of mass (or centroid locations) on
S with respect to horizontal or vertical axis, as in Figure 3(b). Indeed,
in this way we can obtain a non-uniform grid, where each grid cell
contains the centroid of a single object. However, this naive method
of gridization may lead to a too fine grid and thus over-limit the sam-
pling space of each object to too small grid cells. Consequently, this
can prevent us from finding an existing placement solution. Another
drawback of such a suboptimal gridization is the increased input size
for the Hybrid Planning stage in terms of the number of grid cells.
Considering the intractability of Hybrid Planning, the importance of
the grid size for computational efficiency is beyond controversy. With
these motivations, we aim at gridization with the minimum number
of grid cells, as in Figure 3(d). For that, we define this gridization
problem as an optimization problem as follows.

(a) (b)

(c) (d)

Figure 3. (a) Centroids of all objects with respect to CI ∪ C̃F are indicated
on surface, (b) Program input is calculated by iteratively dividing the mid-
way of two closest centroids horizontally or vertically , (c) Program output is
emphasized, (d) Result of the grid optimization

The discrete placement (DP) problem is defined by

• the geometric model g(S) of a surface S,
• the initial collision-free configuration CI of all objects in OC on

the surface S relative to g(S), and
• the tentative collision-free final configuration C̃F for all objects

OC on the surface S relative to g(S).

A solution G to a DP problem
〈
g(S), CI , C̃F

〉
consists of

• a grid with the minimum number of non-uniform grid cells, such
that each cell is free or contains the centroid of a single object with
respect to CI and C̃F , and that at least one cell is free; and

• unique grid cell identifier for each object in OC∪ON with respect
to CI and C̃F .

We ensure that each cell contains the centroid of a single object
for two solid reasons:

• for providing a discretized input to Hybrid Planning stage to find
a feasible high-level plan, and

• for guiding future continuous placement stages (Geometric Rea-
soning, and Feasible Continuous Placement) by limiting the sam-
pling space for each object to a size of a grid cell, which contains
at least one placement solution for the object to belong to the ten-
tative collision-free final configuration C̃F .

We solve the DP problem by mathematically modelling it in ASP
as follows. We consider a suboptimal gridization for a continuous
placement of objects as described above, like in 3(b), as input. Then,
we find a maximal set of grid lines to remove from the suboptimal
grid, to obtain a solution to the DP problem. For that, we represent
the problem as a set of logical formulas (called rules) in ASP.

The rectangular suboptimal grid is defined by horizontal grid lines
y = 0, y = 1, ..., y = m and vertical grid lines x = 0, x =
1, ..., x = n. Then the optimal grid with the minimum number of
non-uniform grid cells is defined by a subset of these grid lines, that
satisfies the conditions about locations of objects stated in the DP
problem.

We “generate” a subset of the horizontal grid lines (denoted by
atoms of the form hline(j)) and vertical grid lines (denoted by atoms
of the form vline(j)) by the following rules in ASP:

{hline(j) : 0 ≤ j ≤ m}.
{vline(j) : 0 ≤ j ≤ n}.

ensuring that the border grid lines are included in the subset:

hline(0).hline(m).vline(0).vline(n).

In this subset, grid cells are defined by two horizontal neighbor
grid lines y1 and y2 (there is no other horizontal line y in between),
and two vertical neighbor grid lines x1 and x2 (there is no other
vertical line x in between) as follows:

cell(x1, y1, x2, y2)←
vline(x1), vline(x2), hline(y1), hline(y2),
{hline(y) : y1 < y < y2}0,
{vline(x) : x1 < x < x2}0

where 0 ≤ x1, x2 ≤ n and 0 ≤ y1, y2 ≤ m.
The locations of objects are defined similarly, as atoms of the form

obj(x1, y1, x2, y2), which expresses that an object is located at the
grid cell defined by the horizontal lines y1 and y2 and the vertical
lines x1 and x2.

Using these definitions, we can ensure that no grid cell
cell(x1, y1, x2, y2) formed by the grid lines in this subset contains
the centroids of any two objects, by the constraints:

← cell(x1, y1, x2, y2),
2{obj(x3, y3, x4, y4) : x1 ≤ x3, x2 ≥ x4, y1 ≤ y3, y2 ≥ y4}.

Finally, we minimize the cardinality of this subset of grid lines:

#minimize [vline(x) : 0 ≤ x ≤ n, hline(y) : 0 ≤ y ≤ m].

With this set of rules in ASP, we can use the ASP solver CLASP

to compute a solution to the DP problem.

4.3 Hybrid Planning
Once we obtain an optimal grid and the discrete locations of the
initial and the final configurations of the rearranged objects, as de-
scribed in the previous section, we can find a discrete task plan for
our rearrangement problem also taking feasibility checks into ac-
count.

The hybrid planning (HP) problem for geometric rearrangement
of objects is defined by

• a grid with non-uniform grid cells such that each cell contains the
centroid of a single object,

• a unique grid cell identifier for each object in OC ∪ ON with
respect to CI and C̃F , and

• a set H of task planning constraints on manipulation of objects in
the clutter.

A solution to an HP problem is an optimal task plan P ∗ with the
minimum number of manipulation actions. To find such a plan, we
use the formal framework of [13, 1] for hybrid planning that allows
us to embed feasibility checks into high-level representation of ac-
tions and change by means of external predicates.

We represent hybrid planning for discrete relocations, in ASP, and
use the ASP solver DLVHEX [12] to compute optimal plans as fol-
lows.

We consider fluents of the form loc(o, c, t) to describe locations c
of objects o at time step t. We also consider two actions of the forms,
pickPlace(r, o, c, t) and push(r, o, c, t), to describe a robot r moving
an object o to a grid cell c at time step t, by picking and placing or
by pushing, respectively.

We define the direct effects and preconditions of these actions by
a set of rules in ASP. For instance, the following rules express that,
after a robot r picks and places an object o onto a grid cell c at time
step t, the location of o becomes c at the time step t+ 1:

loc(o, c, t+ 1)← pickPlace(r, o, c, t).

The following constraint expresses a precondition of this action:
If an object o can not be grasped by the end effector of our robot r,
it is not possible to pick and place the object:

← pickPlace(r, o, c, t), not &reachableGraspable[o, r]().

Here &reachableGraspable is an “external predicate”, not a fluent
or an action but a predicate whose value is calculated by an external
program; it returns true if and only if the end-effector of the manipu-
lator r can successfully reach and grasp the given object o according
to kinematics and force-closure calculations of OPENRAVE [9].

The following rule expresses a precondition of the push action: a
robot r cannot push an object to a location c at time step t if the vol-
ume swept by the object o from its current configuration at t towards
another configuration in grid cell c, collides with other objects:

← push(r, o, c, t), not &pushPossible[loc, o, t]().

Here &pushPossible is an external predicate as well: it takes as in-
put all locations of objects at time step t, and checks whether the
swept volume of the object o collides with other objects using Open
Dynamics Engine (ODE) [20].

If we are given some high-level constraints H , these constraints
can be expressed in ASP as well. For instance, we can express that a
robot r cannot pick and place heavy objects o by the constraints:

← pickPlace(r, o, c, t), not liftable(o, r).

In such cases, the robot may try to push the object instead.
Also, with an optimization statement (like the one shown in the

previous section), we can minimize the number of manipulation ac-
tions involved in the task plan.

With such an ASP program, we can use DLVHEX to compute a
discrete task plan whose actions are feasible to the extent provided
by the embedded feasibility checks by means of external predicates.

4.4 Feasible Continuous Placement
The feasible continuous placement (FCP) problem is a variation of
the GRMMO problem, in which an optimal discrete manipulation
plan P ∗ =

〈
A0, A1, . . . , An−1

〉
is also provided as an input. A solu-

tion to a FCP problem
〈
g(S), OC , g(OC), ON , g(ON), CI ,W, P ∗

〉
is a feasible collision-free final configuration CF for all objects
ON ∪OC on the surface S relative to g(S).

We solve FCP problem by a local search algorithm. In this al-
gorithm, every state i of the search is characterized by a tuple
Ti =

〈
C0 = CI , C1, . . . , Cn

〉
of configurations of all objects in OC

and a subset of objects in ON . Each configuration Ci+1 is obtained
from configuration Ci by sampling the objects that are manipulated
by the action Ai of the plan P ∗, on the cluttered surface.

Note that when the manipulation action Ai is applied at an object
within a configuration Ci by such a sampling (i.e., when picking and
placing an object on to the cluttered surface, or by pushing an object
on the cluttered surface) there may be collisions. The cost function
for the local search algorithm is defined as the total number of con-
figurations where such collisions are observed.

At every search state Ti, the local search algorithm decides for the
next search state Ti+1 that minimizes this cost function. If it is not
possible to minimize the function (to make it 0 – no collisions), the
local search algorithm restarts with a different search state by random
sampling.

5 A CASE STUDY: ENFORCED SWAPPING
SCENARIO

We demonstrate the applicability and effectiveness of the proposed
computational method for geometric rearrangement of multiple mov-
able objects on a sample scenario where swapping of object locations
is enforced.

In this example, we introduce continuous placement constraints
W to enforce a swap for final configuration of two movable objects in
the clutter. A feasible swapping manipulation requires non-monotone
plans, where an object must be manipulated more than once. En-
forced swapping scenario is depicted in Figure 4. For this table-top
setting, we enforced a swap between the printer and the PC on the
desk, by defining continuous placement constraints on both objects.
With these constraints in place, the tentative continuous placement
stage produces a placement as in Figure 4(b), where the printer is
at the former location of the PC and the PC is located at the former
location of the printer.

(a) (b)

Figure 4. (a) Initial configuration, (b) Tentative final placement

Figure 5 depicts the discrete placement stage, in which an optimal
grid with 9 cells is calculated. Note that, since the number of mov-
able objects are larger in this scenario, the naive approach divides the
table into 100 grid cells; hence, optimization at this stage translates
to significant computational gains for the hybrid planning stage.

The hybrid planning stage finds a task plan with “pickPlace” and
“push” actions as listed in Tables 1 and 2. The result of feasible con-
tinuous placement and snapshots taken during the execution of the
plan are presented in Figure 6, where the swapping of PC and the
printer is successfully implemented.

Table 1. Initial and final discrete placement of objects for the enforced
swapping scenario

Initial Discrete Final Discrete
Placement Placement

Blue Printer 6 4
Red Mouse 2 6

Black Keyboard 4 2
Yellow Screen 7 9

Green Desk Clock 5 1

For additional scenarios, we refer the reader to our ICRA 2014
paper [16]. For examples with dynamic simulations with the mobile
manipulator COCOA [6], we refer the reader to the URL http:
//cogrobo.sabanciuniv.edu/?p=762.

6 DISCUSSION
We have proposed a novel computational method for geometric rear-
rangement of multiple movable objects on a cluttered surface, where

http://cogrobo.sabanciuniv.edu/?p=762
http://cogrobo.sabanciuniv.edu/?p=762

1 2 3

4 5 6

7 8 9

Figure 5. (a) Initial and tentative final configurations of the relocated objects (b) Non-optimal grid (c) Optimal grid with initial configurations

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 6. Snapshots taken during plan execution of the enforced swapping scenario

Table 2. A task plan for the enforced swapping scenario

Step Action Object To
1 pickPlace Blue Printer Cell 8
2 push Red Mouse Cell 6
3 pickPlace Black Keyboard Cell 2
4 pickPlace Yellow Screen Cell 9
5 push Green Desk Clock Cell 1
6 pickPlace Blue Printer Cell 4

the objects can be relocated more than once within a plan by pick
and place or push actions. In particular, we have utilized local search
and automated reasoning techniques at different stages of the prob-
lem to compute feasible solutions to this problem. We have taken
advantage of the expressive representation languages of automated
reasoners, for describing the optimal discretization problem and for
embedding results of external computations (e.g., for geometric rea-
soning) during task planning. We have applied the proposed compu-
tational approach to several sample scenarios that cannot be solved
by the existing approaches and illustrated feasibility of our solutions
by a dynamic simulation with the COCOA mobile manipulator.

ACKNOWLEDGEMENTS
This work is supported by TUBITAK Grants 111E116 and 113M422.

REFERENCES
[1] Erdi Aker, Volkan Patoglu, and Esra Erdem, ‘Answer set programming

for reasoning with semantic knowledge in collaborative housekeeping
robotics’, in Proc. Int. IFAC Symp. Robot Control (SYROCO), (2012).

[2] Jennifer Barry, Kaijen Hsiao, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez, ‘Manipulation with multiple action types’, in Experi-
mental Robotics, pp. 531–545. Springer, (2013).

[3] Ohad Ben-Shahar and Ehud Rivlin, ‘To push or not to push: on the re-
arrangement of movable objects by a mobile robot’, IEEE Trans. Syst.,
Man, Cybern., Part B: Cybern., 28(5), 667–679, (1998).

[4] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski, ‘Answer
set programming at a glance’, Commun. ACM, 54(12), 92–103, (2011).

[5] Pang C Chen and Yong K Hwang, ‘Practical path planning among mov-
able obstacles’, in Proc. of ICRA, pp. 444–449, (1991).

[6] Gokay Coruhlu and Volkan Patoglu, ‘Guvenli bilissel hizmet robotu
cocoa’nin gelistirilmesi: Tasarim, modellenme ve dinamik benzetim’.
Otomatik Kontrol Turk Milli Komitesi(TOK), (2013).

[7] Akansel Cosgun, Tucker Hermans, Victor Emeli, and Mike Stilman,
‘Push planning for object placement on cluttered table surfaces’, in
Proc. of IROS, pp. 4627–4632, (2011).

[8] Erik D. Demaine, Martin L. Demaine, Michael Hoffmann, and Joseph
O’Rourke, ‘Pushing blocks is hard’, Comput. Geom., 26(1), 21–36,
(2003).

[9] Rosen Diankov, Automated Construction of Robotic Manipulation Pro-
grams, Ph.D. dissertation, CMU, Robotics Institute, August 2010.

[10] M Dogar and Siddhartha Srinivasa, ‘A framework for push-grasping in
clutter’, Robotics: Science and Systems VII, (2011).

[11] Mehmet R Dogar and Siddhartha S Srinivasa, ‘A planning framework
for non-prehensile manipulation under clutter and uncertainty’, Au-
tonomous Robots, 33(3), 217–236, (2012).

[12] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans
Tompits, ‘dlvhex: A system for integrating multiple semantics in an
answer-set programming framework.’, Proc. of WLP, (2006).

[13] Esra Erdem, Erdi Aker, and Volkan Patoglu, ‘Answer set programming
for collaborative housekeeping robotics: Representation, reasoning, and
execution’, Intelligent Service Robotics, 5(4), 275–291, (2012).

[14] Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan Patoglu, and
Tansel Uras, ‘Combining high-level causal reasoning with low-level
geometric reasoning and motion planning for robotic manipulation’, in
Proc. of ICRA, (2011).

[15] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten
Schaub, ‘clasp: A conflict-driven answer set solver’, in Proc. of LP-
NMR, 260–265, Springer, (2007).

[16] Giray Havur, Guchan Ozbilgin, Esra Erdem, and Volkan Patoglu, ‘Geo-
metric rearrangement of multiple movable objects on cluttered surfaces:
A hybrid reasoning approach’, in Proc. of ICRA, (2014).

[17] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon,
‘The international sat solver competitionss’, AIMAG, 33(1), 89, (2012).

[18] V. Lifschitz, ‘What is answer set programming?’, in Proc. of AAAI, pp.
1594–1597. MIT Press, (2008).

[19] Kei Okada, Atsushi Haneda, Hiroyuki Nakai, Masayuki Inaba, and Hi-
rochika Inoue, ‘Environment manipulation planner for humanoid robots
using task graph that generates action sequence’, in Proc. of IROS, pp.
1174–1179, (2004).

[20] Russell Smith. Open Dynamics Engine (ODE), 2006.
[21] Mike Stilman and James Kuffner, ‘Planning among movable obstacles

with artificial constraints’, IJRR, 27(11-12), 1295–1307, (2008).
[22] Mike Stilman and James J Kuffner, ‘Navigation among movable ob-

stacles: Real-time reasoning in complex environments’, IJRR, 2(04),
479–503, (2005).

[23] Mike Stilman, J-U Schamburek, James Kuffner, and Tamim Asfour,
‘Manipulation planning among movable obstacles’, in Proc. of ICRA,
pp. 3327–3332, (2007).

[24] Jur Van Den Berg, Mike Stilman, James Kuffner, Ming Lin, and Dinesh
Manocha, ‘Path planning among movable obstacles: a probabilistically
complete approach’, in Proc. of WAFR, pp. 599–614, (2009).

[25] G. Wilfong, ‘Motion planning in the presence of movable obstacles’, in
Proc. of SCG, pp. 279–288, (1988).

	INTRODUCTION
	RELATED WORK
	GEOMETRIC REARRANGEMENT WITH MULTIPLE MOVABLE OBJECTS PROBLEM
	AN INTEGRATED AI APPROACH TO GRMMO
	Tentative Continuous Placement
	Discrete Placement
	Hybrid Planning
	Feasible Continuous Placement

	A CASE STUDY: ENFORCED SWAPPING SCENARIO
	DISCUSSION

