Advanced Algorithmic

Problem Solving
Le 3 — Strings

Fredrik Heintz
Dept of Computer and Information Science
Linkoping University

Outline

String matching - Knuth-Morris-Pratt (Lab 1.6)
DP over strings - Edit distance (UVA 11151)

Trie (UVA 644)

String multi matching — Aho-Corasick (Lab 1.7)
Suffix Trie/Tree/Array (Lab 1.8)

String Matching

Given a text string T (with n characters) and a pattern
string P (with m characters), find all occurrences of P
in T.
Easiest solution: Use string library (C++ string::find, C strstr,
Java String.indexOf)

C++ string::find is O(nm) worst case execution time but doesn’t
use any extra memory and works well on strings without many
partial matches.

Knuth-Morris-Pratt (O(n+m) time and O(m) space)

Boyer-Moore is also O(n+m) time and O(m) space, but more
efficient when the alphabet is large or the pattern is long
since it matches from right to left

More efficient solutions exists, as we will see...

DP on Strings — Edit Distance

The edit distance between strings S1 and Sz is the minimum
number of operations I (insert the next char of S2), D (delete),
R (replace by the next char of S2) that transforms S1 into S2
(also known as the Levenshtein distance).

Define D(j, j) to be the edit distance of prefixes Si[1...i] and S2[1...j], then
D(n, m) is the edit distance of S1 and S2.

D(i,j) = min(D(i-1, j)+1, D(i, j-1)+1, D(i-1, j-1)+t(i,j)), where t(i,j)=o0 if
S1[i]=S2][1...j] else 1. DP computation of D(n,m) is in O(nm).

We can also consider edit operations with weights (or costs or
scores): d for deletion/insertion, r for substitution, and e for
match. Edit distance is a special case with d=r=1and e=o.

The Hamming distance is also a special case.
What values of d, r and e? (min, d=oo, r=1, e=0)

The Longest Common Subsequence is also a special case.

What values of d, r and e? (max, d=o, r=-00, e=1)

UVA 11151

Trie (or keyword tree)

A Trie (or a keyword tree) for a set of strings P is a rooted tree
K such that

each edge of K is labeled by a character
any two edges out of a node have different labels

Define the label of a node v as the concatenation of edge
labels on the path from the root to v, and denote it by L(v)
for each p € P there is a node v with L(v) = p, and
the label L(v) of any leaf v equals some p € P

An example trie for P={he, she, his, hers}

UVA 644

String Multi Matching — Aho-Corasick

Given a text string T and pattern strings P, ..., P, find all
occurrences of every pattern P, in T.

The Aho-Corasick algorithm finds all matches of strings P,
..., P, inastring T in O(n+m+k) time and O(n) space, where
n=|T|, m=}|P;| and k is the total number of matches.

The Substring Problem

The substring problem: For a text S of length n, after
O(n) time preprocessing, given any string P either
find an occurrence of P in S, or determine that one
does not exist, in time O(|P|).

Build a trie of all substrings of S, O(n?).

It is easy to find prefixes of strings in a trie.

Each substring Sli...j] is a prefix of the suffix S[i...n] of S.

Therefore, create a trie of the n non-empty suffixes of S.

This can be done in O(n) time.

Suffix Trie and Suffix Tree

A Suffix Trie is a Trie with suffixes.
A Suffix Tree for S[1...n] is a rooted tree with

n leaves numbered 1...n

at least two children for each internal node (with the root as a possible
exception)

each edge labeled by a non-empty substring of S
no two edges out of a node beginning with the same character
Suffix Trees can be generalized to index multiple strings S, ..., S,

Suffix Trees allow linear time algorithms for
Exact matching in O(n+occ), where occ is the number of matches
Longest Repeating Substring in O(n)
Longest Common Substring in O(n)

Suffix Array

Suffix Trees are space inefficient (O(nb log n) bits) and hard to

implement

A Suffix Array is an array that stores:
A permutation of n indices of sorted suffixes
Each integer takes O(log n) bits, so a Suffix Array takes O(n log n) bits

Suffix Arrays allow efficient algorithms for
Exact matching in O(m log n)
Longest Repeating Substring in O(n)
Longest Common Substring in O(n)

Summary

String matching with Knuth-Morris-Pratt (Lab 1.6)
Finds all matches of a string P in a string T in O(n+m) time and O(n) space,
where n=|T| and m=|P)|

String multi matching with Aho-Corasick (Lab 1.7)

Finds all matches of strings P,, ..., P_ in a string T in O(n+m+k) time and O(n)
space, where n=|T|, m=}|P,| and k is the total number of matches

Suffix Tree

Exact matching in O(n+occ), where occ is the number of matches
Longest Repeating Substring in O(n)
Longest Common Substring in O(n)

Suffix Array (Lab 1.8)

Exact matching in O(m log n)
Longest Repeating Substring in O(n)
Longest Common Substring in O(n)

DP over strings is common. The Weighted Edit Distance can be
computed in O(nm) using DP with Edit Distance, Longest Common
Subsequence, Hamming Distance and more as special cases.

