
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Name Trees: Uniform and Extensible Interactions Between
Languages and Language Extensions

Filip Strömbäck
Department of Computer and Information Science

Linköping University
Linköping, Sweden

filip.stromback@liu.se

ABSTRACT
Storm is a system for creating extensible languages. It allows creat-
ing both language extensions and entirely new languages conve-
niently. This is useful to create domain-specific languages (DSLs)
that make certain specific tasks easier to achieve, and to add new
functionality to existing languages. This extensibility is provided
partially by the extensible syntax provided by Storm, and partially
by the name tree that represents the global namespace in the system.
This paper focuses on the name tree, which is shared between all
languages in the system and allows them to exchange information
between each other seamlessly. The name tree is extensible, which
makes it possible for languages to extend the representation in
order to accommodate new concepts while retaining compatibility
with existing languages.

This paper describes the name tree used in Storm and illustrates
how it can be used to incorporate new concepts in a type-safe way.
We do this by showing extensions to the imperative language Basic
Storm that add support for type-safe SQL queries and type-safe
algebraic effects. We also show how the name tree allows Basic
Storm to interact in a type-safe way with a separate language that
is used to define grammars and semantic actions. The name tree is
also useful for run-time reflection, and we will show how the infor-
mation in the name tree can be used to implement a visual debugger
and other tools that help developers understand the behavior of
the system.

CCS CONCEPTS
• Software and its engineering → Extensible languages; Run-
time environments.

KEYWORDS
extensible languages, domain-specific languages, lazy compilation,
name trees, Storm

ACM Reference Format:
Filip Strömbäck. 2024. Name Trees: Uniform and Extensible Interactions
Between Languages and Language Extensions. In Proceedings of PX/24.ACM,
New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PX/24, Mar 11, 2024, Lund, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Domain-specific languages (DSLs) are useful in many situations [7].
As an example, many popular GUI frameworks provide a DSL for
specifying the layout of components more conveniently compared
to using a general purpose programming language. Two examples
of frameworks that take this approach are GTK1 and Android2.
Both of them provide a DSL based on XML for the purposes of
specifying layout. However, since the DSL is mostly separate from
the host language, the developer needs to connect the two together
manually. This makes it more cumbersome than necessary to use
the DSL and it increases the risk for mistakes since the system is
not able to type-check the interactions between the languages.

Another approach is used by frameworks like React.3 They in-
stead provide an embedded DSL as a language extension that makes
it possible to specify layout alongside the rest of the application.
This approach is more costly to implement, since the compiler for
the DSL needs some level of awareness of the host language to be
able to compile the DSL properly. It does, however, allow the DSL
to integrate more seamlessly with the host language, which elimi-
nates the need for the programmer to connect the two manually
and allows type-checking.

A drawback of embedded DSLs is that they are often imple-
mented as a preprocessor that transforms it into equivalent code
in the host language. Since many preprocessors only accept a sin-
gle DSL, it is often not possible to use multiple different DSLs in
the same source file. There are, however, systems like SugarJ [3],
ableJ [19], and ableC [10] that provide a preprocessor that can be
extended to support multiple DSLs in a modular fashion. A problem
that remains with the above-mentioned systems is that they are
compiled to source code in the host language. This means that they
are limited by the constraints imposed by the host language. As
such, it is difficult for a DSL or language extension to extend the
type system of the host language, especially if it is desirable to
allow other extensions to use or further extend the new concepts
in the future.

These issues are all addressed in the extensible system Storm [16]
using a name tree. Storm uses its name tree to provide a global
shared namespace where all languages and language extensions
running in the system are able to store and look up named entities
using an uniform interface. These named entities can represent
standard concepts like types and functions, but it can also be ex-
tended with concepts that are unique to individual languages or
DSLs, such as grammars or database schemas. In Storm, the shared

1https://docs.gtk.org/gtk4/class.Builder.html
2https://developer.android.com/develop/ui/views/layout/declaring-layout
3https://react.dev/learn/writing-markup-with-jsx

1

https://orcid.org/000-0002-0556-6893
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://docs.gtk.org/gtk4/class.Builder.html
https://developer.android.com/develop/ui/views/layout/declaring-layout
https://react.dev/learn/writing-markup-with-jsx


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PX/24, Mar 11, 2024, Lund, Sweden Filip Strömbäck

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

name tree is also available to programs running in the system. This
makes it possible to use the name tree for reflection, and even to
modify the system at run-time. This, in turn, allows languages and
language extensions to be implemented in any language that is
supported by Storm. It also allows building powerful, language
agnostic development tools easily.

The remainder of this paper describes how Storm utilizes its
name tree to make it easy to develop both embedded and stand-
alone DSLs that interact with other languages in the system in a
type-safe way (Sections 2 and 4). We will also show how DSLs and
language extensions can extend the representation in the name tree
with representations of new concepts that are usable by the host
language and also accessible to future extensions (Section 5). Finally,
we will show a few examples of tools that utilize the representation
in the name tree to help developers debug issues and to explore
libraries and languages in the system (Section 6).

2 STORM
Storm itself is not a programming language. Rather, it consists
only of a runtime system for languages to use and a collection of
tools to aid development of extensible and interactive program-
ming languages [16]. Storm does, however, include two languages
by default: Basic Storm and the Syntax Language. The former is a
general purpose imperative programming language designed to
closely reflect the internal representation used in Storm. The latter
is a DSL for defining grammars used to parse extensible languages.
Even though these languages are included by default, they are not
treated specially by the system in any way. They are simply in-
cluded as a convenient starting point for further development of
programming languages and language extensions.

To aid the development of programming languages and language
extensions Storm provides a runtime system, a library for in-process
code generation, a parser for extensible languages, and a name tree
that languages can use to resolve names in a uniformmanner. These
are shown in Fig. 1. Combined, these components allow a great
level of flexibility. For example, the name tree is used to expose the
functionality of all the components in Storm to all languages in
the system. Furthermore, the in-process code generation alongside
the uniform name resolution provided by the name tree makes it
possible to implement languages or language extensions in any
language supported by the system. In particular, this means that it
is possible to develop DSLs specifically for making development of
future DSLs or languages easier [16]. The in-process code genera-
tion also allows modifying the system while it is running, which
makes it possible to implement techniques like dynamic software
updating [9, 18] to allow live programming by making it possible
to make changes to running programs.

The remainder of this section provides an overview of the afore-
mentioned components, and a brief description about the interac-
tivity of the system. The name tree, which is the focus of this paper,
is covered in greater detail in Section 4. Storm is freely available
at https://storm-lang.org/ and works on both Windows and
Linux.

Storm Runtime System

Components in Storm

Name Tree

Code Generation

Parser Generation

Basic Storm

The Syntax Language

··
·

Figure 1: Overview of Storm. Adapted from [16].

2.1 Runtime System
The runtime system provides fundamental services to all code that
is running in the system. Most importantly, the runtime system
provides a garbage collector for memory management (currently,
the MPS [1], but it is possible to use other collectors as well). It also
manages all threads in the system and implements a user-mode
scheduler to support green threads for languages that uses them.
For example, Basic Storm uses green threads to implement message
passing between threads. This is, however, outside the scope of this
paper.

Apart from these low-level system facilities, the runtime system
provides a number of primitive data types (e.g., integers and strings)
and containers (e.g., arrays and hash tables) through the name tree.
These types are intended to provide a set of types that languages can
use to exchange information in a standardized format. Languages
are, however, free to implement their own primitive types and
containers if they desire. This would, however, make it more difficult
for different languages to interact.

2.2 Code Generation
Storm provides a library that allows languages to generate exe-
cutable code in a portable manner. The library is able to emit code
for x86, x86-64, and ARM64 from the provided intermediate rep-
resentation. The code is generated in-process, which immediately
makes it usable by the program. This is important for the flexibility
of the system as it removes the distinction between compile-time
and run-time, which is one part of why it is possible to use any
language in the system to implement new languages and extensions.
For example, even though it is not currently possible to pre-compile
Storm programs, it is possible to implement parts of Basic Storm in
itself (e.g., array literals, string interpolation, and lambda functions).

The code generation library also allows dynamic re-linking of
the running program. This makes it possible to replace the imple-
mentation of functions in the program at run-time. Storm currently
uses this ability to implement lazy compilation, which means that
most functions are not compiled until they are called for the first
time. This ability is also used to allow updates to running programs,
as described in Section 3.

2.3 Parser Generation
To aid languages in parsing their input, Storm also provides facili-
ties for generating extensible parsers that support embedded DSLs.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Name Trees: Uniform and Extensible Interactions Between Languages and Language Extensions PX/24, Mar 11, 2024, Lund, Sweden

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

As described in a previous paper [16], the parser generation facil-
ities dynamically consume productions and non-terminals from
the name tree and construct parse tables on the fly based on the
grammar the language and/or the user wishes to use. Since the
name tree is hierarchical, this makes it possible to structure the
grammar as modules that can be imported as if they were libraries.
This works similarly to the embedded DSLs implemented by Sug-
arJ [3] and ableJ [19], but the underlying mechanisms differ. Each
production is also associated with a semantic action (called syntax
transforms in Storm) to allow extensions to specify the semantics
for the new syntax without modifying the implementation of the
host language.

In order to not restrict languages and language extensions, the
facilities provided by Storm supports all context-free grammars,
even ambiguous ones. As such, Storm currently generates parse-
tables for a GLR [13] parser. Furthermore, the input is not tokenized
in a separate step. Rather, the syntax representation (and the Syntax
Language) allows specifying the tokenization in the grammar, and
tokenization is then driven by the parser. This makes it possible for
language extensions to customize the tokenization, for example by
providing alternate syntax for string literals and/or comments in
certain regions of the code.

As mentioned previously, the parser generation facilities operate
on a syntax representation stored in the name tree. As with Basic
Storm, the Syntax Language is simply a language that produces
this representation that is included in the system by default. As
such, it is possible to use the parser generation facilities with other
languages that produce the same representation. It is also possible
for other parts of the system to consume the generic representation
for other purposes. For example, Storm contains a library for gen-
erating simpler but faster recursive descent parsers from the same
representation. Finally, since the Syntax Language is implemented
in itself, it is also possible to extend the syntax language using itself.

3 INTERACTIVITY
Storm aims to provide a convenient and interactive development
experience. As we shall see (section 4.4), the compilation process
is managed entirely by Storm, meaning that running a program
is usually as easy as typing storm <path> where <path> is the
location of the source code. It is also possible to run Storm interac-
tively. Storm can either be launched stand-alone, in which case it
provides an interactive top-loop. It is also possible to launch Storm
as a language server, which allows an editor (currently only Emacs)
to utilize Storm for syntax highlighting, accessing documentation,
and interacting with the running program.

The ability to dynamically re-link programs (see Section 2.2) is
also utilized to allow updating running programs. Presently, the
possible updates are limited to adding new definitions and updating
the body of existing functions. Preliminary work on extending these
capabilities to also allow updating instantiated data structures exists
as an experiment, but is not yet complete. This preliminary work
does, however, indicate that a larger set of updates are possible.

As is the case with the other components in the system, these
abilities are exposed to programs and languages in the system. It is
thus possible to write programs that utilize the (currently limited)
ability to update code to partially reload themselves dynamically.

For example, the presentation viewer that is bundled with Storm
utilizes this ability to allow reloading presentation developed in
an extension to Basic Storm without having to restart the entire
application. The openness of the system also makes it possible to
develop alternative language servers or IDEs in Storm itself.

4 THE NAME TREE IN STORM
This section describes the implementation of the name tree in Storm.
As mentioned in Section 2, the name tree is the data structure that
represents the global namespace in Storm that is shared between all
languages in the system. Storm also uses the name tree to expose
the functionality of the code generation and parser libraries to
languages in the system. As such, the name tree is a central part of
Storm, and a core contributor to its flexibility.

Since Storm is designed to be an interactive system, programs
are executed in the same process as the compiler. This allows inter-
leaving program execution with compilation, which in turn makes
it possible to use any supported language to extend the system
itself. As a part of this, Storm gives programs unrestricted access to
the name tree. Programs may thus use the name tree for facilities
like reflection, loading new code, or modifying their own execution
environment. Not all programs require this ability, however. For
such programs, it would be possible to save the output from the
compilation process as a stand-alone binary to allow executing the
program without a name tree. This is, however, not yet supported
by Storm.

The previously cited paper about Storm [16] mainly focuses on
the Syntax Language and how it is used to create DSLs as syntax
extensions to host languages in Storm. It does, however, not cover
the name tree in great depth. As such, this paper focuses on how the
name tree is used to enable the syntactical extensibility presented
in [16], and how it allows introducing new concepts in the system.

4.1 Named Entities
The name tree stores a set of named entities in a hierarchical fashion.
Each named entity is represented by an instance of the class Named.
These entities typically represent familiar concepts such as types,
variables, or functions, and are represented as the subclasses to
Named as described in Section 4.3. It is, however, possible to store
any type of data in the name tree by creating custom subclasses to
Named. The same mechanism can also be used to extend existing
representations as we will see in Section 5.

Each named entity has a name in the form of a string and a
list of zero or more parameters that each refer to a type in the
name tree. This name is typically written in the form f(a, b,
...) where f is a string, and a and b are parameters that refer
to types in the system. If the list of parameters are empty the
parentheses are omitted entirely. Two entities are considered to
have the same name only if the string and the list of parameters
are equal. This makes it possible to implement generic data types
and function overloading. For example, a type that stores an array
of integers can be named Array(int), which is different from the
name Array(float), used for an array of floating point numbers.
Similarly, a function that accepts an integer parameter is named
f(int), while a version of the function that accepts a floating point
number is named f(float).

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

PX/24, Mar 11, 2024, Lund, Sweden Filip Strömbäck

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

As previously mentioned, the name tree is hierarchical, much
like a file system. This is achieved by using instances of the NameSet
class, which inherits from Named and stores a set of named entities
as children to itself. This entity is thus used as an internal node
in the tree structure of the name tree and as the root of the entire
name tree. In Storm, the NameSet type is used as a starting point
for anything that may contain other entities, such as packages and
types.

Since the name tree is hierarchical, it may contain multiple nodes
with the same name that are located inside different NameSet nodes
(c.f., files with the same name in different directories). As such, it
is necessary to use an absolute name to identify nodes uniquely.
Such names are typically written as a sequence of parts separated
by periods (.). For example, the name core.f(int) is the name of
a function named f that accepts an integer parameter. The function
is located in a NameSet named core that is itself located in the root
of the name tree. Note that each part of the sequence may contain
parameters. For example, a function that is a member of a parame-
terized type may have the absolute name Array(int).push(int).

4.2 Name Lookup in the Name Tree
The name tree also provides a standardized mechanism to look up
names in the name tree. Given an absolute name, it is straight for-
ward to traverse the name tree from the root and resolve each part
of the name in succession. This approach is, however, inconvenient
as it would require languages to use absolute names.

To avoid this, the name tree provides a representation of a
scope in which names can be resolved. A scope consists of two
things, firstly a reference to a NameLookup object that corresponds
to the “current scope” in the name tree. As illustrated in Fig. 1, a
NameLookup object represents a possibly unnamed element in the
system that supports resolving names. All NameLookup objects do,
however, have a pointer to a parent object that allows traversing
the name tree towards the root. In addition to the reference to a
NameLookup object, a scope also contains a strategy that describes
how the name tree should be traversed to resolve a name. Typi-
cally, the strategy first attempts to look up the name relative to the
NameLookup stored in the scope (i.e., looking in the current scope).
If it is not found there, the name tree is traversed towards the root
until a match is found.

The representation of scopes above does not only have the benefit
that it can be customized by languages. The standardized represen-
tation also makes it possible for languages to exchange name reso-
lution strategies. This, in turn, makes it possible for one language
to embed a part of another language while making the embedded
language follow the name resolution rules of the host language.

4.3 Standard Entity Types
Tomake interaction between languages easier, Storm defines several
entity types that represent concepts that are commonly found in
programming languages, such as packages, types, functions and
variables. An overview of the central entity types are shown in Fig. 2.
Languages in Storm are encouraged to use and extend these entity
types where possible so that different languages and extensions are
able to communicate with each other without explicit knowledge
of each other. Storm follows this convention by exposing all of its

NameLookup

Named

NameSetFunction MemberVar

PackageType

Figure 2: Overview of the relation between a few central
entity types in Storm. The entity types Named and NameSet
provide the structure of the name tree itself. The remaining
entity types define common concepts that can be used by
languages to interact.

functionality through standard entity types in the name tree. An
entity type is simply a class that inherits from Named. The term
entity type is used to highlight that it is the type of an entity in the
name tree.

The three most important entity types provided by Storm are
perhaps the Type, Function, and MemberVar entity types. Together,
they form the core of the type system used by Storm to expose
its functionality to languages in the system. Storm is statically
typed using a type system that is similar to the type system in Java.
Types may contain both variables and functions, that are considered
members of the type. Single inheritance between types is supported,
and virtual dispatch is used formember functions in order to achieve
polymorphism. Similarly to Java, Storm differentiates between class-
types and value-types. The former have by-reference semantics
while the latter have by-value semantics. There are no primitive
types in Storm. These are instead provided as value-types by the
standard library. The type system in Storm also supports actor-
types to manage concurrency, but this is outside the scope of this
paper. The name tree itself is exposed to the system using this type
system.

Named entities of the Type entity type describe types in the
system. As can be seen in Fig. 2, the Type entity type inherits from
the NameSet entity type. This makes it possible to add member
functions and member variables to Type entities by adding them
as children in the name tree. The Type entity keeps track of its
contents to generate additional metadata. In particular, it uses the
contained MemberVar entities, that each represent a member vari-
able, to compute the in-memory layout of instances of the type. It
also examines the contained Function entities in order to deter-
mine which member functions require vtable-based dispatch, and
adds such logic if necessary. Of course, Function entities can be
used outside of types to create non-member functions.

4.4 Populating the Name Tree
The Package entity type (see Fig. 2) is another important entity
type provided by Storm. As it inherits from the NameSet entity type
it is also used to structure the name tree hierarchically. In addition

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Name Trees: Uniform and Extensible Interactions Between Languages and Language Extensions PX/24, Mar 11, 2024, Lund, Sweden

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

to providing structure, Package entities are also responsible for
populating the name tree. Each Package entity is associated with
a directory in the file system. The package is then responsible for
populating itself with named entities that correspond to the con-
tents of the directory. The package will create a new Package entity
for each subdirectory. It will also attempt to load the files in the
directory by creating a reader for each file type. Readers are created
by calling a function with the name lang.<ext>.reader(...) to
create a reader for each file type that is found (<ext> is replaced
with the file extension). The created reader(s) are then asked to
create named entities that correspond to the contents of the file.
These are then inserted into the package.

Since the Package searches the name tree to find a suitable
reader, it is possible to add support for new file types by simply
adding a named entity with the appropriate name to the name tree.
Furthermore, the Package entity does not assume that the reader
function is implemented in any particular language. Any language
can be used as long as it produces entities that inherit from the
standard Function entity type. Finally, it is worth mentioning that
the system does not impose any restrictions as to how a reader
interprets the files it is asked to load. In particular, files are not lim-
ited to text. For example, Storm provides readers that load dynamic
libraries (i.e., .dll and .so-files) using this mechanism.

4.5 Generators
To allow implementing generic types (e.g., Array<T>), the name tree
allows dynamically creating entities in response to name lookups in
the name tree. This is done by adding a generator to a NameSet entity
in the name tree. A generator is a function that is associated with a
name. In contrast to named entities, the name of a generator only
consists of a string. A generator does not have a list of parameters.

The generator is then called by the NameSet entity whenever the
NameSet entity fails to find an entity that matches a requested name.
For example, assume that a language requests a named entity with
the name Array(int) from a NameSet. The NameSet first attempts
to find a named entity with the specified name. If none exists, it calls
any generators with the name Array to try to create a named entity
that matches. The generators are given a list of the parameters
that were requested, and from that information they may chose to
generate a named entity. If this happens, the created named entity
is added to the NameSet and returned to the language.

5 EXAMPLES OF EXTENSIBILITY
This subsection illustrates the extensibility made possible by the
name tree and the standard entity types in Storm through three
examples. As we will see, the languages and language extensions
in the examples are able to utilize the name tree to preserve type-
safety across language borders, and even introduce new concepts
that are properly type-checked.

5.1 Grammars in the Syntax Language
As mentioned in Section 2.3, the Syntax Language stores non-
terminals and productions in the name tree. This has two main
benefits. First, it makes it possible to treat grammars as modules,
and to selectively enable the grammar that implements a syntax
extension by importing a package from the name tree. Secondly,

it makes the grammar available to other languages in the system
which, as we shall see, makes it possible to implement type-safe
parse trees and syntax transforms.

1 Str Word ();
2 Word => x : "[A-Za-z]+" x;
3
4 Array <Str > Words ();
5 Words => Array <Str >()
6 : Word -> push - (" +" - Word -> push )*;

Listing 1: Simple grammar in the Syntax Language for pars-
ing a series of words separated by whitespace.

To illustrate the benefits of this approach we will use the gram-
mar in Listing 1 that matches words surrounded by whitespace. The
syntax and semantics of the Syntax Language have been described
in further detail in an earlier paper [16], so we will only cover what
is used in the example in this paper.

The grammar defines two non-terminals Word and Words on
lines 1 and 5 respectively. The definitions have the same form as
function declarations in C since they define the parameter- and
return types of the associated transform functions. In this case,
it is possible to transform a match of the Word non-terminal into
a string, and a match of the Words non-terminal into an array of
strings.

The grammar also defines two productions. The production on
line 2 defines a production for the non-terminal Word that simply
matches one or more letters. The definition also describes that when
the associated node in the parse tree is transformed, the matched
text should be bound to x, and that x should be returned. The
second production on lines 5 and 6 is a bit more complex. As can
be seen on line 6, it first matches the non-terminal Word, followed
by the contents of the parentheses repeated zero or more times.
Each repetition of the parentheses matches one or more spaces
followed by the non-terminal Word. The production also defines
how a match should be transformed into an array of strings. In this
case, the expression after the big arrow on line 5 (=>) states that an
array should be created. The small arrows on line 6 (->) then state
that the corresponding matches of the Word non-terminal shall be
added to the array by calling the push member function.

1 Array <Str > parse(Str input) {
2 Parser <Words > p;
3 p.parse(input , Url ());
4 Words tree = p.tree ();
5 Array <Str > result = tree.transform ();
6 return result;
7 }

Listing 2: Code in Basic Storm that uses the grammar in
Listing 1 to parse a string.

Both non-terminals and productions are stored in the name tree
as named entities that inherit from the Type named entity. It is
therefore possible to use these entities from other languages that
are unaware of the representation used by the Syntax Language.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

PX/24, Mar 11, 2024, Lund, Sweden Filip Strömbäck

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

To illustrate this, consider the function parse in Listing 2 that uses
the syntax from Listing 1 to parse strings.

The function first creates an instance of the type Parser(Words)
on line 2 (written as Parser<Words> in Basic Storm). The parameter
to the type specifies the starting non-terminal of the grammar. As
we shall see, this allows the specialized Parser type to provide
member functions that accurately reflect the type of the parse tree
produced by the parser. The function then proceeds to parse the
input by calling parse on line 3, before extracting the resulting
parse tree on line 4. Note that the tree function returns an instance
of the Words type, which is the name of the entity produced by the
Syntax Language. Again, since the entity produced by the Syntax
Language inherits from the Type entity type, Basic Storm is able to
use it without special knowledge of the representation of grammars.
Also note that the parameterization of the parser type makes the
code type-safe. Since the parser knows it was instructed to start at
the Words non-terminal, the tree function will always return an
instance of the Words type as long as the parse was successful.

Finally, the function calls the transformmember function of the
created parse tree. This invokes the transform function of the node
for the root of the parse tree that was defined in the Syntax Lan-
guage. Again, since the Syntax Language represents the transform
member as a standard Function entity, it is possible to call the func-
tion from Basic Storm. Furthermore, the type information provided
by the entity makes it possible for Basic Storm to type-check the
call as well. As such, we can see that this approach allows type-
checking all steps of parsing, from input, through the parse tree, to
the output of the transform functions. This approach also makes it
possible to inspect the parse tree in a type-safe fashion, though it
is not shown here for brevity.

Even though Basic Storm is unaware of the grammar representa-
tion used by the Syntax Language, it is possible to create language
extensions that add this ability to Basic Storm. For example, Storm
contains a library that allows using the Syntax Language to cre-
ate recursive descent parsers. This library uses the fact that it is
possible to retrieve the grammar from the entities produced by the
Syntax Language, and uses this information to generate a faster
but less powerful parser.

5.2 Type-safe SQL Queries
The SQL library in Storm is another example of a library that ex-
tends the standard entity types in the name tree. In contrast to the
Syntax Language, the SQL library is implemented as a language
extension to Basic Storm that allows embedding SQL statements
as a DSL for database access. The library also allows declaring the
structure of the tables in the database, which allows the library
to type-check SQL queries ahead of time and makes it possible
to access the result from queries in a type-safe way. Apart from
bindings to database drivers, the library is implemented entirely in
Basic Storm and the Syntax Language.

Listing 3 contains an example of the SQL library in Basic Storm.
Line 1 contains a use statement that imports the SQL library. In
Basic Storm, use statements need to appear first in the file as they
are parsed separately from the remainder of the file. Each use state-
ment have two effects: first, it makes all names in the specified

1 use sql;
2
3 DATABASE BookDB {
4 TABLE authors(
5 id INTEGER PRIMARY KEY ,
6 name TEXT
7 );
8 TABLE books(
9 id INTEGER PRIMARY KEY ,
10 title TEXT ,
11 author INTEGER
12 );
13 }
14
15 Array <Str > booksByAuthor(BookDB db, Str name) {
16 var result = WITH db: SELECT * FROM books
17 JOIN authors ON books.author == authors.id
18 WHERE authors.name == name;
19
20 Array <Str > titles;
21 for (row in result) {
22 titles.push(row.books.title);
23 }
24 return titles;
25 }

Listing 3: Using the SQL library in Basic Storm to extract
information from a small SQL database.

package visible without specifying the full name (like import state-
ments in Java). Secondly, it makes the productions in the package
visible when the remainder of the file is parsed. In this case, the pro-
ductions in the sql library will be visible, which makes it possible
to declare databases and execute queries. Note that this mechanism
makes it possible to add productions to any non-terminal in the
host language. In this case, the SQL extension adds a top-level dec-
laration (the DATABASE keyword on line 3), and an expression (WITH
on line 16).

Lines 3–13 contain a database declaration that defines the struc-
ture of the database that the program expects to use. The database
contains two tables, authors (lines 4–7) that stores authors to the
books in the database, and books (lines 8–12) that stores books,
each with a single link to the author table.4

Similarly to the Syntax Language, the SQL library stores a data-
base declaration as a named entity that inherits from the Type
entity. In Listing 3, the entity is named BookDB. This type repre-
sents a typed connection to a database. When a typed connection
to a database is established, the library verifies that the contents
of the database matches the declaration of the typed connection.
Furthermore, whenever a typed connection is used, the library uses
the database declaration available in the name tree to type-check
the queries.

In Listing 3, the typed connection is used in the query on lines
16–18, which performs a join over the two tables. The start of the
query (i.e., WITH db:) specifies that the database connection in the
variable db should be used to perform the query. The library is

4We are aware that many books have multiple authors, but we wished to keep the
example simple.

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Name Trees: Uniform and Extensible Interactions Between Languages and Language Extensions PX/24, Mar 11, 2024, Lund, Sweden

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

then able to type-check the query based on this information. In
particular, it verifies that all tables and columns exist, and verifies
that the types for the comparisons on lines 17 and 18 are the same.
This is also done for the right hand side of the comparison on line
18, even though it refers to the variable name that is declared as a
parameter in Basic Storm.

The library also generates an appropriate type for the result of
the query to make it convenient to extract the result. In this case,
the query produces an iterator that generates individual rows with
the appropriate members. This can be seen on line 22, where the
expression row.books.title is used to access the title column of
the books table. Since row is a type with the appropriate members,
Basic Storm is able to type-check both the existence of the column,
and that the type is appropriate for the the call to titles.push.

5.3 Algebraic Effects
Another example of a library that extends the capabilities of Ba-
sic Storm is the experimental library that provides continuations
through algebraic effects [12]. As we shall see, the library adds the
ability to define type-safe effects, type-safe handlers for the effects,
and syntax to guard code inside a handler. Apart from the ability to
save and restore the execution stack of green threads, the library is
implemented entirely in Basic Storm and the Syntax Language.

1 use experimental:effects;
2
3 effect fork()->Int;
4
5 handler ForkHandler(Int ->Int) {
6 fork(), cont {
7 Int first = cont.call (1);
8 Int second = cont.call (2);
9 return first + second;
10 }
11 }
12
13 void main() {
14 Int result = with ForkHandler handle {
15 print("Before fork");
16 Int x = fork ();
17 print("Fork returned: ${x}");
18 return x * 2;
19 };
20 print("Result: ${result}");
21 }

Listing 4: Implementation of a simple effect that behaves
similarly to the fork system call.

Listing 4 contains an example that illustrates how the effect
library is used. Line 1 imports the effects library to make the new
syntax available, like in the previous example. The example then
declares the fork effect on line 3. In this case, the effect accepts no
parameters and returns an integer. The effect is stores as a named
entity that inherits from the Function entity type in the name tree.
This makes it possible to call the effect as if it was a regular function
from Basic Storm.

Lines 5–11 defines a handler named ForkHandler. The first line
specifies that the code in the handler block is expected to evaluate

to an integer, and that the handler block itself will evaluate to an
integer (Int->Int). On lines 6–10, the handler then defines how it
handles the fork effect defined on line 3. The library is able to verify
that the name actually refers to a handler, and that the parameter list
matches by inspecting the entity in the name tree. The additional
parameter, cont, is the name that will be bound to the continuation
captured when the effect was called. The continuation is resumed
twice in the handler, on lines 7 and 8. Again, the library uses the
available type information to ensure that the continuation has the
correct type.

1 Before fork
2 Fork returned: 1
3 Fork returned: 2
4 Result: 6

Listing 5: Output produced by the program in Listing 4.

The effect and the handler are then used in the main function
on lines 14–19, which contains a handle block that wraps the code
that should be affected by the effect. This code simply prints a
message, calls the effect, prints another message and returns from
the handler. However, since the handler resumes the continuation
twice (on lines 7 and 8), the second print statement is executed
twice. Furthermore, since the handler adds the results from the
two executions, the handler block will evaluate to the sum of the
two return statements on line 18. Thus, the program produces the
output shown in Listing 4.

It is worth noting that the use of the keyword with in the effects
extension (Fig. 4) and the SQL extension (Fig. 3) is coincidental.
Neither Storm nor Basic Storm requires using particular keywords
to trigger extensions. As mentioned previously, a syntax extension
is able to add productions to arbitrary non-terminals in the host
language or any other extension.

This example once again illustrates the flexibility of the name
tree. In this case, the library adds two new entity types to the system.
One corresponding to effects that inherits from the Function type
entity, and another that corresponds to handlers that inherits from
the Type entity type to make it possible for handlers to contain
state. The latter also adds a set of handlers as a separate concept to
the entity. The example also illustrates the the flexibility allowed
by the runtime system in Storm.

6 EXAMPLES OF LEARNABILITY
As noted by Ghosh [7], one drawback with extensible languages
and DSLs is that they make it necessary for developers to learn
new DSLs and language extensions. As this involves learning new
syntax and semantics, it usually requires more effort compared to
learning a library. As we saw in the examples in Section 5, even the
embedded DSLs provided by the SQL and effect libraries make the
host language, Basic Storm, look like a different language to some
extent.

Fortunately, the name tree is useful in this regard as well. Since
the name tree is accessible to programs in Storm, it is possible to
create tools that make it easier to learn the different libraries and
languages in the system, and to debug issues in the system. The
remainder of this section will describe two existing such tools. The

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

PX/24, Mar 11, 2024, Lund, Sweden Filip Strömbäck

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 3: Screenshot of Progvis visualizing a program that
consists of two threads. Thread 1 executes code written in C,
while thread 2 executes code written in Basic Storm.

section will conclude with proposing an idea how the existing lan-
guage server can be extended with capabilities that allow exploring
and debugging language semantics based on existing source code.

6.1 Progvis: A Visual Debugger
Progvis is a visualization tool that was originally designed to visual-
ize concurrent programs written in C [17]. However, since Progvis
is implemented in Storm and operates on the representation in
the name tree, it is not limited to programs written in C, but can
visualize programs in any language in Storm, given that sufficient
metadata is emitted by the language.

Figure 3 contains a screenshot of Progvis visualizing a program
that consists of two threads. Thread 1 executes code written in C.
This thread has created a data structure that it shared with thread
2. Thread 2 started executing code in C, but then called a function
written in Basic Storm. As such, the box for thread 2 currently
shows the Basic Storm code that is about to be executed. Note that
the two threads share data even though they run code written in
two separate languages.

As mentioned previously, Progvis is able to support multiple
languages in this fashion by utilizing information available in the
name tree. In particular, Progvis relies on the type-information in
the name tree to traverse data structures, as well as the ability to
extract and modify the generated code in the intermediate represen-
tation. When the user selects a file to visualize in the user interface,
Progvis creates a package in the name tree and loads the program
into the package using the standard reader facilities. Progvis then

inspects the generated named entities in the name tree to find all
Function entities. For each function, it extracts the generated code
adds instrumentation to it, and replaces the code in the function
entity with the modified version. After the instrumentation process,
Progvis simply calls the main function in the program and relies on
the instrumentation code to extract data from the running program.
Any data structures used by the program can easily be traversed
by relying on the data available in the corresponding Type entity
that was generated by the compilation process.

Progvis does, however, need some effort from the visualized
language in order to be able to provide a good visualization. First
and foremost, the language needs to annotate stack-allocated vari-
ables in the intermediate representation with a name and a type.
Only variables with annotations are shown to the user, since other
variables are assumed to be unnamed temporary variables needed
by the language. Secondly, the language needs to emit pseudo-
instructions that map the intermediate code to locations in the
source code. Progvis uses this information to determine when the
program should be paused, and what area of the source code to
highlight at that time. Lastly, a language may optionally provide
custom visualizations of certain data structures to make them easier
to see. For example, the C front-end provides a custom visualiza-
tion of the semaphore in the data structure shared in order to hide
implementation details from the user.

Finally, it is worth noting that Progvis is designed for novices. Its
detailed visualization is therefore not suitable for debugging large
systems with complicated data structures. Not because of inherent
limitations in the approach, but because of limitations in the user
interface. It does, however, illustrate the possibilities offered by the
approach.

6.2 On-line Documentation
Each named entity in the name tree in Storm is able to store docu-
mentation about itself. This is used to implement on-line documen-
tation in Storm. Much like in languages like Python, it is possible
to launch Storm interactively and type help <name> to show the
documentation for a particular named entity. An Emacs plugin is
also available to allow Emacs to communicate with Storm using a
custom protocol. This provides a richer interface where the user can
browse the name tree by clicking hyperlinks rather than typing the
names of entities. Both of these interfaces have proven useful not
only for accessing documentation, but also for debugging language
implementations, since both interfaces makes it possible to view the
named entities generated by languages and language extensions.

6.3 Semantics of Language Constructs
While the system for browsing the documentation is useful to
explore libraries through the name tree, it is not very useful to
explore the meaning of constructs inside functions. For example, it
is currently difficult to find the semantics of specific constructs in
Basic Storm or extensions to Basic Storm.

To help users explore and learn the syntax of languages in the
system, it would be good if it was possible to see how a piece of
source code was parsed and what named entities implement the
semantics. All of this information is available in the name tree in
Storm. As previously mentioned (see Section 3), the system already

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Name Trees: Uniform and Extensible Interactions Between Languages and Language Extensions PX/24, Mar 11, 2024, Lund, Sweden

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

throw Exception("Error message");

StrLiteral

ActualParams

Name

Call

Throw

Figure 4: Illustration of how the meaning of a line of source
code could be visualized using the information available in
the name tree. Each box would be clickable and would refer
to the named entity used in the corresponding transform
function.

contains a language server that is able to interactively parse source
code while it is being edited in order to provide syntax highlighting
to the aforementioned Emacs plugin. As a side-effect, a parse tree is
already available and could be visualized to the user upon request.
Furthermore, most productions contain references to named entities
as a part of the syntax transforms. The referred named entities
are usually types or functions that implement the semantics of the
matched language construct. As such, it is possible to link individual
sub-strings in the source code to the named entities in the name
tree that implement the semantics.

Figure 4 contains an illustration of a possible way to visualize
this information. The original source code is displayed in the top
of the figure. If the user requests the editor to show the semantics
of the line, the editor would first move all lines below the current
line downwards to create space for the visualization. The editor
would then use the empty space to show the relevant part of the
parse tree below the original source code, as is shown in Fig. 4. The
visualization would be interactive and allow the user to click each
box to show the documentation for the named entity referred to by
the transform function associated to the production.

Even though the metadata is available, this functionality is cur-
rently not implemented in Storm. As such, there are a number of
open questions regarding the practicality of the approach. Most
importantly, the system likely needs to select a subset of the nodes
in the parse tree to show. Otherwise the representation is likely to
become too complex to be understandable. A good starting point
is likely to only show productions that call a function or create an
instance of a type in their syntax transform. This would produce
the level of detail shown in Fig. 4, which is at least suitable for
simple expressions.

7 RELATEDWORK
There are a number of tools that allow introducing new syntax
to a language. An early example is macros in Lisp. These were
later refined in Racket by providing facilities like pattern-based
macros [5]. Similarly, tools like ableJ [19] and ableC [10] provide
extensibility to Java and C respectively. This is achieved by allowing
the creation of modules of syntax that extend the syntax of the host
language. The modules also contain semantics that transform the
syntax into equivalent statements in the host language. SugarJ [3]
is another tool that provides extensible syntax to Java similarly
to ableJ. A notable difference between the two is that SugarJ is

self-applicable, which makes it possible to use extensions in SugarJ
when developing future extensions, much like in Storm.

There are also a number of tools, such as Xtext [4] and Spoofax [11],
that focus on stand-alone DSLs rather than embedded ones. While
these tools do allow embedding languages inside each other, this
can only be done by the language designer when the DSL is created.
As such, a user of the language is not able to select which extensions
to use on a file-by-file basis, as is possible in Storm and the tools
mentioned in the previous paragraph. Another similar system is
Truffle on GraalVM [8]. GraalVM is itself a polyglot runtime that
allows multiple languages to interact, and Truffle is a framework
for creation of languages that allows composing languages. Riese
et al. [14] have, however, stated that inter-language communication
with complex datatypes is sometimes cumbersome and propose
interface mappings to alleviate the problem.

One drawback with all of these tools compared to Storm is that
they all eventually produce code in a host language (e.g., Java or
C), or in a fixed shared representation. Since this representation
is not extensible, like the one provided by name trees in Storm,
it is difficult to introduce new concepts in a way that is easily
consumable and further extended by other languages in the system.
Furthermore, since language implementations are available through
the name tree, new languages are able utilize existing languages as
an intermediate step during the compilation process. For example,
the Syntax Language does not emit code in the IR provided by the
code generation library directly. Rather, it produces a Basic Storm
AST and relies on Basic Storm to produce the final IR. This ability
makes it possible to implement languages as a series of smaller
passes, similarly to the ideas behind nanopasses [15]. The passes
currently used by Storm are, however, larger than the proposed
nanopasses.

Management of scope is also important when working with ex-
tensible languages. For example, Racket utilizes sets of scopes [6]
to manage scope in macro expansions, and to simplify the imple-
mentation of hygienic macros for DSLs. While sets of scopes is not
natively supported by the notion of scope described in Section 4.2,
the mechanism is general enough to implement it if desired. Even
without sets of scopes, the name tree allows explicit control of the
scope in macro expansions in Basic Storm, for example.

Spoofax also provides a generic representation of scopes, called
scope graphs [20]. As the name implies, a scope graph is a graph
that describes the visibility of other entities in the system. The
main difference to name trees is that scope graphs model visibility
directly in the graph, while name trees model visibility through
a traversal strategy. An advantage of the approach used by name
trees is that a language is able to customize their view of the shared
namespace to suit its needs, possibly modifying scoping rules from
other languages if necessary.

When working with extensible languages and DSLs it is also
important to consider the developer experience. For an acceptable
developer experience, a language should provide at least basic syn-
tax highlighting, automatic indentation, and a convenient way to
build and run the program. The aforementioned tools Xtext [4] and
Spoofax [11] are both language workbenches, and are therefore also
able to generate tooling in the form of plug-ins for common IDEs.
TigersEye [2] is a tool for embedded DSLs, similar to SugarJ, ableJ,
and ableC, that is also able to provide tooling in the form of an IDE

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

PX/24, Mar 11, 2024, Lund, Sweden Filip Strömbäck

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

plugin that extends the IDE’s existing support for the host language.
Similarly, Storm is able to provide syntax highlighting and auto-
matic indentation through an integrated language server that relies
on the named entities available in the name tree. Furthermore, even
though Storm provides a large degree of flexibility, the entire build
process is managed by Storm itself. As such, running programs in
Storm is often as easy as running storm <path> where <path> is
the name of a directory that contains the application.

8 CONCLUSION
In this paper, we have introduced the name tree that Storm uses
to provide an extensible environment for implementing extensible
languages. The name tree itself provides a uniform mechanism
for storing and retrieving named entities that may represent any
element that has a name in a language. To facilitate language in-
teroperability, the system provides a number of standard entity
types that define a common interface for concepts like functions
and types. As we have seen, languages or language extensions may
extend the standard entity types in order to represent new concepts
in the name tree. When the standard entity types are extended,
existing languages are able to use at least some part of the new
concepts, even though the existing languages are not aware of the
new representation. This also makes it possible to introduce new
concepts to the system in a type-safe way. For example, as shown in
Sections 5.2 and 5.3, it is possible to create language extensions that
introduce type-safe SQL queries and algebraic effects as libraries.

Since Storm is language-agnostic and provides the ability to exe-
cute compiled code in-process, it is possible to use any language
in the system to implement languages and language extensions, as
long as the language produces entities that are compatible with the
standard entity types. With some care to avoid cyclic dependencies,
it is even possible to implement languages partially in themselves,
or to create extensions that simplify the development of future ex-
tensions. These possibilities do, however, not complicate the build
process. Since Storm utilizes lazy compilation, running a Storm pro-
gram is often as easy as running storm <path>, where <path> is
a directory that contains the application. The name tree is also able
to help the developer experience. As shown in Section 6, the intro-
spection allowed by name trees allows creating useful development
tools for exploring syntax, visual debugging, and more.

REFERENCES
[1] Richard Brooksby and Nicholas Barnes. 2002. The Memory Pool System. Technical

Report. https://www.ravenbrook.com/project/mps/doc/2002-01-30/ismm2002-
paper/ismm2002-letter.pdf

[2] Tom Dinkelaker, Michael Eichberg, and Mira Mezini. 2013. Incremental con-
crete syntax for embedded languages with support for separate compilation.
Science of Computer Programming 78, 6 (2013), 615–632. https://doi.org/10.1016/
j.scico.2012.12.002 Special section: The Programming Languages track at the
26th ACM Symposium on Applied Computing (SAC 2011) & Special section on
Agent-oriented Design Methods and Programming Techniques for Distributed
Computing in Dynamic and Complex Environments.

[3] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann.
2011. SugarJ: Library-based Syntactic Language Extensibility. In Proceedings of
the 2011 ACM International Conference on Object Oriented Programming Systems

Languages and Applications (Portland, Oregon, USA) (OOPSLA ’11). ACM, New
York, NY, USA, 391–406. https://doi.org/10.1145/2048066.2048099

[4] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement Your Language
Faster Than the Quick and Dirty Way. In Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion (Reno/Tahoe, Nevada, USA) (OOPSLA ’10). ACM, New
York, NY, USA, 307–309. https://doi.org/10.1145/1869542.1869625

[5] Matthew Flatt. 2011. Creating Languages in Racket. Queue 9, 11, Article 21 (Nov.
2011), 15 pages. https://doi.org/10.1145/2063166.2068896

[6] Matthew Flatt. 2016. Binding as sets of scopes. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St.
Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New
York, NY, USA, 705–717. https://doi.org/10.1145/2837614.2837620

[7] Debasish Ghosh. 2011. DSL for the Uninitiated. Queue 9, 6, Article 10 (June 2011),
12 pages. https://doi.org/10.1145/1989748.1989750

[8] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and
Hanspeter Mössenböck. 2015. High-performance cross-language interoper-
ability in a multi-language runtime. In Proceedings of the 11th Symposium on
Dynamic Languages (Pittsburgh, PA, USA) (DLS 2015). Association for Computing
Machinery, New York, NY, USA, 78–90. https://doi.org/10.1145/2816707.2816714

[9] Michael Hicks and Scott Nettles. 2005. Dynamic Software Updating. ACM Trans.
Program. Lang. Syst. 27, 6 (nov 2005), 1049–1096. https://doi.org/10.1145/1108970.
1108971

[10] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017. Reliable
and Automatic Composition of Language Extensions to C: The ableC Extensible
Language Framework. Proc. ACM Program. Lang. 1, OOPSLA, Article 98 (Oct.
2017), 29 pages. https://doi.org/10.1145/3138224

[11] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language Workbench:
Rules for Declarative Specification of Languages and IDEs. In Proceedings of the
ACM International Conference on Object Oriented Programming Systems Languages
and Applications (Reno/Tahoe, Nevada, USA) (OOPSLA ’10). ACM, New York, NY,
USA, 444–463. https://doi.org/10.1145/1869459.1869497

[12] Matija Pretnar. 2015. An Introduction to Algebraic Effects and Handlers. Invited
tutorial paper. Electronic Notes in Theoretical Computer Science 319 (2015), 19–
35. https://doi.org/10.1016/j.entcs.2015.12.003 The 31st Conference on the
Mathematical Foundations of Programming Semantics (MFPS XXXI).

[13] Joan Gerard Rekers. 1992. Parser generation for interactive environments. Ph. D.
Dissertation. Universiteit van Amsterdam.

[14] Alexander Riese, Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2020.
User-defined interface mappings for the GraalVM. In Companion Proceedings of
the 4th International Conference on Art, Science, and Engineering of Programming
(Porto, Portugal) (Programming ’20). Association for Computing Machinery, New
York, NY, USA, 19–22. https://doi.org/10.1145/3397537.3399577

[15] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. 2004. A nanopass
infrastructure for compiler education. In Proceedings of the Ninth ACM SIG-
PLAN International Conference on Functional Programming (Snow Bird, UT, USA)
(ICFP ’04). Association for Computing Machinery, New York, NY, USA, 201–212.
https://doi.org/10.1145/1016850.1016878

[16] Filip Strömbäck. 2018. Storm: A Language Platform for Interacting and Extensible
Languages (Tool Demo). In Proceedings of the 11th ACM SIGPLAN International
Conference on Software Language Engineering (Boston, MA, USA) (SLE 2018).
Association for Computing Machinery, New York, NY, USA, 60–64. https:
//doi.org/10.1145/3276604.3276982

[17] Filip Strömbäck, LindaMannila, andMariamKamkar. 2022. Pilot Study of Progvis:
A Visualization Tool for Object Graphs and Concurrency via Shared Memory. In
Australasian Computing Education Conference (Virtual Event, Australia) (ACE
’22). Association for Computing Machinery, New York, NY, USA, 123–132. https:
//doi.org/10.1145/3511861.3511885

[18] Pablo Tesone, Guillermo Polito, Noury Bouraqadi, Stéphane Ducasse, and Luc
Fabresse. 2018. Dynamic Software Update from Development to Production.
Journal of Object Technology 17, 1 (Nov. 2018), 1:1–36. https://doi.org/10.5381/
jot.2018.17.1.a2

[19] Eric Van Wyk, Lijesh Krishnan, Derek Bodin, and August Schwerdfeger. 2007.
Attribute Grammar-Based Language Extensions for Java. In ECOOP 2007 – Object-
Oriented Programming, Erik Ernst (Ed.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 575–599.

[20] Aron Zwaan and Hendrik van Antwerpen. 2023. Scope Graphs: The Story
so Far. In Eelco Visser Commemorative Symposium, EVCS 2023, April 5, 2023,
Delft, The Netherlands (OASIcs, Vol. 109), Ralf Lämmel, Peter D. Mosses, and
Friedrich Steimann (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
https://doi.org/10.4230/OASIcs.EVCS.2023.32

10

https://www.ravenbrook.com/project/mps/doc/2002-01-30/ismm2002-paper/ismm2002-letter.pdf
https://www.ravenbrook.com/project/mps/doc/2002-01-30/ismm2002-paper/ismm2002-letter.pdf
https://doi.org/10.1016/j.scico.2012.12.002
https://doi.org/10.1016/j.scico.2012.12.002
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/1869542.1869625
https://doi.org/10.1145/2063166.2068896
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/1989748.1989750
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/1108970.1108971
https://doi.org/10.1145/1108970.1108971
https://doi.org/10.1145/3138224
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/3397537.3399577
https://doi.org/10.1145/1016850.1016878
https://doi.org/10.1145/3276604.3276982
https://doi.org/10.1145/3276604.3276982
https://doi.org/10.1145/3511861.3511885
https://doi.org/10.1145/3511861.3511885
https://doi.org/10.5381/jot.2018.17.1.a2
https://doi.org/10.5381/jot.2018.17.1.a2
https://doi.org/10.4230/OASIcs.EVCS.2023.32

	Abstract
	1 Introduction
	2 Storm
	2.1 Runtime System
	2.2 Code Generation
	2.3 Parser Generation

	3 Interactivity
	4 The Name Tree in Storm
	4.1 Named Entities
	4.2 Name Lookup in the Name Tree
	4.3 Standard Entity Types
	4.4 Populating the Name Tree
	4.5 Generators

	5 Examples of Extensibility
	5.1 Grammars in the Syntax Language
	5.2 Type-safe SQL Queries
	5.3 Algebraic Effects

	6 Examples of Learnability
	6.1 Progvis: A Visual Debugger
	6.2 On-line Documentation
	6.3 Semantics of Language Constructs

	7 Related Work
	8 Conclusion
	References

