Advanced Algorithmic

Problem Solving
Le 6 — Math and Search

Fredrik Heintz
Dept of Computer and Information Science
Linkoping University

Outline

Arithmetic (lab 3.1and 3.2)
Solving linear equation systems (lab 3.3 and 3.4)
Chinese reminder theorem (lab 3.5 and 3.6)

Prime numbers and factorization (lab 3.7 and 3.8)
Heuristic Search (exercise 4)

Arithmetic

Range of default integer data types (C++)
unsigned int = unsigned long: 232 (9-10 digits)
unsigned long long: 264 (19-20 digits)

How to represent 777!

Operations on Big Integer

Basic: add, subtract, multiply, divide, etc
Use “high school method”

1 €& carry 218
218 45
45 -—— K
_——— 3 1090 (218*5)
563 872 (218%4)*10
————— +

Arithmetic

Greatest Common Divisor (Euclidean Algorithm)
GCD(a, 0) =a
GCD(a, b) = GCD(b, a mod b)
int gcd(int a, int b) { return (b == 0 ?a : gcd(b, a % b)); }
Least Common Multiplier
LCM(a, b) =a*b / GCD(a, b)
int Icm(int a, int b) { return (a / gcd(a, b) * b); }
// Q: why we write the lcm code this way?
GCD/LCM of more than 2 numbers:
GCD(a, b, ¢) = GCD(a, GCD(b, ¢))
Find d, x, y such that d = ax + by and d = GCD(a,b) (Extended
Euclidean Algorithm)
EGCD(a,0) = (a,1,0)
EGCD(a,b)
(d’)x}y’) = EGCD(b, a mod b)
(d,xy) = (d)y’,x - a/b*y’)

Arithmetic

Representing rational numbers.
Pairs of integers a,b where GCD(a,b)=1.

Representing rational numbers modulo m.
The only difficult operation is inverse, ax = 1 (mod m), where an inverse
exists if and only if a and m are co-prime (gcd(a,m)=1).
Can be found using the Extended Euclidean Algorithm
ax=1(mod m) =>ax-1=qm=>ax-qm=1
(d, x, y) = EGCD(a,m) => x is the solution iff d = 1.

Systems of Linear Equations

A system of linear equations can be presented

in different forms

N — —_ - = = -

2 4 -3][x] [3
2.5 =% +3%3=5 < |25 -1 3 || X% |=|5
Xl _6X3 :7 1 O —6_ X3 7

J -

2X1 +4X2 _3X3 — 3

Standard form Matrix form

Solutions of Linear Equations

=| _|1s a solution to the following equations :

Solutions of Linear Equations

A set of equations is inconsistent if there exists no
solution to the system of equations:

X{+2Xy =3
2X; +4X, =5

These equations are inconsistent

Solutions of Linear Equations

Some systems of equations may have infinite number of
solutions

X1+2X2 :3
2X; +4X, =6

have infinite number of solutions
I X 1l a 1 .
= 1s a solution for alla
X, | 10.5(3—a)

CISE301_Topic3 9

Graphical Solution of Systems of Linear Equations{&[:)

X1‘|‘X2:3
X1‘|‘2X2:5

Solution

/ X,=1, X,=2

Vi

CISE301_Topic3 10

Cramer’s Rule is Not Practical 11)

Cramer's Rule can be used to solve the system

3 1 1 3

5 2 1 5
NEr T =g s

1 2 1 2

Cramer's Rule 1s not practical for large systems.
To solve N by N system requires (N +1)(N - 1)N! multiplications.

To solvea 30 by 30 system, 2.38 x 10°° multiplications are needed.

It can be used if the determinants are computed in efficient way

CISE301_Topic3 11

Naive Gaussian Elimination

The method consists of two steps:

Forward Elimination: the system is reduced to upper triangular
form. A sequence of elementary operations is used.

Backward Substitution: Solve the system starting from the last

CISE301_Topic3

variable.
al 1 a'12 a13 Xl bl a'l 1 12 a'13 Xl bl
a‘2 1 a‘22 a‘23 X2 — bZ — O 22 23 ! X2 b2 !
Ay 85, Ay || X5] _b3_ i 0 0 Ay, '_ RS b3'
12

Elementary Row Operations

Adding a multiple of one row to another

Multiply any row by a non-zero constant

CISE301_Topic3 13

Example: Forward Elimination

6 -2
12 -8
3 -13

-6 4

— O O\ N

~18

26
—-19

Part 1: Forward Elimination

Stepl: Eliminate X, fromequations 2, 3,4

6
0
0
0

CISE301_Topic3

-2 2
-4 2
-12 8
2 3

~14

4
2
1

X

2

W

X
X
X

4

16
-6
—-27

14

Example: Forward Elimination

Step2 : Eliminate X, fromequations 3, 4

6 -2 2 4][x]| [16
0 -4 2 2 ||X, -6
0 0 2 -5||x| |-9
0 0 4 -13||x,| [-21

Step3 : Eliminate X, fromequation 4

6 -2 2 4 [x | [16]
0 -4 2 2 |[x| |-6
0 0 2 —5|[x| |-9
0 0 0 =-3||x] [-3

CISE301_Topic3 15

CISE301_Topic3

X

2

W

X
X
X

4

Example: Forward Elimination

Summary of the Forward Elimination :

X

[\

W

S O O A
S N NN
X X X

N

Example: Backward Substitution

6 -2 2 4 |[x | [16]

0 -4 2 21|x]| |-6

0 0 2 —5[|x| |-9

0 0 0 -3||x]| |-3

Solve for X,, then solve for X,,...solve for X,
x4:_—3:1, x3:_9+5:—2

-3 2
X, = —6—2(—2)—2(1) 1, x = 16+2(1)—2(—2)—4(1) _

3

CISE301_Topic3

17

Forward Elimination

To eliminate X;

J

aji < ajj (aizjazj (2<j<n)
To eliminate X, 22 *3<1<n
b « by — (aizjbz
)

CISE301_Topic3 18

Forward Elimination

a N
aij < aij _(a:(lk(Jakj (k < J < n)

To eliminate X, K+1<1<n

Continue until X,,_; 1s eliminated.

CISE301_Topic3 19

Backward Substitution

Oy
Xh =
an,n
. bn 1 ~an l,an
Xno1 =
An_1,n-1
. bn—2 o an—z,nxn o an—z,n—lxn—l
Xp—2 =
Apn-_2.n-2
n
bi — Qa4 jX;
_ j=1+1
X; =
dj i

CISE301_Topic3

20

Naive Gaussian Elimination [21)

The method consists of two steps

Forward Elimination: the system is reduced to upper triangular form. A
sequence of elementary operations is used.

a, Q, a; X| b1 a, &, Qag; X| bl
Ay Ay Ay || X | = bz =10 azz' a23' X | = bz'
_a31 d;, aj; 11% b3 0 0 ds; ' X5 _b3 '_

Backward Substitution: Solve the system starting from the last
variable. Solve for x, ,x, ,,...x

n-1°°*“".

CISE301_Topic3 21

Example 1

Solve using Naive Gaussian Elimination :

Part1: Forward Elimination Stepl: Eliminate X, from equations 2,3

X, +2X, +3X, = 8 egl unchanged (pivot equation)
2X, +3X, +2X;, =10 eq2 <—eq2 —(%jeql
3
3, + X, +2X, = 7 eq3 « eq3—(Tjeq1
X, +2X, +3X, = 8
— X, —4X; =-6
—5X, =T7X, ==17

CISE301_Topic3 22

Example 1

Part1l: Forward Elimination Step2: Eliminate X, fromequation 3

X, +2X,+3X;, = 8 eql unchanged
— X, —4X, =-6 eg2 unchanged (pivot equation)
—5X, —TX, =—17 eq3<—eq3—(_—ijeq2
X, +2X, +3X%;, = 8
— — X, —4X; =-6
13x, =13

CISE301_Topic3 23

Example 12 Backward Substitution

b 13
X3 __3:_:1

a33 13

b, —dy3X3 —6+4X,

a2,2 _1
. — by —ay 2 X; — 3% 8= 12Xy —3X3 1
= _ _
a | a |

The solutionis | X, |=|2

CISE301_Topic3 24

Determinant [25)

The elementary operations do not affect the determinant

Example:
1 2 3] 1 2 3
A=|2 3 2 Elementary operations SA'=|0 -1 -4
301 2 0 0 13

det (A) = det (A) = 13

CISE301_Topic3 25

How Many Solutions Does a System of Equations AX=B Have? (13 >

Unique
det(A)=0
reduced matrix

has no zero rows

CISE301_Topic3

No solution
det(A)=0
reduced matrix
has one or more
ZETO TOWS
corresponding B

elements # 0

Infinite
det(A)=0
reduced matrix
has one or more
ZETO TOWS
corresponding B

elements =0

26

Examples

Unique No solution infinte # of solutions
1 2 1 1 2 2 1 2 2
X = X = X =
\ \J \

o o) | o ople

solution: No solution Infinite # solutions
0 . . o

X = 0=—1Impossible! | X =
0.5 1-S5a

CISE301_Topic3 27

Pseudo-Code: Forward Elimination

Dok =1ton-1
Doi=k+1ton
factor = a;; / ay
Doj=k+i1ton
a;; =a;; - factor * Ay ;
End Do
b, = b, - factor * by
End Do
End Do

CISE301_Topic3

28

Pseudo-Code: Back Substitution

Xn — bn / an,n
Do i = n-1downto 1
sum = b,
Doj=1+1ton
sum = sum - a;; * X
End Do
X; = sum / a;;
End Do

CISE301_Topic3 29

Problems with Naive Gaussian Elimination (30)

The Naive Gaussian Elimination may fail for very simple cases.
(The pivoting element is zero).

0 1] x| [1
11X | |2

Very small pivoting element may result in serious computation
errors

1 1% 2

CISE301_Topic3 30

How Do We Know If a Solution is Good or Not

Given AX=B

X is a solution if AX-B=o0
Compute the residual vector R= AX-B

Due to rounding error, R may not be zero

The solution 1s acceptable 1f max ‘ri‘ <&
I

CISE301_Topic3 31

How Good is the Solution?

1 -1 2 1]][x 1 X | | -1.8673
32 1 4% 1 _ X5 —0.3469
= solution —

5 =8 6 3||X; 1 X3 0.3980
4 2 5 3][X] |1 X4 | | 1.7245
0.005 |
, 0.002

Residues: R =
0.003
10.001

CISE301_Topic3 32

Chinese Reminder Theorem

First found in an ancient Chinese puzzle:

There are certain things whose number is unknown. Repeatedly
divided by 3, the remainder is 2;

by 5 the remainder is 3; and by 7 the remainder is 2.
What will be the number?

In modern notation
x =2 (mod 3)

x =3 (mod 5)
x =2 (mod 7)

Chinese Reminder Theorem

R — /_‘
— AT
Three men walking together for seventy miles,

LI

Five plum trees with twenty one branches in flower,

LTI 1] 7

Seven disciples gathering right by the half-moon,

] FE LI

One hundred and five and we re back at the start

Chinese Reminder Theorem

What does the poem mean?

x ~{a, (mod 3) S A
X :rag (mod 5) LI 1
P : + @A T

¥ tmed?) —EIE L HE P

BB

Why is the solution correct?

X =70 a1 + 21 a2 + 15 a3 (mod 105)
notice that

70 =1 (mod 3) = 0 (mod 5) = 0 (mod 7)
21 =0 (mod 3) =1 (mod 5) = o (mod 7)
15 = 0 (mod 3) = 0 (mod 5) =1 (mod 7)

Theorem 2.9: (Chinese Remainder Theorem) Let my,my,...,m, be
pairwise relatively prime positive integers and let b,, by, ..., b, be any
integers. Then the system of linear congruences in one variable given by

x = b, mod m,

X = bl mod s

x = b, modm,

has a unique solution modulo m,m, - - - m,,.

Proof: We first construct a solution to the given system of linear
congruences in one variable. Let M = mym; - - -m, and, fori =1,2,...,n,
let M, = M/m,. Now (M;, m;) = 1 for each i. (Why?) So Mx; = 1 mod m; has
a solution for each i by Corollary 2.8. Form

x = bMyx, + b,Myx, + - -+ + b,M,x,

pri- 43¢

Note that x is a solution of the desired system since, for i = 1,2,...,n,

' &
¥ = bM)+ baMyry + -+ + b} + -+ + My,
=0+ 0+ + b+ +0modm

= b, mod m;

It remains to show the uniqueness of the solution modulo M. Let x’ be another

solution to the given system of linear congruences in one variable. Then, for all

i, we have that x' = b, mod m;; since x = b, modm; for all i, we have that

x = x"mod m, for all i, or, equivalently, m; lx — x' for all i. Then M | x -x'
= {(why?), from which x = x" mod M. The proof is complete. H

Note that the proof of the Chinese Remainder Theorem shows the existence
and uniqueness of the claimed solution modulo M by actually constructing this
solution. Such a proof is said to be constructive; the advantage of constructive
proofs is that they yield a procedure or algorithm for obtaining the desired
quantity. We now use the procedure motivated in the proof of Theorem 2.9 to
solve the system of linear congruences in one variable of Example 9.

Chinese Reminder Theorem

For example, consider the problem of finding an integer x such
that z=2 (mod3)

r=23 {mod4)

r=1 {mod?5)
A brute-force approach converts these congruences into sets
and writes the elements out to the product of 3x4x5 = 60 (the
solutions modulo 60 for each congruence):

X € {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59,)

x € {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59; ---}
x € {1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, ...}

To find an x that satisfies all three congruences, intersect the
three sets to get: x € {11, ...}

Which can be expressed as
r=11 {mod 60)

Chinese Reminder Theorem

Another way to find a solution is with basic algebra, modular
arithmetic, and stepwise substitution.

We start by translating these congruences into equations for
some t, s, and u:

Equx=2+3t
Eq2:x=3+4s
Eq3:x=1+5u
Substitute x from equation 1 into congruence 2:
243t =3 (mod 4) =>t=3 + 4s
Substitute t into equation 1: X = 11+12S
Substitute this into congruence 3:
11+128 =1 (mod 5) =>s =0 + 5u

Finally, x = 11+12s8 = 11 + 12(5u) = 11 + 60U

Primes

First prime and the only even prime: 2
First 10 primes: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Primes in range:
1t0 100 : 25 primes
1t0 1,000 : 168 primes
1to 7,919 : 1,000 primes
1t0 10,000 : 1,229 primes

Largest prime in signed 32-bit int = 2,147,483,647

Prime Testing

Algorithms for testing if N is prime: isPrime(N)
First try: check if N is divisible byi € [2 .. N-1]?
O(N)

Improved 1: Is N divisible byi € [2 .. sqrt(N)]?
O(sqrt(N))

Improved 2: Is N divisible by i€ [3, 5, .. sqrt(N)]?

One test for i = 2, no need to test other even numbers!
O(sqrt(N)/2) = O(sqrt(N))

Improved 3: Is N divisible by i € primes < sqrt(N)
O(m(sqrt(N))) = O(sqrt(N)/log(sqrt(N)))
(M) = num of primes up to M
For this, we need smaller primes beforehand

Prime Generation

Generate primes between o ... N]:
Use bitset of size N, set all true except index o0 & 1
Start from i = 2 until k*i > N

If bitset at index i is on, cross all multiple of i
(i.e. turn off bit at index i) starting from i*i

Finally, whatever not crossed are primes

Example:

~ 0,1,2,3,4,5,6,7,8,9,10,11, .., 51, 52,53, 54, 55, ..., 75, 76, 77, ...
- 0,1,2,3,4,5,6,7,8,9,10,11, .., 51, 52,53, 54,55, .., 75, 76, 77, ...
- 0,1,2,3,4,5,6,7,8,9,10,11, .., 51,52, 53, 54,55, .., 75, 76, 77, ...
- 0,1,2,3,4,56,7,8,9,10,11, .., 51, 52,53, 54, 55, ..., 75, 76, 77, ...
- 0,1,2,3,4,5,6,7,8,9, 10,11, .., 51, 52, 53, 54, 55, ..., 75, 76, 77, ...

$#include <bitset>

11 sieve size;
bitset<10000010> bs:

vi primes;

primes.push back((int)i):;

bool isPrime (11l N) :
if (N <= =zieve size) return bs[N]:

for (int 1

it (N

return true;

1 <= sieve size;
out multiples of 1 starting from 1 * 1i!

i * i; j <= sieve size; j += 1) bs

(int)primes.size() s

% primes[i] return false;

Factorization

An integer N can be expressed as:

N = PF * N/ where
PF = a prime factor
N' = another number which is N / PF

If N' =1, stop; otherwise, repeat
N is reduced every time we find a divisor

vl primeFactors (11 N) { remember: vi is vector<int>, 11 is long long

vl factors;

11 PF idx = 0, PF = primes[PF idx]; PF = 2, then 3,5,7,... 15 alsc

while (N '= 1 && (PF * PF <= N)) { stop at sgrt(N); N can get smaller
while (N % PF == 0) { N /= PF; factors.push back(PF); } remove PEB
PF = primes[++PF 1idx]; only consider primes!

}

if (N !'= 1) factors.push back(N); special case 1f N is a prime

return factors; if N does not fit in 32-bit integer and is a prime

Search

When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

To determine the feasibility of complete search estimate the
number of calculations that have to be made in the worst case.

Iterative complete search uses nested loops to generate every
possible complete solution and filter out the valid ones.
[terating over all permutations using next_permutation
[terating over all subsets using bit set technique

Recursive complete search extends a partial solution with one
element until a complete and valid solution is found.
This approach is often called recursive backtracking.

Pruning is used to significantly improve the efficiency by removing
partial solutions that can not lead to a solution as soon as possible. In the
best case only valid solutions are generated.

Summary

Arithmetic (lab 3.1and 3.2)
Solving linear equation systems (lab 3.3 and 3.4)
Chinese reminder theorem (lab 3.5 and 3.6)

Prime numbers and factorization (lab 3.7 and 3.8)
Heuristic Search (exercise 4)

