
Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Use-Oriented Documentation in Software
Development

by

Erik Berglund

Linköping 1999

Thesis No. 790

Submitted to the School of Engineering at Linköping University in partial
fulfillment of the requirements for the degree of Licentiate of Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Use-Oriented Documentation in Software Development
by

Erik Berglund

Nov. 1999
ISBN 91-7219-615-7

Linköping Studies in Science and Technology
Thesis No. 790

ISSN 0280-7971
LiU-Tek-Lic-1999:48

ABSTRACT

Software documentation is an important tool in modern component-based programming.
Building software applications requires detailed knowledge about a vast number of compo-
nents and the structures they form. This knowledge is often acquired by reading reference
documentation of application-programming interfaces (APIs). Thus, the design of the API
reference documentation and its reading support affect the cost and quality of software de-
velopment.

We examine how efficiency and quality in software development can be increased through
the design of software documentation and reading support for software documentation. The
thesis reports on the DJavadoc project and the reading support for online Java API reference
documentation that it provides. The Java API reference documentation can be viewed as a
collection of documentation designed for multiple needs. As a consequence, excessive infor-
mation is present in most situations. In DJavadoc we have extended the official Java API ref-
erence documentation to achieve control over the visibility of information types. DJavadoc
adds client-side, real-time redesign to the documentation to support the design of multiple
views. As a result, the reader may further design views of the information that are more in
line with the reader’s personal and changing needs. In the thesis we also discuss online API
reference documentation and its role in programming.

Our preliminary studies support the design strategy taken in DJavadoc. The DJavadoc archi-
tecture has also proven suitable for continuos redesign of online documentation. Further-
more, our work provides several future research directions for software documentation and
communication of functionality. The Javadoc approach can be developed to achieve more
use-oriented documentation. However, the need of use-oriented documentation may also
have impact on the Java programming language and ultimately object orientation.

This work has primarily been supported by SSF (Swedish Foundation for Strategic
Research) through ECSEL (Excellence Center in Computer Science and Systems
Engineering in Linköping). Furthermore, our work has been supported by the Swedish
National Board for Industrial and Technical Development (Nutek) under grant no. 93-3233
and the Swedish Research Council for Engineering Science (TFR) under grant no. 95-186.

Abstract

Software documentation is an important tool in modern component-based pro-
gramming. Building software applications requires detailed knowledge about a
vast number of components and the structures they form. This knowledge is
often acquired by reading reference documentation of application-programming
interfaces (APIs). Thus, the design of the API reference documentation and
its reading support affect the cost and quality of software development.

We examine how efficiency and quality in software development can be in-
creased through the design of software documentation and reading support for
software documentation. The thesis reports on the DJavadoc project and the
reading support for online Java API reference documentation that it provides.
The Java API reference documentation can be viewed as a collection of docu-
mentation designed for multiple needs. As a consequence, excessive information
is present in most situations. In DJavadoc we have extended the official Java
API reference documentation to achieve control over the visibility of informa-
tion types. DJavadoc adds client-side, real-time redesign to the documentation
to support the design of multiple views. As a result, the reader may further
design views of the information that are more in line with the reader’s per-
sonal and changing needs. In the thesis we also discuss online API reference
documentation and its role in programming.

Our preliminary studies support the design strategy taken in DJavadoc.
The DJavadoc architecture has also proven suitable for continuos redesign of
online documentation. Furthermore, our work provides several future research
directions for software documentation and communication of functionality. The
Javadoc approach can be developed to achieve more use-oriented documenta-
tion. However, the need of use-oriented documentation may also have impact
on the Java programming language and ultimately object orientation.

Acknowledgement

First and foremost the I would like to acknowledge the importance of my super-
visor Henrik Eriksson for his dedication and valuable support. I am grateful for
his constant availability, detailed supervision, and tactical support. Further-
more, I am also grateful for his keen interest in my project and the fascination
of technology that we share.

Second to none is Magnus B̊ang, fellow Ph.D. student and close friend.
Magnus had become a comrade in arms in the struggle for academic success.
Our constant discussions and the valuable views he brings to them are much
appreciated. Also, his philosophical skill has contributed much to my thinking.
Coming from an engineering background, I have been fortunate to team up
with Magnus.

I would like to thank my secondary supervisors Kjell Olhsson and Sture
Hägglund for being part of the research escapade.

Continuing, I would like to thank my colleges at Linköping University
(ASLAB, HCS, IDA). In particular I would like to mention Rego Granlund,
Johan Jenvald, Johan Lübcke, Kristian Sandahl, and Eva Ragnemalm.

Thank you, Ivan Rankin, for improving my English. Hopefully, assuming
that the English language has not been mistreated, I do not owe it all to you.

Ulf Magnusson at Ericsson, Mike Shrag at Experient Technologies, and
Douglas Kramer at the Javadoc Team all deserve thanks for comments and
enthusiasm.

I would like to thank SSF (Swedish Foundation for Strategic Research)
for being our primary financial supporter through ECSEL (Excellence Center
in Computer Science and Systems Engineering in Linköping). Furthermore,
our work has been supported by the Swedish National Board for Industrial
and Technical Development (Nutek) under grant no. 93-3233 and the Swedish
Research Council for Engineering Science (TFR) under grant no. 95-186.

Finally, thank you family (B̊age, Margareta, and so on) and close friends
(the boys and last but definitively not least Charlotte Immerstrand). A par-
ticularly warm thought of gratitude goes to Hoffman, probably the best dog in
the world.

Contents

1 Introduction 1
1.1 Research Problem . 1
1.2 Research Area: API reference documentation 3
1.3 Research Focus: DJavadoc . 5
1.4 Research Method . 6
1.5 Contributions . 6
1.6 Thesis Outline . 7

2 Background 9
2.1 Java . 9

2.1.1 The Java Programming Language 9
2.1.2 Java, JDK, SDK and so on 10
2.1.3 Javadoc . 10
2.1.4 Doclet Application Programming Interface 16
2.1.5 Standard Doclet . 16

2.2 Web Technology . 17
2.2.1 HTML . 17
2.2.2 Dynamic HTML (DHTML) 17

2.3 Multiple Views . 18
2.4 User Control . 19
2.5 Dynamic Typography . 20

2.5.1 Defining Dynamic Typography 20
2.5.2 Dynamic Typography versus Hypermedia 21
2.5.3 Dynamic Typography in DJavadoc 22

2.6 Other Design consideration . 23

3 Method 25
3.1 Different Research Methods . 25
3.2 Our Research Process . 26

3.2.1 Iterative System Design as Research Method 26
3.2.2 The Advantages of our Approach 26
3.2.3 The Drawbacks of our Approach 27

5

3.3 Evaluation . 28
3.4 End Product . 28

4 DJavadoc 29
4.1 DJavadoc Overview . 29

4.1.1 The Official Java API reference documentation 29
4.1.2 What DJavadoc Adds 30
4.1.3 Arguments for the DJavadoc Extensions 31
4.1.4 Interaction Principles of DJavadoc 31
4.1.5 Dynamic Typography in DJavadoc 33
4.1.6 Web Applications . 33

4.2 The Official Java API reference documentation 34
4.2.1 Class Documents . 34
4.2.2 Table of Contents . 42
4.2.3 Other Documents . 44

4.3 Extensions Introduced in DJavadoc 44
4.3.1 Basic Comparison . 44
4.3.2 Settings . 46
4.3.3 Individual Description Openers 51
4.3.4 Moving Text Parts . 53
4.3.5 DJavadoc Bookmarks 56
4.3.6 ToolTip for Full Class Name 58
4.3.7 Other Extensions . 59

4.4 DJavadoc Performance . 59
4.5 Using DHTML . 59
4.6 Technichal Data on DJavadoc 59
4.7 Example Working Scenario for DJavadoc 60
4.8 Different Prototype Generations 66

4.8.1 Conceptual Source-Code Organization 66
4.8.2 Pop-up Information Hiding (first DHTML) 66
4.8.3 Conceptual Filtering . 66
4.8.4 Scaling the Final Implementation 69

4.9 Base Technology . 69
4.10 DJavadoc Improvements . 70

4.10.1 Using Dynamic typography 70
4.10.2 Class Documents . 71
4.10.3 Indices . 72
4.10.4 Using layered Text . 73

4.11 Summary . 74

5 Preliminary Studies 75
5.1 Study Goal . 75
5.2 Preliminary Results . 76
5.3 Future Studies . 77

5.3.1 Setting Up Real-World Studies 77
5.3.2 Character of the Informants 77
5.3.3 Study Procedure . 77

6 Related Work 79
6.1 MSDN Online Workshop . 79
6.2 Mathematica Help Browser . 81
6.3 Development Environments . 83
6.4 Hypertext Reference Manuals 85
6.5 WEB . 85
6.6 Emacs Info System . 85
6.7 Documentation Function in LISP 86
6.8 Summary of Related Work . 86

7 Discussion 89
7.1 The Javadoc Approach . 89
7.2 Implications for Object Orientation 90
7.3 Potential Improvements to Javadoc 91
7.4 Requirements . 93
7.5 Task Generalization of DJavadoc 94
7.6 Doclet Editor . 95
7.7 Alternative Technical Solutions for DJavadoc 96
7.8 Dynamic Typography . 97
7.9 Summary and Continued Work 98

8 Summary and Conclusions 99
8.1 Summary . 99
8.2 Conclusion . 100

Chapter 1

Introduction

Programmers read application programming interface (API) reference docu-
mentation as part of the programming task because they commonly use reusable
components that they must have detailed knowledge about. The API refer-
ence documentation may not support programmers well because it is designed
for multiple information needs, for instance both to describe these reusable
components in general and to provide syntactical details. As a result, the
API reference documentation contains excessive information in most situations.
Naturally, sometimes there is too little or irrelevant information as well. Pro-
grammers must manually locate the relevant parts of the information or even
read unnecessary large portions of text to extract the relevant information.

This thesis reports on the dynamic Javadoc (DJavadoc) project and the on-
line API reference documentation for Java programmers it delivers. DJavadoc
is available on the Internet for public use at www.ida.liu.se/~eribe/djavadoc
[44]. The aim of the DJavadoc project is to support programming by further
developing API reference documentation as a programming tool. More specif-
ically, we provide user-controlled adaptation of the Java API reference docu-
mentation by taking advantage of the dynamic properties of the computer as
a reading environment (in comparison with print) and the homogenous nature
of API reference documentation. From a software-engineering perspective, the
work focuses on the API reference documentation as a programming tool. From
a human-machine-interaction perspective, the work is oriented towards features
of the computer-reading environment.

1.1 Research Problem

Modern software development is based on the reuse of predefined software
components, for instance, in the form of objects or functions. This approach
is particularly central to object-oriented programming since the paradigm is

1

2 CHAPTER 1. INTRODUCTION

based on the reuse and further specializing of predefined classes. Applications
are generally built on top of APIs. These APIs can be in the form of function
libraries, class libraries, or other sets of programming-language constructs. As
a result, the composition of programs requires detailed knowledge on a vast
number of components, as well as the context in which these components fit
(e.g., the runtime environment), and sets of alternative components. APIs
tend to grow large, a tendency of which the Java Development Kit (JDK) is
an excellent example. The number of components is high in JDK, especially if
the methods of classes are regarded as components in their own right. In JDK
1.2 there are about 1,800 classes and 15,000 methods and the API reference
documentation alone is 80 Mbytes in size. These numbers can be compared
with the 600 classes and 4,000 methods and 8 Mbytes worth of API reference
documentation of JDK 1.1. In a programming task, only a few components
may be of interest and some less often than others. Knowing which components
to use and how to use them is a central part of the Java-programming task.

Thus, programmers spend much time informing themselves about compo-
nents, mainly by reading API reference documentation. The API reference
documentation is used for multiple purposes. Readers may remind themselves
about coding syntax or read about new components. There are also rela-
tions among components that readers must understand to use the components
properly. Compared to other work-categories, programming is a knowledge-
intensive activity in regards to the need of constant acquisition of detailed
knowledge since it is important to produce syntactically as well as logically
correct code. Programmers must continuously double-check their information
to avoid simple but time-consuming errors.

One problem with the official Java API reference documentation is that it
contains excessive information in all work-situations since it is designed for mul-
tiple needs. We can view the official Java API reference documentation as an
information source designed to meet several needs, as several intertwined pieces
of documentation. For instance, the documentation describes components in
general and their relations to their surroundings and also provides syntactical
details. However, professionals focus on the task at hand when they read work-
related texts such as the Javadoc-generated API reference documentation and
search only for relevant information [15]. In a study of consumer reading behav-
ior for instruction manuals Schriver [18] showed that most informants tended
to skim when reading. Ideally, the reader should be presented with only the
desired information in the right format. Unfortunately, this is different in dif-
ferent situations and for different readers. In our view, the problem of finding
the right information is particularly important in the type of text that the
official Javadoc API reference documentation represents since, in our experi-
ence, manual search is performed continuously (reading involves the continuous
loading of new documents which have to be searched for the right information).

The overhead of reading API reference documentation can become an im-
pediment in software engineering. In a component-based-programming paradigm,

1.2. RESEARCH AREA: API REFERENCE DOCUMENTATION 3

the information overload of the API reference documentation can have a seri-
ous effect on the programming task and therefore ultimately on the resulting
software. The API reference documentation’s ability to present the right in-
formation can effect both cost and quality of software projects. For instance,
the time it takes to find the right information and understand the content of
that information is a direct addition to the total programming time. Also, if it
is difficult to understand how and when to use components, programmers may
reinvent components. Though necessary at times, reinvention of components
takes time and can also have an impact on the quality of the application since
the risk of errors is increased (granted that the amount of bugs is proportional
to the size of the source code).

We believe that the automatically-generated Javadoc API reference docu-
mentation is a step in the right direction but also that improvements to it will
have a significant impact on Java programming since programmers spend much
of their time reading it. To our mind, the online Javadoc API reference docu-
mentation supports Java programming. However, as the size and complexity of
JDK increases, it becomes more vital to make improvements to, for instance,
the content, typography, and organization of the API reference documentation;
simply because the number of components is rapidly increasing, the need for
more use-oriented API reference documentation increases.

1.2 Research Area: API reference documenta-
tion

From a software-engineering perspective, we work with API reference documen-
tation as a programming tool. Without tools such as compilers it is extremely
difficult to develop programs. However, programmers probably spend less time
using the compiler than API reference documentation. The API reference docu-
mentation perhaps has more impact on the working conditions of programmers
than does the compiler. The content and typography of the API reference doc-
umentation become important to software development, as do other reading
issues such as navigation. The API reference documentation is thus an impor-
tant development tool that programmers spend much of their time using. Ways
to achieve reading support for API reference documentation, particularly from
a use-perspective, is an important software-engineering issue, as shown by the
rapid growth of JDK. In our view, the API reference documentation is a tool
that should promote the use of its components and not simply describe them
(the best use, the most common use, the use which fits different application
profiles, and so on).

In the literature on software engineering and programming tools it is not
uncommon that API reference documentation is omitted, see for instance [26,
40, 11]. Unfortunately, textbooks on software engineering and programming
tools do not always acknowledge the importance of API reference documen-

4 CHAPTER 1. INTRODUCTION

tation in programming. If documentation is discussed, it is often viewed as
something produced in the project rather than used in the programming task
(see [12]). In the book Software Engineering with Java, Schachs only advice is
that documentation should be online [25]. This omission of a more in depth dis-
cussion on API reference documentation is particularly unfortunate since the
API reference documentation, in our experience, is an essential tool in Java
programming. However, there are exceptions such as the book ”Software Engi-
neering A Programming Approach” [29] in which the need of a cross-reference
listing is mentioned. An underlying reason for overlooking API reference doc-
umentation may be the fact that programming traditionally involved a limited
set of programming-language constructs. Perhaps programming languages can
ultimately become sophisticated yet simple tools. In the meantime, however,
programming languages are turning into large collections of components that
humans have to handle. Java is an example of this development. In its short
history the class libraries have grown and changed rapidly and in all directions.
The API reference documentation will have an impact on the resulting software
since it is a major source of information that programmers use continuously as
part of the programming task. The API reference documentation will affect
the way programmers conceive components and use them. Much time is spent
learning and checking syntax which affects the cost, quality, and time needed
in software projects.

From the perspective of human-machine interaction, our research area is
computer-reading environments, particularly for work-related texts. Comput-
ers hold unique features as a reading environments, even though the screens
are still limited in size and resolution compared to print. Hypertext is one fea-
ture of computer-reading environments which the literature on electronic texts
seems mainly focused on [1, 14, 28]. However, computer-reading environments
do not end with hypertext. For instance, the computer provides additional
typographical features not possible in hardcopy. The use of color is, for in-
stance, economically feasible to a higher degree in computers than in print and
it is possible to animate texts [36]. Color coding is often used in editors to
make reading easier. Computer-reading environments can also take advantage
of typographical change. The Web is full of examples of dynamic typogra-
phy. Roll-over effects on links and collapsible lists are commonplace and they
enhance the reading environment. We find dynamic dimensions of typogra-
phy intriguing because they go beyond printed text and can further enhance
the computer-reading environment. We want to look beyond hypertext in the
search for reading support (for an in-depth discussion on dynamic typography
see Section 2.5).

1.3. RESEARCH FOCUS: DJAVADOC 5

1.3 Research Focus: DJavadoc

We focus on computer-reading environments for Java API reference documenta-
tion as an example of work-related texts. Specifically we consider the Java API
reference documentation an example of a generated, homogenous, and struc-
tured information repository that is continuously read as part of the work-task.
Our goal is to find new ways of presenting and organizing the API reference doc-
umentation that will facilitate use-oriented reading: a task that includes navi-
gation, information access, acquisition of detail syntax and semantic knowledge,
knowledge of structures enforced on programmers by APIs, knowledge about
the distinctions among components with regard to their possible and recom-
mended use, and so on. We are particularly interested in support that can be
automated in some way, not because well-formulated tutorials can be replaced,
but because automated reading support scale better for rapidly evolving infor-
mation sources. Also, automatically generated documentation will not deviate
from the source code.

More specifically, we have examined ways to enable different views of the
same information by taking advantage of an explicit underlying information
structure. The official Javadoc output (see Section 2.1.5) delivers class docu-
ments which contains an underlying, implicit information model. The informa-
tion model is illustrated by the static-typography of the documents in which, for
instance, bold style is used to emphesize method names. In a computer-reading
environment, excessive information can be made less visible by changing the
typography. For instance, we can turn the color of uninteresting texts into
something not quite distinguishable from the background and thereby gray-out
parts of the document. Similarly, we can remove excessive information from
the reading surface by revoking the rendering of uninteresting text parts. As a
result the visibility of the remaining information increases.

We have created a new version of Javadoc, named DJavadoc, that enables
control over the visibility of information types in the API reference docu-
mentation. The official Java API reference documentation is generated by
the Javadoc program designed by the Javadoc Team at Sun Microsystems
[57]. In the DJavadoc project we extend Javadoc to augment its output
with dynamic typographical functionality using dynamic HTML (DHTML)
(see Section 2.2.2). DJavadoc is available on the Internet for public use on
www.ida.liu.se/~eribe/djavadoc [44]. We are in the process of acquiring
evaluation opportunities in industry to achieve real-world testing of DJavadoc.
So far we have achieved some preliminary results.

Using DJavadoc and its following versions as a research vehicle, we hope
to discover requirements that should be put on API reference documentation.
DJavadoc is a product, an alternative API reference documentation that pro-
vides other types of support than Javadoc. However, it is also a tool for study-
ing the requirements that should be put on API reference documentation. For
instance, evaluation of DJavadoc will support the implemented requirements.

6 CHAPTER 1. INTRODUCTION

(Also, DJavadoc may function as a door opener providing access to the real
world where professional Java developers work.)

1.4 Research Method

Applied task-driven technology-focused research will lead to greater under-
standing of both the technology and the domain. A research approach of apply-
ing technology to support a task in a domain will deliver a product. However,
the process of development and evaluation of the product will result in more
general knowledge, though the knowledge may be harder to generalize because
of the applied, product-based approach. Also, the knowledge is probably less
valid because it was formulated and tested in a more specific setting. Still, ap-
plied research represents a type of research that delivers general knowledge. We
find applied computer science intriguing, in particular since the development
of new technology is rapid in the area.

Our goal regarding research methodology is iterative application building
based on user studies performed on prior iterations. Our research method is to
first develop real applications that can be put to concrete use. We then perform
user studies by evaluating the systems. In the first iterations we have based
our design choices on our background as Java programmers. As the work
progressed, we gained insights from development while designing prototypes
that were evaluated informally. In the first iteration of the DJavadoc project
we have had three generations: two prototypes and one final version. User
studies are then performed on the final version in the iteration of which the
result will be incorporated in future iterations. Our approach can so far be
viewed as a form of in situ development.

The combination of qualitative and quantitative evaluation is preferred in
our project. We chose to interest ourselves in qualitative methods because our
research goal is to improve programming by humans though the API reference
documentation. However, we are not advocates of qualitative studies per se
but rather research pluralism in which qualitative and quantitative studies
complement each other. Quantitative studies have their place in our research,
for instance by studying how readers use DJavadoc.

1.5 Contributions

This work contributes foremost to the understanding of the online API refer-
ence documentation and the requirements that should be put on the API ref-
erence documentation as a programming tool. We also present the reference-
documentation architecture used in the DJavadoc project. Furthermore, we
analyze and discuss the continued development of the current Javadoc API
reference documentation to achieve more use-oriented designs. How docu-
mentation can be used to analyze the Java language and ultimately object

1.6. THESIS OUTLINE 7

orientation is also discussed. Moreover, the thesis sheds some light on the
computer-reading environment and its qualities beyond hypertext, particularly
though the discussion of the concept of dynamic typography. The project also
has additional practical contributions in the DJavadoc API reference documen-
tation, which is a practically usable programming tool available on the Internet
at www.ida.liu.se/~eribe/djavadoc.

1.6 Thesis Outline

In chapter 2 we provide a background discussion of technologies and concepts
used in the thesis. The descriptions are given in the form of basic explanations
and reflections.

In chapter 3 we discuss the methods used to design and to evaluate DJavadoc.
The production of concrete systems as a means to perform research is also dis-
cussed and, furthermore, how evaluation should be performed and what types
of knowledge the research method may deliver.

In chapter 4 we present DJavadoc in detail. DJavadoc is presented in con-
trast to the Standard Doclet, the specification of the official Java API reference
documentation. The dynamic typography used in DJavadoc is described and
illustrated by a series of screen-shots.

In chapter 5 we present preliminary studies that have been performed and
report these results as experience. In addition, we outline the continuation of
the DJavadoc-project studies.

In chapter 6 documentation or systems related to DJavadoc are presented.
In our search for related systems we have taken the view point of programming-
language environments and their reference material. We view such systems
from a general acquisition-of-knowledge perspective and discuss their relations
to the DJavadoc project.

In chapter 7 we provide a discussion based on our experience from the
DJavadoc project. The DJavadoc project is connected to many aspects of
the computer-reading environment and software engineering. We discuss API
reference documentation, Javadoc and our future research directions.

In chapter 8 we summarize the thesis and provide conclusions from the
DJavadoc project.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we discuss different technologies and concepts related to the
DJavadoc project. Sections 2.1 and 2.2 concern technologies whereas the re-
maining focuses on concepts and design issues. For a detailed description of
DJavadoc see chapter 4.

2.1 Java

2.1.1 The Java Programming Language

The Java programming language was developed by Sun Microsystems [32, 52,
55]. Java has only been publicly available since May 1995 [74]. Originally,
Java received much attention as a Web animation language made famous by
its Applet concept, a small program executable in Web browsers. Today, Java
is not primarily a Web-language, both because the language has developed in
other directions and because other alternative Web animation languages have
appeared, see Section 2.2.2.

Java is an object-oriented programming language, much like C++ in syn-
tax. In principle, all programming elements are considered to be classes, which
contain fields, constructors, methods and inner classes (even though basic prim-
itives, like integer and boolean, are still used). Classes are also grouped into
packages. All classes extend the java.lang.Object class, which is the super-
class of all classes. Class names are constructed using a package name and a
class name, in order to achieve unique names. For the Object class, the package
name is java.lang and the short name is Object. However, the package name
is seldom spelled out when the class is referenced in the source code. Instead
the package is imported so that the class can be referenced by its short name.

Java is an interpreted language which is compiled to an abstract, platform
independent Java machine-code. The Java virtual machine (JVM) interprets

9

10 CHAPTER 2. BACKGROUND

the so called byte-code and maps this byte-code to machine code. By inter-
preting the byte-code, the JVM makes Java programs platform independent
even though the JVMs are dependent on the platform. The byte-code step also
makes Java more secure, in the sense that the program can be analyzed for
prohibited behavior. The interpretation step, however, leads to slower perfor-
mance.

The official Java core class library, the Java development kit (JDK), is
tightly coupled to the language. Java is synonymous with JDK, even though the
language and the standard class library are two different things. For instance,
the Object class that all classes extend is part of JDK. In our opinion, Java
is a language based on reuse which makes JDK and the JDK API reference
documentation vital parts of the Java environment. Application builders deal
with issues such as deciding which class to use and the need to understand how
these classes are combined into applications.

Java has established itself as one of the most used languages in spite of
performance problems. The interpreted nature of the language leads to slower
performance. Even though the performance on high-end PCs and workstations
is acceptable, speed is definitively Java’s Achille’s heel. Much work is being put
into the performance issue [53] but results have been somewhat discouraging
until now. In the future Java performance issues will probably be resolved
(the next Java release focuses on this issue). Also, judging by the recent PC
evolution, the problem might just disappear on its own.

2.1.2 Java, JDK, SDK and so on

In this thesis we use the name Java to denote the Java programming language
and the name JDK to denote the core class libraries. Java names are currently
undergoing some change. For the next release (some would call JDK 1.3) the
name will be Java 2 SDK 1.3 where SDK stands for standard development kit.
JDK 1.2 was released before the name change to Java 2 SDK 1.2 was made
and, of course, there has been much confusion. However, we use the names
Java and JDK in this thesis because these are the currently the best known
names.

2.1.3 Javadoc

Javadoc is a Java program that generates documentation from Java source code
[9, 19]. The program runs the source though the first steps in the Java com-
piler, which delivers information about inheritance, class and method names,
parameters, return values, exceptions and so on. Programmers write tagged
comments in the source code, which are also extracted by the Javadoc pro-
gram, see Figure 2.3. The Javadoc Team has defined a set of tags that will be
recognized. Javadoc can generate API reference documentation for any combi-
nation of Java classes. Figure 2.1 show Javadoc class documents from JDK1.1

2.1. JAVA 11

Figure 2.1: Screen shot of the Javadoc 1.1 style class document.

and Figure 2.2 show Javadoc class documents from JDK 1.2. On the Java
home page [52] Javadoc-generated documentation can be found for each of the
different versions of JDK (see Section 2.1.1).

12 CHAPTER 2. BACKGROUND

Figure 2.2: Screen shot of the Javadoc 1.2 style class document.

2.1. JAVA 13

/**
* Draws as much of the specified image as is currently available
* with its northwest corner at the specified coordinate (x, y).
* This method will return immediately in all cases, even if the
* entire image has not yet been scaled, dithered and converted
* for the current output device.
* If the current output representation is not yet complete then
* the method will return false and the indicated {@link ImageObserver}
* object will be notified as the conversion process progresses.
*
* @param img the image to be drawn
* @param x the x-coordinate of the northwest corner of the
* destination rectangle in pixels
* @param y the y-coordinate of the northwest corner of the
* destination rectangle in pixels
* @param observer the image observer to be notified as more of the
* image is converted. May be <code>null</code>
* @return <code>true</code> if the image is completely
* loaded and was painted successfully;
* <code>false</code> otherwise.
* @see Image
* @see ImageObserver
* @since JDK1.0
*/

public abstract boolean drawImage(Image img, int x, int y,
ImageObserver observer) {
...
...
...

}

Figure 2.3: An example of how comments are written into the source code
using @-tags (for instance, @param) to structure the tags.

14 CHAPTER 2. BACKGROUND

The purpose of Javadoc and the API reference documentation it delivers
is to support programming by providing an interface to the API source code.
Programmers use API reference documentation to learn and use API source
code. They could read the source code directly but it is time-consuming and
may require complex analysis. The aim of the API reference documentation
is to portray the functionality of the API, correctly and efficiently. The API
reference documentation presents information deemed particularly important
to programming.

Principally all Java code (provided by Sun Microsystems or third-party
providers) is presented in the form of Javadoc-generated documentation. Along-
side more descriptive texts Javadoc-generated documentation is the standard
way of illustrating the available functionality on code level. For early releases of
class libraries, Javadoc API reference documentation may be the only available
documentation.

In our opinion, the Javadoc-generated API reference documentation is well-
known in the Java community and easily read by knowledgeable Java program-
mers. Achieving a form of automatic documentation is the purpose of Javadoc.
Automated visualization of functionality naturally has many practical advan-
tages, such as reduced cost and a stronger coupling with the source code (the
tagged descriptions may not be updated but are at least stored in the same
files as the source). Of course, from a learning perspective an automatic list-
ing of functionality cannot compete with well-written tutorials. However, the
Javadoc-generated API reference documentation becomes an important, stan-
dardized learning environment for Java programmers.

We believe that Javadoc has played an important role in the rise of the
Java language during the 1990s. Because it provided readily available JDK
documentation, the rapid development of the Java language (see Section 2.1.1)
has benefited from Javadoc. The API reference documentation has been avail-
able on Internet in principle since Java was introduced. Unlike tutorials the
Javadoc-generated API reference documentation is easily updated and there-
fore never out of date, which has been a problem for books due to the speed
with which JDK changes.

Javadoc is actually not one program but a complex structure of systems,
illustrated in Figure 2.4, which are described in the following sections. Javadoc
is the control program of a complex structure of systems used to generate API
reference documentation from source code. In essence, Javadoc is a framework
for Javadoc applications. The role of the Javadoc program is to build an
information structure and then to hand over the process of generating output
to a Doclet, see Section 2.1.5.

2.1. JAVA 15

Figure 2.4: The structure of systems that are used in a Javadoc session to
deliver API reference documentation.

16 CHAPTER 2. BACKGROUND

2.1.4 Doclet Application Programming Interface

The JDK 1.2 release contains a Doclet API (see Section 2.1.1). Originally
Javadoc was a Java program that could not be altered or changed in any way.
However, with the release of the Doclet API, Java exposes the documentation
classes used by Javadoc. The Doclet API represents a development platform
for designing Javadoc documentation from Java source code. Printing is not
contained in the Doclet API, only the means to access information from the
compiler. In Figure 2.4 we illustrate how Javadoc generates the information
structure accessible through the Doclet API. The Doclet API can be seen as an
abstract data type for Javadoc(data storage and methods to access the data).

2.1.5 Standard Doclet

The Javadoc program uses a Doclet to define the Java API reference documen-
tation content and typography. By providing a Doclet class as an argument
to the Javadoc program, the printing of the API reference documentation can
be changed. For instance, a new Doclet could print only the names of classes
in an index. In Figure 2.4 the Doclet is given control by the Javadoc program
and then uses the Doclet API to access the information structure. The Doclet
is intended to deliver an output of some sort [9] but could do anything within
range of the Java programming language (e.g., surf the Web for Java classes
that extend the classes in the Javadoc session).

The Standard Doclet is the Doclet used to generate the official hypertext-
based Javadoc API reference documentation developed by the Javadoc Team
at Sun Microsystems. In combination with the Doclet API, the Standard Do-
clet is delivered as the default Doclet class used by Javadoc to control printing.
The produced API reference documentation focuses on class documents that
contain listings and descriptions of the inheritance, fields, methods, construc-
tors, and inner classes; basically a signature of the class. HTML links (see
Section 2.2.1) are used to create relations (i.e., relations that directly lead to
related documents) among class documents. Return-value classes, parameter
classes, and inheritance classes are linked from the class document. Section 4.2
describes in detail the output of the Standard Doclet. In Figure 2.4 we illus-
trate how the Standard Doclet is used to deliver the official Java API reference
documentation in HTML.

DJavadoc is a Doclet implementation that extends the Standard Doclet (see
Section 2.1.5). As an extension, DJavadoc introduces dynamic features in the
Standard Doclet by adding DHTML (see Section 2.2.2) to the existing hyper-
text API reference documentation. It is important that the Standard Doclet
is easily extendable, at least if different versions of the Javadoc generated API
reference documentation are desirable. The development of new Doclets bene-
fits greatly from the Standard Doclet in the sense that the basic structure have
already been developed. Having a structure to extend increases the ease with

2.2. WEB TECHNOLOGY 17

which new versions are created. Also, the Standard Doclet sets a typographical
standard that new versions can conform to.

2.2 Web Technology

2.2.1 HTML

Hypertext markup language (HTML) is a human readable and machine readable
format for defining graphical typography of media (e.g., text and images) and
connections between media documents [51, 50]. HTML is the most commonly
used hypermedia language today. As a simple Web language it has gained its
popularity. HTML is the most used and most well-known instance of the stan-
dardlized generalized markup language (SGML) [73]. XML is another SGML
derivative which is currently receiving much interest [82, 81]. Unlike HTML
but like SGML, XML is a meta-language used for defining mark-up languages.
A style sheet language is required to define the typography of XML or to con-
vert to another language. XML is currently viewed as a future alternative to
HTML but that will still take some time.

The bulk of HTML is related to typography, even though HTML is con-
sidered a hypertext or hypermedia language. Only a small fraction of HTML
represents hyperlinks. Also, up to now, the development of HTML has not
concerned hypermedia but rather the construction of more advanced and con-
trolled typographical techniques.

2.2.2 Dynamic HTML (DHTML)

HTML (see Section 2.2.1) is a static language that in principle contains no
means of expressing dynamic behavior of the typography or of document re-
lations. The popular Web-page language, HTML, contains elements for ex-
pressing headings, tables, forms, hyperlinks and so on. The static typography
of these elements is specified by browsers, such as Microsoft Interent Explorer
and Netscape Navigator but can also be defined using style-sheet languages (see
[43]). However, the ability to define dynamic changes in the typography of the
HTML elements is very limited. One of the few dynamic features in typogra-
phy in HTML is the color difference between visited and unvisited hyperlinks.
Another example is the tool-tip or balloon help that pops up over images and
other HTML elements.

Dynamic HTML (DHTML) is a term grouping all (client-side) technologies
used to create dynamics in HTML. DHTML is used to create Web pages that
react to interaction and display different material in different contexts. Being
more of a dynamic content and typography technology, DHTML cannot be
viewed primarily as dynamic hypermedia. The general purpose of DHTML is
not to define hyperlinks that can relate to different sources depending upon the

18 CHAPTER 2. BACKGROUND

context, even though it is possible. Instead DHTML is used to create graphi-
cally appealing and living pages that look good and feel professional. A popular
example of DHTML is the roll-over effect that illustrates what hyperlink the
reader is about to activate. The collapsible list is another frequent example.

The core DHTML technology is the scripting language used to introduce
algorithmic behavior in the HTML-page.JavaScript was the first and is proba-
bly still the most used scripting language [4, 60]. The proposed international
ECMAScript standard is currently an accepted standard of the major browsers
Netscape Navigator and Microsoft Internet Explorer [2, 46, 47].

For DHTML purposes, the scripting language is used to manipulate func-
tionality available in the browser, rather than to serve as a separate program-
ming language. The more advanced browsers have an elaborate list of events
that are fired when the user interacts or when the browser has performed cer-
tain steps. Scripts written in the Web page can be set as handlers of these
events which will then be activated if the event is triggered. Scripting lan-
guages generally access functionality available in the browsers to manipulate
or change the appearance of the Web page. The document object model (DOM)
[45] defined by the world wide web consortium (W3C) [41, 79] opens up the
object structure of the Web page so that individual elements can be accessed
and manipulated. DOM is a central component in DHTML that the major
browsers do or will implement.

DHTML has not followed in the tradition of HTML development, in which
new and more complex tags have been developed as part of the markup lan-
guage. During the evolution of HTML several new tags have appeared. The
transition from a simple markup language to a typography-centered language
has been driven by the introduction of new tags defining more complex typo-
graphical functionality. However, even though some DHTML applications have
the potential of becoming tags (e.g., collapsible lists and roll-over images), no
new tags have been introduced. Instead Web design is becoming more complex,
involving several different technologies and taking the form of a programming
language rather than a markup language.

2.3 Multiple Views

A view of an information source distinguishes among parts of the information.
Views are constructed by making parts of the information more or less visible to
the reader. In principle every presentation of an information source represents
a view of that source.

Multiple views of API reference documentation are required because read-
ers have multiple purposes. Since the API reference documentation contains
information for more than one purpose and on more than one level of detail,
the multiple views are needed to create descriptions that are in line with the
needs of an individual reader. Readers have a particular purpose at hand when

2.4. USER CONTROL 19

reading the API reference documentation and therefore want the information
matching this purpose to be presented. As purposes change, the presented
information should change.

Multiple views are also required because readers are use-oriented. Readers
have particular tasks in mind as they read the API reference documentation.
They are looking for specific information or specific types of information. Their
interest is to acquire knowledge to perform tasks and not to be amused or
entertained. Furthermore, because their interests change, one design of the
API reference documentation cannot be fully adapted to readers’ needs.

In addition, multiple views are required because individual readers want
the same information displayed in different ways. Different programmers like
different types of presentation of the same information. In our experience of
working with computer-science students we conclude that readers want the
source code described in different forms.

2.4 User Control

Flexible and configurable API reference documentation requires choices, per-
formed either by the reader or for the reader. What pieces of information are
uninteresting must be decided by someone. The reader is a natural candidate
for making the choices and manipulating the settings of the computer-reading
environment. However, information models that describe the alternatives may
be complex, in which case the reader might find it difficult and (or) time con-
suming to control the reading environment.

In the intelligent-user-interface community much work is beeing put into the
design of systems that can make choices on user’s behalf [38]. An intelligent
API reference documentation would create a representation of the reader’s in-
tentions and map them to actions in the computer-reading environment. Intel-
ligent documentation could alternatively provide suggestions instead of making
choices. Furthermore, intelligent documentation could work with the informa-
tion model to present a less complex interpreted model.

For the Javadoc API reference documentation, an intelligent interface is
probably not required and definitely not the first thing to introduce. The
information is homogenous and the information model is in our experience
well known, at least by knowledgeable readers. Introducing intelligent support
may be a second step, but to introduce user-controlled support is the first.
We also strongly believe that readers of API reference documentation want to
make their own choices, especially knowledgeable readers. Professionals want
to control their environment, to decide when and how things happen.

Furthermore, programmers are well suited for high-level tasks in computer-
reading environments. Programmers are professionals both in the domain and
the technology. As programmers they are likely to have much practical and
theoretical knowledge about computer science. They are also likely to be well

20 CHAPTER 2. BACKGROUND

Figure 2.5: An example of dynamic typography in which A, B, and C represent
different typographical states of the same information. A is the fully expanded
view. In B the gray-out method has been applied to decrease the visibility of
the sub-levels. In C the sub-levels have been collapsed.

acquainted with Web technology. In general, there is reason to believe that
programmers are sufficiently competent to control the computer-reading envi-
ronment, perhaps more so than other professionals.

2.5 Dynamic Typography

2.5.1 Defining Dynamic Typography

Dynamic typography is the description of the change in appearance of informa-
tion in a reading environment, illustrated in Figure 2.5. Typography is the user
interface of the document paradigm. Static typography involves the setting of
a unchangeable appearance using terms such as font, font-size, margin, line-
space, white-space. Movement of information entities over the reading surface
can also be characterized as static or directed typography (typography does
not generally include a language to define movement but it is touched upon
in [36]). It is characteristic for static typography is that the setting is prede-
fined and controlled by the typographer. Once the typography is set, it is, in
essence, etched into the reading surface. A dynamic dimension of typography
would extend this realm with change due to interaction, time, as a relation
among different typographical entities, and so on. Defining the behavior of the
typography in a changeable media such as the computer-reading environment
becomes relevant when neither the reading surface nor the content is clearly
defined. An example of dynamic typography is to define a roll-over effect that
will highlight a piece of information when the pointer is located over it by
changing the color.

2.5. DYNAMIC TYPOGRAPHY 21

Specifying dynamic typography may be a matter of defining what types
of change we agree to and what methods of change we prefer. Also, new ty-
pographical concepts may be required. An example of dynamic typography
is the definition of a row-length range, specifying the acceptable change in
row length. Ranges, which define reasonable typography for different forms
of media, are known within typography. For instance, the line length should
be 35-65 symbols [3]. Another example is to define collapsibility as a typo-
graphical concept, specifying that for all lists we agree on collapsibility and
’gray-out’ as our change method. On a more general level we could define red
as the general roll-over color and let the system apply that change in color
whenever it encounters rollable items. For rollable images we would supply two
image sources to switch between. The list of concepts, change specifications
and change methods is probably quite extensive. However, we believe it is
important to further investigate dynamic typography as a concept to better
support reading in computer environments. Also, by investigating dynamic
typography we may discover typographical knowledge that can be applied in
Web applications.

2.5.2 Dynamic Typography versus Hypermedia

Features of the computer-reading environment extends beyond hypertext. Hy-
pertext and hypermedia have received much attention as a result of the popu-
larity of the Internet, even though the work on hypertext started long before
[39]. The ability to download any referenced material in a matter of seconds
as opposed to days or weeks through ordinary library sources is, of course, a
major breakthrough in reading. However, the computer-reading environment
holds more than hypertext. Alternative approaches to computer-based reading
are interesting simply because of the strong focus on hypertext.

The development of Web technology also speaks for a shift in interest from
hypertext to dynamic typography. The development of mainstream browsers,
such as Internet Explorer, and HTML (i.e., the de-facto standard hypermedia
language) stands in contrast to the focus on hypertext and hypermedia. While
much has been written on the topic of hypertext and the need for more so-
phisticated hyperlink-functionality (see for instance [31, 20]), the development
of mainstream Web technology has surrounded typography and dynamic pre-
sentation. The bulk of HTML concerns typography (only a few attributes in
HTML 4.0 are hyperlinks) [50] and the development of HTML has also focused
on the creation more complex typography components such as tables. Recently
DHTML has appeared as a term grouping dynamic presentation techniques on
the Web (see Section 2.2.2). It is the cinematic look and feel of Web pages that
drives the DHTML development forward, that is typography. In the future the
development of more advanced hypertext may well appear but there is still a
mismatch between the interest in hypertext and development of mainstream
Web technology.

22 CHAPTER 2. BACKGROUND

Furthermore, dynamic typography is an important area of investigation
because it will have profound implications on static-typography. The long tra-
dition of typography dating back to Gutenberg and the fourteenth century is
concerned with printed text, that is a static surface. Even today, typography is
mainly concerned with the static medium be it on paper or screen (see for in-
stance [3, 36, 18]). In [36], the dynamic features of typography is touched upon
as an extension into the dimension of time in which type in motion is discussed
(speed, direction, duration and variation in size as typographical characteris-
tics of type in motion). The time-dimension is only discussed in relation to
a cinematic, choreographed, and controlled movement and not in relation to
interaction or change in the reading surface. Typography is still discussed as
a predefined and, in essence, static art. At the same time the Web is full of
dynamic-typography examples. Roll-over effects on links and collapsible lists
are commonplace. If a dynamic dimension is introduced into typography it
becomes less obvious how to express the type-setting of information. The ty-
pography language may have to change. For instance, the font-size of a text
can still be defined but additionally we may have to describe its response to
changes in the environment. This lack of dynamic dimensions of typography
is also an argument for looking at dynamic typography as a means to support
the reading task.

2.5.3 Dynamic Typography in DJavadoc

In DJavadoc we introduce a simple collapse and expand functionality, much like
collapsible lists but for entire texts. We chose to regard this functionality as
dynamic typography, even though it is in essence the same as stretch-text (which
is a form of hypertext in which information nodes are expanded inside the
document). The reason for not using the term ’stretch-text’ is to underline the
connection to typography as opposed to information composition. Collapsible
text is only one example of dynamic typography that creates new views on the
same material. Another example is the graying out of information by changing
the color to something not quite distinguishable from the background. Graying
out to enhance visibility was used in the conceptual-filtering generation of the
DJavadoc project (see Section 4.8.3). Compared to collapsible text, graying out
gives a graphical description of the relation between the grayed information and
the remaining information but does not free screen space.

By introducing dynamic typography, it becomes possible to collapse and ex-
pand information types as well as specific pieces of information from the API
reference documentation (see Section 2.5). Such collapse and expand func-
tionality enable the reader to make visible interesting pieces of information by
removing less interesting pieces.

It is important that readers are aware of the collapsed material [8]. The non-
rendered parts of the API reference documentation may not be unknown to the
reader. The system should take responsibility for presenting the invisible parts.

2.6. OTHER DESIGN CONSIDERATION 23

API reference documentation, which is homogenous in nature, may have a strict
information model that is known by the reader. Compared to heterogeneous
information, the invisibility will be less dangerous. Knowing what parts of the
model are collapsed may suffice as visual cues for the knowledgeable reader.

2.6 Other Design consideration

We believe that work-related texts, such as API reference documentation,
should be designed for professionals. Novices need tutorials to learn the lan-
guage, culture, and basic facts of the subject area. The need for pedagogical,
well-formulated explanations decreases as the novice progresses. Reading be-
tween the lines and making sense of incomplete information is something the
professional handles well (see [15]). API reference documentation, unlike tu-
torials, should be viewed as work-related texts and not educational material
(although learning does continue in the work-situation). As such, the documen-
tation should be focused and use-oriented. Professionals want to find the core
of the information and then move on. They also know what amount of informa-
tion they want and when. Therefore user controlled adaptation of information
becomes an attractive means to improve work-related texts.

For evaluation purposes, changes were not introduced to the static typog-
raphy and the information organization of the Standard Doclet Section 2.1.5.
The Standard Doclet defines the standard look for Javadoc generated API ref-
erence documentation and serves as the platform on which DJavadoc is built.
Changes to the static typography or the information organization could have
enhanced our possibility to leverage dynamic typography. It is also possible
that such changes would enhance the reading environment regardless of the
dynamic typography. However, testing the effects of dynamic typography in
DJavadoc would have become more difficult and therefore we restrained from
any such changes.

24 CHAPTER 2. BACKGROUND

Chapter 3

Method

In this chapter we discuss methods of development and evaluation that are
related to the DJavadoc project. We describe research methods used to discover
requirements and architectures for API reference documentation in our work as
well as other’s. Javadoc is discussed in Section 2.1.3. The actual development
and the early, informal studies are discussed in chapters 4 and 5.

3.1 Different Research Methods

Requirements on API reference documentation can be discovered by performing
user studies. There are a series of methods to study users and determine
their requirements on, for instance, API reference documentation. Common
to all these methods is that the user is the primary source of input and that
the observed difficulties the user has should guide the development. To some
degree research based on this approach assumes that users have the ability to
express the needed changes on their own or that it can be observed. A potential
problem with this approach is that the users current work situation might be
conserved rather than changed (which is both good and bad).

An alternative approach is to test concepts by implementing them in a se-
ries of situations. An example is the action-oriented approach to instructional
material Carroll introduced with the minimalist concept [16]. Minimalist in-
structional material should inspire action, support and encourage exploration,
be brief, provide error information, and so on. The minimalist design has been
applied in a series of instructional texts and tested [17]. There has, of course,
also been a continuing refinement of the concept along the way. We are inspired
by Carroll’s approach.

By designing working systems, new architectures and idees are presented.
The value of the architectures and ideas are arguments for and, to some de-
gree, determined by the widespread use of the system. The WEB system is one

25

26 CHAPTER 3. METHOD

example (this is not the World Wide Web). The system was the first embodi-
ment of Knuth’s literate-programming vision, in which programs were written
as novels containing both comments and code [37, 7], WEB is also discussed
in Section 6.5. Building a series of systems provides the researcher with design
experience and empirical evidence of the effect of design choices.

3.2 Our Research Process

3.2.1 Iterative System Design as Research Method

We apply iterative system building as a research method. Our research takes
its stance in a task, that is the task of acquiring knowledge from API reference
documentation. This task is a subtask of the programming task and has sub-
tasks in itself. We chose to conduct research by developing systems (somewhere
in between prototypes and well-supported systems) to support this task and
to evaluate the system. The goal of introducing new support is to both test
the requirements implemented and to elicit new requirements for the next iter-
ation. To conduct an iterative development in which systems are created in a
design-evaluate-redesign loop is currently part of many development methods,
see for instance the Unified Development Process by Rational [35, 71].

Currently we have performed in situ development. Based on our own experi-
ence of using API reference documentation in small to mid-sized one-man, non-
commercial projects we have developed some requirements and implemented
them. The next step is to incorporate other developers in the loop.

We decided to address only parts of the functionality in the current version
of the API reference documentation. By completely redesigning the API ref-
erence documentation we might have developed a better version. However, we
chose to work with the existing system by enhancing it with new abilities. One
major reason is the ability to create a new, fully functional documentation and
still focus only on certain aspects.

We want to test our systems on professional practitioners. The type of
informants we are focusing on is the professional Java developer who uses API
reference documentation on a day-to-day basis. Professionals are considered to
be task-oriented in the sense that they strive to optimize their work and reflect
upon deficiencies in current support. Also, they may devise ways of overcoming
deficiencies in the current support that are of interest to our research.

3.2.2 The Advantages of our Approach

By building systems to support a task we achieve a concrete, practical research
approach. Tasks are closer to our everyday life and therefore perhaps easier to
relate to than are, for instance, technologies. Supporting tasks with systems
potentially leads to relevant research of a general nature that can be tested in

3.2. OUR RESEARCH PROCESS 27

the task environment. Concrete applications may also inspire genuine evalu-
ation interest from task performers because in their eyes the system may be
valuable. Furthermore, the introduction of new technology may generate new
lines of thought in users. For users it may be easier to react to a system than
to come up with ideas of their own.

Another advantage is the system-building perspective that may lead to the
discovery of another range of knowledge, compared to, for instance, user studies.
In itself, development is a creative process that requires the concrete application
of technology to the ideas of a researcher. The process of converting the ideas
into something that works, in our experience, brings new ideas to the surface.

Systems open doors. They provide a bridge between the research laboratory
and the real world. As researchers we achieve a starting point for discussions
with practitioners. Getting practitioners to pay attention to the research we
are performing may not be easy simply because they do not have the time.
However, if we deliver something they can benefit from directly, we might be
more successful. The system-focused approach represents one way to generate
reactions from a body of users that may have general consequences. Once the
connection is established, it might be possible not only to perform evaluation
of the system itself but also more general studies.

It is important to note that the final goal is not to produce systems in
themselves but the knowledge that the development and use of systems provide.
Development is conducted as a way of testing and experimenting with ideas
and to further extend them. The development and use of systems then provide
insights on a more abstract level, for instance, requirements and architectures
for a type of system. It is these more abstract findings that we consider research
contributions.

3.2.3 The Drawbacks of our Approach

One major disadvantage of a task-driven approach is the great distance be-
tween task-based evaluation and general evaluation. Results and contributions
may not result in major change in a greater context but will still be real in the
task-context. It is not possible to arrive at general conclusions if the research is
performed in the task-environment, only to provide evidence of general princi-
ples from that environment. The system-building approach leads to an indirect
testing of design principles. Conclusions drawn from an evaluation are perhaps
not representative for the design in general. Issues such as system performance
and smooth interaction will also have impact on the result (which may be pos-
itive as well). Also, change in the performance of a task or the task itself may
occur simply on the basis of the introduction of new and appealing technology.

Real-world testing may bring a set of restrictions to the research. From
our experience in acquiring real-world contacts it is also obvious that there has
to be some form of mutual exchange involved. Also, the effort required from
the industrial partner must be minimized. Furthermore, professionals may be

28 CHAPTER 3. METHOD

hard to find, they may have little time over for interaction with a researcher.
Since Java is only 4 years old (May 1999) it can be difficult to locate such
professionals. It is less likely that corporations will have large divisions of
experienced Java programmers, as is the case for older programming languages.

3.3 Evaluation

The DJavadoc project deals with human performance and therefore qualitative
methods are close at hand. Qualitative methods, such as interviews, are natural
in the study of humans and organizations. There is a continuing debate on the
value of qualitative methods, addressed for instance in [10, 24]. We acknowledge
this debate but do not consider it further in this thesis. In our view, both
qualitative and quantitative methods are valuable but imperfect tools that
both have roles in our research.

So far, we have performed unstructured, informal discussions with potential
DJavadoc users that provide comments on the value of the system. In the
process of acquiring industrial contacts we have demonstrated and discussed
the system with 15 members of software-development projects. Furthermore, 7
technical writers have viewed the system. These discussions have been informal
and some performed by telephone or by email.

3.4 End Product

The type of contribution that can be reached using our research method is
knowledge about the domain, the community, and technologies in the form
of research experiences. In principle, we may only provide evidence of the
usefulness of different technological solutions in a particular domain. Our ex-
perience in working in this research environment, both partaking in a creative
task-oriented activity and by performing evaluation, may only point to possi-
ble knowledge. The findings may nevertheless be relevant. Our work will be
of a more descriptive character than of proven hypotheses. We may point to
and argue for different interpretations based on our evaluation and our own
experience. Developing systems as a research method leads to indirect testing
of theories (particularly non-formal development).

In comparison to an older system, we may show that new technology adds
substantial value. However, we cannot show that the same value cannot be
achieved by extending the technology already in use. Also, it is not possible
to show the inapplicability of technology since it is dependent on our ability to
write code. However, we may have developed arguments for why the applied
technology will not serve the task well.

Chapter 4

DJavadoc

In this chapter we describe DJavadoc in detail. DJavadoc is publically aviable
on the Interente via www.ida.liu.se/~eribe/djavadoc [44]. Since DJavadoc
is an extension to the Standard Doclet we describe DJavadoc by first describ-
ing the Standard Doclet and then explaining the extensions. We also examine
prototype generations that preceded the final DJavadoc version. Basic under-
standing of the technology is assumed and we do not go into detail on, for
instance, Java, Javadoc, and the Standard Doclet. For explanations of such
terms see chapter 2. The difference between hypertext and dynamic typogra-
phy can be found in Section 2.5.

4.1 DJavadoc Overview

4.1.1 The Official Java API reference documentation

The official Java API reference documentation is basically a component cata-
logue that describes a set of classes. The documentation lists available com-
ponents at class level and provides a series of navigational indices. Hyperlinks
are used to cross-reference among class documents via parameters, types, re-
turn values, and so on. For a more detailed description of the documentation
generated by the Standard Doclet, see Section 4.2.

The API reference documentation is a typeset view of the source code.
Some parts have been removed, others have been relocated, and the text is
typeset differently form the source code. Comments are generally added to the
source code and these are presented in the documentation. In a sense, these
comments describe parts of the source code that are of particular relevance.

The removals, relocations, and typesetting in the API reference documen-
tation create a view of the source code. The design of the API reference doc-
umentation reflects assumptions about what programmers need to know. For
instance, the choice is made only to present the signature of class members

29

30 CHAPTER 4. DJAVADOC

(name, parameters, and so on) but not the entire source. Also, members are
summarized alphabetically, though inherited members are summarized sepa-
rately in much shorter format.

4.1.2 What DJavadoc Adds

Dynamic Javadoc (DJavadoc) provides programmers with means to further
specialize their API reference documentation during work with the aim of con-
structing more use-oriented designs. The Standard Doclet provides a view
of Java source code. In DJavadoc we augment the Standard Doclet with
the ability to dynamically remove more information, thus further specializ-
ing the view of the source code. This extended functionality is applied to
reduce time-consuming, repetitive manual searching for well-defined informa-
tion types. DJavadoc does not assume that one information type is more vital
than another but rather that they are relevant in different works situations.

In DJavadoc the reader controls the visibility of information types. We can
view the API reference documentation generated from the Standard Doclet as
documentation designed for several information needs, for instance the need of
understanding a class or the need to look up names for coding purposes. In
DJavadoc we provide control over the visibility of information types (on group
level and individual level) in the computer-reading environment. The reader
can collapse and expand information, thus increasing the degree of visibility of
relevant information. By removing certain parts the reader moves other parts
up into the visible space of the browser. Also, by removing surrounding texts
the reader makes elements of greater importance more visible.

The information model used in DJavadoc is the explicit version of the im-
plicit information model in the Standard Doclet. The Standard Doclet prints
an implicit model in the API reference documentation based on the Doclet API.
The static typography exposes the model and we use it to define the information
model that conceptually groups pieces of information into information types.
The model is fairly straightforward, making it easier to identify a plausible
information model without exhaustive studies. However, more sophisticated
models could, of course, be devised.

The organization, content or static typography of official Java API reference
documentation is not addressed in the DJavadoc project. In one of the proto-
type generations, described in Section 4.8.3, we experimented with information
filtering based on conceptual types of class members (e.g., basic methods, and
event-related methods), but in the final DJavadoc version we focus on user-
controlled views of information based on an underlying model. We refrained
from addressing the organization, content, and static typography because we
wanted to keep DJavadoc similar to the Standard Doclet. The assumption is
that programmers will accept DJavadoc more readily simply because it is an
extended version of the Standard Doclet and not a new one. However, the
DJavadoc research project does not exclude these issues.

4.1. DJAVADOC OVERVIEW 31

4.1.3 Arguments for the DJavadoc Extensions

DJavadoc supports experts’ reading behavior. Experts want to search for rel-
evant information when they read; they skim, browse, and skip ahead to find
relevant parts [15]. By excluding information on the basis of type it is possible
that experts may find an information source closer to their needs (particularly
for homogenous sources). Searching for the relevant type of information can in
some cases be reduced to manipulating the visibility of information types.

By reducing the manual search of information types reading may become
less time consuming. Repetitive search for information types can be removed.
By collapsing information other parts are pulled up into the visible space of
the browser. The amount of scrolling needed to locate the relevant informa-
tion is reduced. The amount of information in different views is also reduced,
thus requiring less skimming. If the excess information is intertwined with the
relevant information, collapsing will produce cleaner sets of information.

There is a possibility that programmers will work more efficiently if they
can alter their API reference documentation to more focused, action-oriented
views. In our experience, Java programmers spend much time reading the API
reference documentation. Ways of reducing this time may have a direct effect
on the cost of software development.

Reducing manual search for information is an important problem, particu-
larly for the Java API reference documentation. Reading Java API reference
documentation is performed by browsing a large set of documents rather than
reading one document. This may be common for object-oriented programming
languages or component-based programming languages in which applications
are built by combining several components. The time scrolling down to the
relevant section of each new document can become a large portion of the total
reading time.

4.1.4 Interaction Principles of DJavadoc

The main ideas behind the interaction principles in DJavadoc are efficiency and
to follow Web conventions. Interaction is a complex domain with several im-
portant criteria from different perspectives. The work presented here does not
concern interaction in particular, but it is important since the DJavadoc refer-
ence document is intended for real use. The concerns on interaction principles
in the DJavadoc project are that efficient interaction should be achieved and
that Web tradition should be maintained. Also, we have aimed to be consistent
and simple. For instance, we use Java naming conventions as visual queues for
signals of particular interaction to avoid clouding the documentation with more
labels or icons. It is important to bear in mind that the documentation is in-
tended to be used by professionals, both in programming and Web conventions
(the Standard Doclet is Web-based).

32 CHAPTER 4. DJAVADOC

Figure 4.1: When saving classes to the DJavadoc Bookarks the background of
the class name changes for a short while to signal that the action was registered.

Blue, underlined text can be clicked, either to follow a hyperlink or to
perform a DJavadoc-specific action. Web tradition states that blue, underlined
texts are active, even though the Web is full of exceptions. Browsers generally
display hyperlinks as blue, underlined text if the particular Web page does
not state otherwise. It is also common that blue, underlined texts represent
calls to scripts. We have chosen to follow this tradition for interaction through
text: blue, underlined texts have functionality. For instance, class members
can be collapsed and expanded by clicking the blue, underlined name of the
class member. If no description is available, the name is colored black.

Class names signal additional interaction (but only in the class documents
and the table of contents). Java programmers recognize class names by conven-
tion and on their placing in the API reference documentation. The full class
name is hidden in tool-tips that can be exposed by setting the pointer over
class names. Also, classes can be saved to a bookmark list (see Section 4.3.5)
by pressing the alt-key and clicking the class name in class documents. Remov-
ing classes or packages is achieved by the same alt-key interaction. The fact
that the class is being saved or removed is illustrated by a short-time change in
background (see Figure 4.1). The alt-key interaction is a simple and efficient
way of achieving fast interaction.

4.1. DJAVADOC OVERVIEW 33

4.1.5 Dynamic Typography in DJavadoc

For the reader of DJavadoc API reference documentation the distinction be-
tween dynamic typography and hypertext might seem academic and not really
related to the issue of reading API reference documentation. From a software-
engineering perspective the key issue is what DJavadoc delivers in terms of
productivity and the effects on programmer’s working environment. Whether
the DJavadoc project is based on typography or hypertext is of little or no
concern to the programmer. Such an attitude is understandable and well moti-
vated. It may also be a reason for the confusion over the term ’hypertext’. In its
original definition hypertext represents non-linear text [27]. Current literature
in the area still focuses on the original definition (see for instance [13]). How-
ever, in practice, hypertext and hypermedia are often used to denote practically
everything on the Web.

Distinguishing between hypermedia and other dimensions of computer-reading
environment are part of the clear definition of the DJavadoc project. In our
view, it is important to discuss why the DJavadoc extensions are not of a hyper-
text nature since hypertext, in practice, is not clearly defined. Other concepts
are needed to fill out the area of computer-reading environments.

We regard the extensions made in DJavadoc as dynamic typography and
not as hypertext. In our view hypertext is related to information access and
information composition. Hypertext is defined as non-linear text [27], networks
of text that can be read in principle in any sequence. However, the graphical
presentation of text concerns typography [3, 21]. A change in the typography
of information should therefore be attributed to a dynamic realm of typogra-
phy and not hypertext. Collapsing and expanding are examples of the type
of manipulations we regard as dynamic typography. Other examples include
graying out, roll-over effects, and resized fonts.

4.1.6 Web Applications

DJavadoc is a Web application. We can view Web browsers as runtime envi-
ronments. Web browsers, such as Microsoft Internet Explorer and Netscape
Navigator, provide advanced support for HTML-based applications. In the
DJavadoc project we make use of this highly specialized technology to deliver
what is basically an information system.

In certain areas the Web is a well developed platform for applications. Web
browsers provide much support for information systems that consist mainly of
text and interaction with text. Internet Explorer in particular provides high-
level support for interactivity and manipulation of Web pages on the client
machine. For these types of applications the Web is a suitable platform. We
find Web browsers that are well-developed for the type of presentation and
manipulations we want to achieve in DJavadoc.

Using Web browsers as application platforms also has consequences. The

34 CHAPTER 4. DJAVADOC

limitations of the Web browser are imposed on browser applications. For in-
stance, security restrictions normally prohibit Web pages to access the client
machines to save data or to interact with other programs. The restriction is
advisable but still makes Web-application development more difficult. In the
DJavadoc project, we have used cookies [65, 66] to save data on the client ma-
chine. Cookies are a relatively poor form of data storage. In Internet Explorer
5 the possibilities to save is extended somewhat [64].

4.2 The Official Java API reference documen-
tation

4.2.1 Class Documents

The class documents are the core of the API reference documentation that the
Standard Doclet generates. Figure 4.2 shows a sample class document from the
Standard Doclet of JDK 1.2. The purpose of the class document is to describe
the class and its relations to other classes. As the primary knowledge source,
the class document maps directly to the source code and presents the surface of
the classes (e.g., method source code is not exposed). Hypertext is used to link
from the class documents either to related class documents or to other parts of
the document.

4.2. THE OFFICIAL JAVA API REFERENCE DOCUMENTATION 35

Figure 4.2: An example of the Standard Doclet presenting a class document and
the table of contents. The class documents describe each class that the reference
documentaion was generated for (e.g., entered into the Javadoc program). The
table of contents is a source index, listing classes in packages. Classes are
grouped into packages by the developers.

36 CHAPTER 4. DJAVADOC

Figure 4.3: The header (and also footer) in the Standard Doclet contains addi-
tional hyperlinks. Some documents can only be reached via this navigation-bar.
However, the header also pushes contents of the class documents down below
the visible space in the browser.

There is a general hyperlink section at the top (and also at the bottom)
of the class document (see Figure 4.3). Class documents have a header and
a footer that contain hyperlinks to other documents. The hyperlinks point to
various documents in the reference document, to strategic points in the class
document, and also to a non-frame version of the reference document (which
does not show the table of contents to the left of the class document [see Figure
4.2]). The same header and footer are available in all documents but links are
not always active.

4.2. THE OFFICIAL JAVA API REFERENCE DOCUMENTATION 37

Figure 4.4: The general class description is provided after the header in the
class document. Both a description written by the developer and information
derived from the source code (e.g., super classes and sub classes) are presented.

After the header comes a general description of the class containing both
technical information and a general description of the class (see Figure 4.4).
The class description starts with the class name. Furthermore, the class de-
scription contains an inheritance tree, information about known sub classes and
so on. Finally the description ends with a text written into the source code
by the programmer. For JDK it is common that the written comments also
include hyperlinks to related classes that the programmer regards as being of
interest.

38 CHAPTER 4. DJAVADOC

The class document continues with summaries of the class members (see Fig-
ure 4.5). Inner classes, fields, constructors, and methods are summarized sep-
arately and ordered alphabetically. The summary contains information about
the member’s type, parameters, return values, and name (if they apply for the
particular member type).

4.2. THE OFFICIAL JAVA API REFERENCE DOCUMENTATION 39

Figure 4.5: The class members are presented in a summary, which may con-
tain name, types, parameters, return-values and a brief description. If a more
detailed description was provided with the source code, it is presented further
down in the class document.

40 CHAPTER 4. DJAVADOC

Finally, the detailed descriptions of the class members are provided (see
Figure 4.6). In the member description, the typography of the comments fol-
low the tagging convention of Javadoc. Generally a description of what the
member is, details on what parameters stand for, and what may be returned
are provided. The quality of the description is dependent upon comments writ-
ten by programmers, even though some comments are inferred from the source
code.

4.2. THE OFFICIAL JAVA API REFERENCE DOCUMENTATION 41

Figure 4.6: The description of class members is provided separately from the
summary. It contains comments on the source code written by developers. The
member descriptions can be reached via hyperlinks in the summary.

42 CHAPTER 4. DJAVADOC

4.2.2 Table of Contents

The table of contents is the navigational device for the Standard Doclet API
reference documentation (see Figure 4.7). From the table of contents readers
find their way among the classes using hyperlinks. The underlying package
structure of Java classes is the basic indexing model for the Standard Doclet.
The packages and classes are listed alphabetically; packages in the upper frame
and classes in the lower frame. However, classes are grouped into types (i.e.,
interface, class, exception, and error) before being ordered. The class list also
contains information about the package the classes belongs to. Clicking on a
package brings a new class list to the class frame. Clicking on a class loads the
referenced class document into the class-document frame. Finally, there is also
a document containing all classes ordered alphabetically.

4.2. THE OFFICIAL JAVA API REFERENCE DOCUMENTATION 43

Figure 4.7: As a navigational tool, the table of contents is placed to the left
in the browser. It is an index of all classes ordered alphabetically in package
groups. The index represents a source development organization.

44 CHAPTER 4. DJAVADOC

4.2.3 Other Documents

The Standard Doclet also generates a few supplementary documents. Besides
the class documents and the table of contents the Standard Doclet generates
some supplementary documents that can be reached from the header and footer
hyperlinks. We do not describe them in detail because they have not been
part of the DJavadoc project. These documents mainly provide additional
navigational views on the API reference documentation.

4.3 Extensions Introduced in DJavadoc

4.3.1 Basic Comparison

The extensions made to DJavadoc all concern dynamic typography, not the con-
tent of the API reference documentation nor the static typography as shown
in Figure 4.8. The official JDK API reference documentation for Java pro-
grammers is defined by the Standard Doclet. As an example of a computer-
based API reference documentation several aspects of computer-based reading
(e.g., hyperlinks, search engines, and typography) are related to the Standard
Doclet. In the DJavadoc project we examine only one such aspect, namely
the introduction of dynamic typography functionality. From a perspective of
computer-based API reference documentation, the issue of dynamic typography
is of major interest because it represents a dimension of reading not available in
print. However, from a software-engineering perspective, dynamic typography
is one way of achieving multiple views of information. To help Java program-
mers other aspect may be equally important or more important to address
(e.g., introducing code examples into the Javadoc-generated documentation).

4.3. EXTENSIONS INTRODUCED IN DJAVADOC 45

Figure 4.8: The fully expanded DJavadoc version of the Standard Doclet is
equal both in content and class organization. On the surface the table of
contents appears to be the most different.

46 CHAPTER 4. DJAVADOC

4.3.2 Settings

In DJavadoc it is possible to define a default setting for the visibility of doc-
ument elements. The Doclet API delivers an information model for Javadoc-
generated documentation. In the Standard Doclet the information model has
been transformed into an information model by the Javadoc Team. Static
typography is used to draw attention to important pieces of information. How-
ever, in DJavadoc we propose another method for making important infor-
mation more visible and excessive information less visible (in fact invisible).
Using DHTML-technology available in Microsoft Internet Explorer 4 (or later
versions) we have added dynamic typography to the API reference documen-
tation. Pieces of information can be removed from the reading surface of the
browser, thereby both removing excessive information and increasing the visi-
bility of the remaining information.

In principle we have taken the existing information model, made it explicit,
and created an interaction device with which the reader can control the vis-
ibility of information types. Based on our own programming experience, we
have marked up the class documents into conceptual groups of relevant chunks
of information. The model is represented in the interaction device contained
in the Settings-map in the table of contents (see Figure 4.9). The document
is divided into two parts: a class description part and a member part. The
class description contains a full inheritance tree, known sub-classes, the decla-
ration of the class (its name, super class and implemented interfaces), and a
written description. The member types are inner classes, fields, methods, and
constructors. The document provides a description part for each member and
a section for inherited members of that type. Both the description and inher-
ited members can be collapsed (however only fields and methods are inherited).
The header and footer may also be collapsed, primarily to lift more of the class
document into the visible space of the browser.

4.3. EXTENSIONS INTRODUCED IN DJAVADOC 47

Figure 4.9: In DJavadoc the table of contents has a Settings-map with which
the default expand and collapse behavior of the class document can be defined.
The reader checks off information types deemed uninteresting.

48 CHAPTER 4. DJAVADOC

Using the Settings-map the reader may define a default for the visibility
of information types. By checking off different parts in the Settings-map the
reader may collapse parts of the document. Figure 4.10 shows the difference
between the fully expanded document and a class document in which the class
description is collapsed. Notice that the Settings-map also collapses itself.
Checking off an element in the Settings-map will lead to the collapse of all
instances of that element in the document. The default setting will be enforced
on new documents loaded into the browser. As an example, checking off ev-
erything but the methods and the inherited methods is an interesting setting.
Figure 4.11 shows the consequences of this setting.

4.3. EXTENSIONS INTRODUCED IN DJAVADOC 49

Figure 4.10: As the settings are changed the class document alters the visibility
of its elements. By checking off uninteresting information types the reader both
makes important information more visible and remove excessive information.

50 CHAPTER 4. DJAVADOC

Figure 4.11: Readers may find a setting interesting in which only the methods
are presented without displaying their descriptions. This example represents
a compact, efficient typography of the document for readers who are familiar
with the particular classes.

4.3. EXTENSIONS INTRODUCED IN DJAVADOC 51

4.3.3 Individual Description Openers

In addition to the default setting, the reader may also change the visibility of
key elements by direct manipulation to expose individual parts of particular
interest. The default setting defines which types of document elements readers
consider important. However, readers might still want to explore the underlying
information without having to change the default. It might also be the case
that only individual document elements might be of interest. Therefore it is
possible in DJavadoc to open up certain key-elements in the documentation by
direct manipulation.

The general class description and the description of individual class mem-
bers can be collapsed and expanded by direct interaction. In DJavadoc it is
possible to collapse and expand the description of class members by clicking
on the name of the member (if such a description exists). It is also possible to
collapse and expand the whole class description by clicking on the class name.
(However, the default setting of the elements inside the description will not be
changed.) Figure 4.12 shows how an individual element is expanded.

52 CHAPTER 4. DJAVADOC

Figure 4.12: While reading the class document the reader can use the dynamic
typography features to expand or collapse individual elements regardless of the
default setting. In this example, the reader has expanded a particular method
description. The reader actively chooses which information should be visible
in the browser.

4.3. EXTENSIONS INTRODUCED IN DJAVADOC 53

Figure 4.13: The dynamic typography has enabled a more natural placing of
the descriptions in DJavadoc compared to the Standard Doclet. The reader is
relieved of a hyperlink-jump to the description.

4.3.4 Moving Text Parts

Texts have been moved in DJavadoc but only as a transition from static ty-
pography to dynamic typography. We have moved two text types in DJavadoc
compared to the Standard Doclet. However, these relocations are the result of
the change from static typography to dynamic typography and are not funda-
mental changes. In our opinion, the texts have achieved their natural placing,
which was prohibited by the static-typography.

The descriptions of class members have been included in the summary list
because dynamic typography allows a combination of summary and detailed
form. In Section 4.2.1 we showed that class members were presented both
in a summary and in a detailed list the Standard Doclet. Figure 4.13 shows
the difference between DJavadoc and the Standard Doclet. By placing the
description in the original summary we believe we have found a more natural
place. The placing of description text in the Standard Doclet seems to us to
be forced by the static typography. The summary can sill be achieved because
DJavadoc can collapse the descriptions. In any case, readers are relieved of the
hyperlink-jump (from the summary to the description) which might be disori-
enting. Also, a minor effect is that the size of the documents has decreased,
mainly the screen size but also memory size.

54 CHAPTER 4. DJAVADOC

Similarly, the class list in the table of contents has been relocated to the
package list. In Section 4.2.2 we described how the package and class lists were
put into two different frames. In DJavadoc we place the class lists as nested
lists in the package list and add collapse and expand functionality. Figure 4.14
shows the difference between the Standard Doclet solution and the DJavadoc
solution. As with the description texts, we think we achieved a more natural
placing, which is less confusing from an orientation point of view. The primary
advantage is, however, the ability to expand several packages at the same time.
A somewhat negative effect is that the document grows very large as the pack-
ages are opened. Packages are pushed down, outside the visible field of the
browser. Also the document can become a large structure of HTML elements
that the browser must handle and changes to the document may therefore be-
come slow. In retrospect, moving the class lists is not as clear a design choice as
moving the description texts. However, from the perspective of the DJavadoc
project the move illustrates the use of dynamic typography.

4.3. EXTENSIONS INTRODUCED IN DJAVADOC 55

Figure 4.14: Compared to the Standard Doclet, DJavadoc offers an alternative
table of contents in which the class lists are nested in the packages list. Class
lists can be expanded to reveal the contents of the packages and remain ex-
panded as new packages are opened. However, the class list can become very
long and will, in such a case, push the remaining content out of the visible
space when expanded.

56 CHAPTER 4. DJAVADOC

4.3.5 DJavadoc Bookmarks

The table of contents can also be collapsed into a smaller subset of interesting
hyperlinks in a so-called DJavadoc Bookmarks list. In Section 4.3.4 we dis-
cussed the moving of class lists into a collapsible package list. With over 1,800
classes in JDK 1.2 it becomes obvious that the reader needs more focused class
lists to easily locate relevant classes. In DJavadoc we achieve this by construct-
ing a separate table of contents (contained in the My-map) in which readers save
classes in a bookmark fashion. Figure 4.15 shows the My-map filled with classes
a reader might find interesting. Classes and even whole packages can also be
easily removed from the My-map.

4.3. EXTENSIONS INTRODUCED IN DJAVADOC 57

Figure 4.15: DJavadoc has a My-map that represents a personal view of the en-
tire table of contents. In a bookmark fashion, classes are saved in and removed
from the My-map by the reader. To keep the content relevant the reader should
update the My-map.

58 CHAPTER 4. DJAVADOC

Figure 4.16: The full name of the class is hidden in a tool-tip box. Full names
of classes are important because they define the unique name of the class.
However, the package part of the name is seldom spelled out in code. Also,
reading may be obstructed when several full names follow one another.

The idea behind the DJavadoc bookmarks is that the readers should actively
update it to keep the content relevant. The reader’s interest in classes changes,
both during a project and between projects. Filling the My-map with classes
of interest is a good initial way of collecting potential classes. However, if the
My-map grows large, it becomes less useful. The reader should continually revise
the class list.

4.3.6 ToolTip for Full Class Name

The full class name of classes in the class documents have been hidden in tool-
tip text. The full name of Java classes contains a package part and a class
part. The full class name is important because it represent a unique identifier
(which the short class name does not necessarily do). However, in source code
the full name is seldom spelled out. Instead the package name is imported and
the class is referenced by its short name. Also, in the parameter list the text
becomes clouded by all the extra text that may not be needed by the reader to
tell classes apart. In the Standard Doclet the full class name is not spelled out.
In DJavadoc we have placed the full name of the class in a tool-tip text, so
that the information is available to the reader but does not obstruct reading.
Figure 4.16 shows how the full class name is exposed by placing the mouse over
the class name. Once again, this illustrates the use of dynamic typography in
the API reference documentation.

4.4. DJAVADOC PERFORMANCE 59

4.3.7 Other Extensions

A few insignificant changes were also made to the Standard Doclet. To ac-
company the bigger changes in DJavadoc we had to make a number of smaller
changes. The header and footer hyperlinks were changed to add and remove
hyperlinks. The non-frame option was removed for technical reasons (the
DJavadoc status is saved inside the table of contents document). A DHelp
page was introduced to explain how the DJavadoc version works and its in-
tended use. These changes are of a technical nature and does not concern the
reading environment of the API reference documentation.

4.4 DJavadoc Performance

In most cases the performance of DJavadoc is instantaneous. DJavadoc was
developed and tested on a 200 MHz PC. In most cases the redesign of the
documents did not result in any notable time delay. However, for larger rear-
rangements, such as collapsing all the class-member descriptions in one of the
larger JDK classes, we experienced some delay. However, by redesigning the
documentation for performance we can probably achieve instantaneous perfor-
mance in several of these cases. As an example we solved the performance
problem of the table of contents, see Section 4.8.4.

4.5 Using DHTML

In the DJavadoc project we used DHTML in the Microsoft Internet Explorer
browser. DHTML technology cannot yet be viewed as being independent of the
browser in which the system was developed, even though the browsers usually
accept and implement W3C standards, see [79].

Using DHTML technology in Microsoft Internet Explorer, in our experience,
is a straightforward development effort that benefits from a highly-developed
application platform. The browser can be seen as an API and as such we found
it most adequate for our needs. In our experience, the DJavadoc development
has benefited from the relatively high level of support browsers deliver by im-
plementing W3C standards. The browser provides support for interactivity in
text based on HTML.

4.6 Technichal Data on DJavadoc

DJavadoc does not add to the Javadoc generation time and memory require-
ments. Javadoc 1.2 requires 120 MB of memory to generate the JDK 1.2 doc-
umentation (55 packages), which takes 8 minutes on an Ultra Enterprise with
512 MB of memory [58]. Javadoc keeps the Doclet API information structure

60 CHAPTER 4. DJAVADOC

in memory and the memory requirements are therefore very large. Time is a
factor of the sheer size of the JDK 1.2. The extensions made in DJavadoc have
a minimal effect on the time or memory requirements of Javadoc.

The extensions made in DJavadoc are principally rearrangements and ad-
ditions to the Standard Doclet and the inclusion of DHTML scripting. The
total amount of work that has gone into the DJavadoc project’s implementation
phase is about 5 man-months (spent on understanding, adding changes and re-
arranging the Standard Doclet, and designing DHTML scripts). The amount
of code that has been added totals some 2,500 lines of code in Java and in
Javascript. Of course, to a great extent, the implementation work has been a
matter of understanding the Standard Doclet which is a complex program of
over 11,000 lines of code.

Changing or extending DJavadoc may require only a small effort. Much
of the work involved in designing DJavadoc is the definition of an information
structure. Extensions and changes to DJavadoc that are based on this structure
may require only small amounts of DHTML scripting. However, changes to the
content, static typography, or the organization of the Standard Doclet’s output
will require major changes.

4.7 Example Working Scenario for DJavadoc

Let us consider a sample scenario describing how a reader might use the dy-
namic functionality of DJavadoc. A working example can put the usefulness of
DJavadoc into perspective. DJavadoc may be interesting but we also hope to
show its practical importance. In our example the reader is using the API ref-
erence documentation as a syntactical index that provides coding specification.
The reader knows which classes to use and what those classes are designed for.

The reader sets the default setting in the Settings-map. Either from a
previous session or as the reader begins to read, the reader defines the set-
ting shown in Figure 4.17. The methods are kept expanded but with collapsed
descriptions. The reader uses this setting to learn method names, return val-
ues, and parameters both as a means of discovering methods of interest and to
remember the exact syntax. During browsing among class documents, the doc-
umentation is transformed from the fully expanded view to the chosen default
setting.

4.7. EXAMPLE WORKING SCENARIO FOR DJAVADOC 61

Figure 4.17: The reader chooses a default setting which only presents methods
without description but with the inherited methods. The document is altered
acordingly, as is each new class document the reader loads into the browser.

62 CHAPTER 4. DJAVADOC

The reader has an ongoing project and therefore starts browsing from the
My-map, containing the personal DJavadoc Bookmarks. During previous brows-
ing the reader has collected a list of class documents of interest (see Figure
4.18). DJavadoc bookmarks represent personal views of the table of contents.
Our reader uses the bookmarks to access certain documents that are used in
the current programming project. The bookmarks consist of small fragments
of several packages since application programming generally involves classes of
different characters.

4.7. EXAMPLE WORKING SCENARIO FOR DJAVADOC 63

Figure 4.18: Previously the reader has created a My-map containing classes
of interest. For instance, the reader might use the classes in a programming
project. Another plausible reason is that reader often uses the classes.

64 CHAPTER 4. DJAVADOC

While reading, the visibility is manipulated to display the inner workings of
elements of interest (see Figure 4.19). In the default setting the reader may only
define the visibility of information types, not instances. The collapsed descrip-
tions represent a type that is not of interest to our reader. However, specific
individual descriptions are relevant during coding and therefore our reader ex-
pands a few descriptions while reading (by clicking on the method names). For
instance, the descriptions may reveal how parameters are interpreted.

4.7. EXAMPLE WORKING SCENARIO FOR DJAVADOC 65

Figure 4.19: Whilste reading, the reader finds it relevant to open up the de-
scription of certain methods. Perhaps the reader needs to be reminded about
the meaning of a return value.

66 CHAPTER 4. DJAVADOC

The reader saves new classes to the bookmark list. During browsing the
reader comes upon new, potentially useful classes. By alt-clicking (see Section
4.1.4) the reader saves new bookmarks which are added to the list according
to the package structure. For now, our reader saves without giving it much
consideration because later the reader removes classes that in retrospect were
not so relevant.

After a while, the reader changes the default setting to include constructors.
The reader is well aware of the missing components in the documentation. At
some point the reader realizes that constructors are lacking from the documen-
tation and changes the default. The constructor description is left collapsed
just like the description of methods.

4.8 Different Prototype Generations

4.8.1 Conceptual Source-Code Organization

The DJavadoc project has its origin in a project on acquisition and visualiza-
tion of intermediate knowledge in code level programming though conceptual
source-code organization [30]. In this project we used Protégé, a tool for gen-
eration of knowledge-acquisition tools [34, 69] to develop a prototype tool for
conceptual grouping of source elements of Java programs. The idea was to
enable swift documentation of a program’s conceptual relations as seen by pro-
grammers.

4.8.2 Pop-up Information Hiding (first DHTML)

Pop-up frames were used in the first Javadoc-related DHTML generation that
started the DJavadoc project. In the first generation we experimented with
Javadoc documents by applying DHTML technology. The goal was to deter-
mine what could be done using these new technologies for dynamic display and
manipulation of HTML elements. In the pop-up generation we used Netscape
4 and the DHTML-support that was available for that browser. The basis
of the pop-up was to use tool-tip-like pop-up sections to present information
in the Javadoc class documents. The table of contents was also developed in
much the same way as the final DJavadoc. During this generation it became
apparent that Internet Explorer 4 provided more DHTML support.

4.8.3 Conceptual Filtering

Information filtering based on conceptual grouping of class members was the
topic for the second DHTML generation. We continued experimenting with
the Javadoc class documents, now with the full DHTML-capacity of Internet

4.8. DIFFERENT PROTOTYPE GENERATIONS 67

Explorer 4. The DHTML support enabled smooth manipulation of HTML ele-
ments in real time, which we experienced as an important step forward in tech-
nology for the DJavadoc ideas. The aim here was to differentiate class members
using filters based on conceptual member types (e.g., basic methods and event-
related methods). We enabled this both by graying out methods (i.e., changing
their color to something not quite distinguishable from the background) or by
collapsing them. Descriptions could also be collapsed or expanded. The table
of contents was principally the same as in the final DJavadoc version. Figure
4.20 shows the resulting mockup from this generation.

68 CHAPTER 4. DJAVADOC

Figure 4.20: The second DJavadoc generation used much the same dynamic
typography as the final version. The main idea in this generation was to dif-
ferentiate class members conceptually as seen by programmers, which we still
consider a rewarding approach.

4.9. BASE TECHNOLOGY 69

Although a strong idea, conceptual grouping of class members scales less
well than the final DJavadoc project since it requires some form of expertise.
The conceptual filtering of class members requires conceptual knowledge. An
expert would have to define what categories were relevant and record which
members were contained in what category for the whole of JDK. Thus, con-
ceptual filtering scales less well than the final DJavadoc version. Gathering
the knowledge would require expertise, time, and knowledge-acquisitions tools.
The final DJavadoc version illustrates the same dynamic typography features
in the computer-reading environment with much less work. However, we still
believe that conceptual filtering of class members is a good way to reduce the
overhead of reading API reference documentation.

4.8.4 Scaling the Final Implementation

When we scaled the final implementation to JDK 1.2 size we ran into perfor-
mance problems with the table of contents. The DJavadoc table of contents is
not a very large HTML-file. For JDK 1.2 it requires 300 Kbytes. However, it
is very compact in the sense that over 75 percent of the file consists of HTML
tags. In effect, the table of contents represents a tree structure of more than
1,800 entries that Internet Explorer must traverse in most of the scripts we
have designed. This, of course, slowed down DJavadoc, which would affect the
project. Even though the lag time was in the vicinity of normal hyperlink-
access time, we felt that the performance had to be improved. Also, for larger
class libraries, for instance future versions of JDK, the problem would perhaps
grow.

This problem was solved by storing chunks of HTML in comments as un-
parsed text and extracting them on demand. The table of contents consists
of a nested list of packages and classes. Only a few class lists would be open
at the same time and still they were responsible for the bulk of the HTML
elements. By placing the class lists in HTML COMMENT objects we were able
to reduce each class list to one HTML element in the parser’s perspective. On
demand we could then lift the class list out of the COMMENT and paste it into
the package list, which activates the rebuilding of the tree. Consequently, good
performance was restored.

4.9 Base Technology

So far we have used a mixture of Java and DHMTL as the base technologies in
the DJavadoc project. The DJavadoc Doclet is a Java program that defines the
output of a Javadoc session. The program delivers API reference documenta-
tion in DHTML. The dynamic typography and content are defined in the Java
program, but only as strings (of HTML and JavaScript) and not in Java.

For the continuation of the project we are contemplating a transition from

70 CHAPTER 4. DJAVADOC

Java to XML. XML is a meta-language originating from the SGML meta-
language (in which HTML is defined). Currently there is a strong push for
XML in the Web community and for applications in general. Internet Explorer
5 has highly developed support for XML [64]. A transition to XML would
make our support more general. We would not leave the Java domain and
could come back to a Java platform when Java develops its support for XML
to a greater extent (see [59]).

For the Doclet editor discussed in Section 7.6 both Java and XML are plau-
sible base technologies. A DJavadoc scripting language can perhaps be devised
by analyzing the model of XML documents and by extracting information from
the XSL stylesheet specifications ([81]). A negative point for the XML-Web
solution is the separation of browsers and the local computer (a well-motivated
Web-security decision). A Java solution is also plausible. It would be possible
to work directly from the Doclet API by saving the Doclet API-object tree
(even more so if the Java compiler was extended to include Javadoc text in
compiled class files). Java scripting is possible, for instance trough the use of
JPython [63]. Generalizing outside the Java domain for Java meta-solutions
requires the construction of APIs for different information sources (such as the
Doclet API) which can then be used as the underlying information structure
for the construction of content scripting. What is negative for the Java solution
is the lack of a highly developed document surface such as the browser. Also,
compared to Web-technologies Java lacks high-level textual widgets.

4.10 DJavadoc Improvements

4.10.1 Using Dynamic typography

In addition to collapse and expand functionality there are many examples of
how a dynamic typography can be used to change the presentation and achieve
multiple views of the same information. Currently class documents describe
the individual components and their links to related components. We intro-
duced user-controlled views of information based on the underlying information
model. In essence, we used dynamic typography to control the visibility of in-
formation. Besides the collapse and expand functionality it could be of interest
to gray-out, to move around, to enter parts into layers, and so on. Furthermore,
typographical measures such as font size and color could be changed dynami-
cally to increase the visibility of different information types. For instance, when
member summaries are collapsed, the font size of the member names could be
reduced to lift more of the information into the visible space of the browser.

Using dynamic typography, we could also enable brief glances at class docu-
ments without leaving the current context. By moving the descriptions into the
class-member-summary list (and hiding them) we were able to present descrip-
tions without performing hyper-jumps (unlike the official Javadoc generated

4.10. DJAVADOC IMPROVEMENTS 71

documentation). Similarly we can reduce the number of hyper-jumps among
class documents by downloading short versions of class documents and dis-
playing them on command in a layered text (much like tool-tips text). The
layered text would enable quick glances at the core of class documents without
actually jumping to other class documents. The concentrated views do not re-
quire additional, redundant files but could be extracted from the original class
document.

4.10.2 Class Documents

Changing the static typography of the class document is one way of exper-
imenting with more efficient class documents. To achieve similarity with the
Standard Doclet we restrained the DJavadoc project from changes to the static
typography. However, changes to the static typography can have impact on the
class document. In our view, more use-oriented typography could be achieved.
For instance, we would place the method summary on top (it is currently found
below the description, fields, and constructors). Another example is to place
get and set methods (a Java naming convention) together. Yet another exam-
ple is to sub-list methods with the same name but different parameters under
the one of these method that has the smallest number of parameters.

Altering the contents of the class document is another way of developing
effective API reference documentation. Currently the class document delivers
only the signature of the class members (i.e., return value, name, parameters
and so on). However, in many cases the body of the class members holds
relevant information. Particularly if the written comments are sparse or if
the class is complicated, programmers might need to analyze the source code.
Altering the contents of the class documents will, of course, affect the amount
of knowledge that can be derived from the API reference documentation.

The conceptual-filtering direction, see Section 4.8.3, should be further de-
veloped as a way of reducing the information. During the conceptual-filtering
generation of DJavadoc, we examined the possibilities of grouping methods
on the basis of their conceptual character (e.g., event-related methods, basic
methods, methods used primarily by another class in a component structure).
In the DJavadoc project the conceptual-filtering approach was abandoned be-
cause it could not be easily automated. In a sense it could be resolved with a
new Javadoc tag requiring retagging of all Java classes. Javadoc has alreade
declared a number of new tags that we find highly relevant [68]. In our experi-
ence, in several cases method lists are filled with redundant methods of little or
no relevance from a use perspective. These seldom-used methods are currently
presented as equals to other methods. In fact, the methods are presented as
more important than inherited methods that may well be more central to the
use of the class.

72 CHAPTER 4. DJAVADOC

4.10.3 Indices

We view the DJavadoc Bookmark described in Section 4.3.5 as one example of
several applications of interest for information filtering on a navigational level.
The DJavadoc bookmarks are one way of filtering parts of the table of content
into an index. However, it requires much activity on the part of the reader. We
use it to illustrate the dynamic-layout dimension on an index level or even on a
Web-site level. There might be a need for several indices such as the bookmark
index found in My-map.

Application indices that point to a group of classes that are useful for par-
ticular applications profiles could be useful. For different types of applications
(e.g, client-server applications and database applications) different parts of,
for instance, JDK 1.2 are relevant. The groups are perhaps primarily located
in one or a few packages but the package structure does not cover all rele-
vant applications. For instance, certain widgets are used more frequently in
database applications than others and therefore some widgets should be part
of the database application index but not all (compare tables and canvases).
Application indices could be designed by proficient Java programmers.

A history index is another useful navigation device. By tracking the reader’s
browsing behavior a history index could be designed to present the most fre-
quently and most recently accessed classes. To avoid replication of the common
browser backward and forward lists, the history index should perhaps not rely
only on the most recently accessed class documents. A useful heuristic would
have to be developed to balance frequency and degree of recentness.

A context index that draws its entries from parsed source files is a third
relevant example of how a filtered index could be achieved. The context in
which the programmer is currently working provides relevant information for a
filtration effort. Ultimately, by coupling the editor and the API reference doc-
umentation the context information could be exchanged automatically. As a
first step, a context index could parse source files specified by the programmer
(thus removing the tool-synchronization step). The context could be deter-
mined by detecting all classes and class members in use. However, the context
index requires access to the files and therefore comes into conflict with general
Web-security policy. This problem can be overcome both by server-client and
client solutions. Preferably, we would like to see a strict client solution.

A use-based index could describe how the JDK classes are used. How classes
are used in Java programming is another source of information for filtered
indices. By statistically analyzing large numbers of Java files a usage-based
filter could be implemented. For instance all Java files available on the Internet
could be analyzed, both Java and class files. Another alternative is to analyze
all Java files on the Sun Java Web-site [52]. A third statistical source could
be online-tutorials such as the Java Online Tutorial [55] to determine which
classes and class members are relevant. A fourth example is an index based on
votes from Java programmers all over the world. Furthermore, non-statistical

4.10. DJAVADOC IMPROVEMENTS 73

methods could be used. Developers of the Java language could, for instance,
design use-based tables-of-content (as could any Java programmer in his or her
own right).

Project indices could also prove valuable. According to some heuristic, the
joint use of Java classes in a project group working on a common task could
be assembled into a project index (one-man projects as well). In fact, the
process of defining a project index could be used as a project-standardization
process. The classes that the group decides to use could be assembled into
the index to provide active information for coding conventions within that
group. Furthermore, the joint browsing history of the projects members could
be used as a basis for a project index, which could then be used to disseminate
knowledge about classes of interest among group members.

For many of the indices discussed here class members could also be included.
The indices discussed here aim to perform filtering to such a degree that the
bulk of classes are removed (at least for libraries similar in size to JDK 1.2).
If a small but relevant set of classes can be realized it could also be relevant
to track class members, particularly methods, and enter them into the indices.
For inherited methods, in some cases, it could be relevant to order the methods
under the class which they were referenced from (not always the implementing
class).

4.10.4 Using layered Text

In DJavadoc we have used tool-tips to display the full name of classes. The full
class names (including the package prefix) was hidden in tool-tips to achieve
cleaner text. In our experience, class documents become hard to read if full
names are presented, particularly parameter lists. The tool-tip conveniently
provides access to information that may be of interest but at the reader’s
discretion. The use of layered text, such as tool-tips, could be much more
diverse in the DJavadoc-generated documentation.

Tool-tip texts, or layered text, is becoming a common form of dynamic-
layout on the Web. Farkas [5] discusses the use of layers as safety nets in
minimalist documents and provides several examples of such use. Supplemen-
tary texts are hidden in layers that can be accessed by the reader. The tool-tip
does not change the underlying document, but places a frame of text above
the current document. In online help layered text is commonly used. On the
Web, the tool-tip has mainly been used to present a text on top of images.
In Internet Explorer 4 most HTML elements can have tool-tip texts presented
over them and the use of layering may therefore increase. Also, both in Internet
Explorer 4 and Netscape 4 (and later versions) it is possible to design layered
text components.

In DJavadoc layers could be used to a much higher degree. In our opinion,
layered text is useful in the design of concentrated yet diverse and information-
rich documents. By designing a number of layers for different information types

74 CHAPTER 4. DJAVADOC

we can perhaps achieve the same type of views as we did using collapse and
expand functionality. Without permanently changing the page we could glance
at the collapsed description text. In addition, layers could be used as windows
to other documents allowing us to peek at them without leaving our current
context. For instance, when a class-document hyperlink was pointed to, we
could display a method list in a layer.

If layers were considered as a whole in the DJavadoc project it would per-
haps be best to completely rethink the typography in terms of a dynamic, 3D
compilation of texts. The use of layers in the API reference documentation
will completely redefine the premises for typography. A more use-centered ty-
pography could be devised and should preferably be the result of user studies.
However, simply designing a layered version could be a starting point for such
a study in order to provoke reposes from the Java community.

In the development towards a layered DJavadoc it is important to con-
sider that users, in the long run, want simple but efficient solutions rather
than appealing wonders of technology. Even though layers hold fascinating
typographical possibilities (along with other features of the computer-reading
environment), they should be handled with care. To achieve relevant alterna-
tives to printed media the wonders of technology must be put to proper use.
As a result it is important to perform user studies, both to evaluate and to
form a basis for development.

4.11 Summary

DJavadoc adds dynamic typography to Javadoc to enable user-controlled views
of the Java API reference documentation In DJavadoc the reader can redesign
in real-time the API reference documentation. As a result, views of the API
source code that are more in line with different readers’ needs can be created
(and recreated as the needs change).

Chapter 5

Preliminary Studies

A small study of the DJavadoc project is discussed in this chapter. We elabo-
rate on the goal of the studies. We also present preliminary results that have
been reached so far. The continuation of the study is outlined. The pros and
cons of these study methods are not discussed here but in chapter 3.

5.1 Study Goal

Our study goal is to contribute to the understanding of how computer-reading
environments should be designed to support reading of API reference documen-
tation. Exemplified by Java programmers and their Javadoc-generated API
reference documentation, our underlying goal is to understand how to sup-
port the task of computer-based reading of work-related, homogenous texts.
In part we want to evaluate the technological support that we have developed.
Furthermore, we want to perform more general inquiries to understand Java
programmers’ needs to form a basis for further development. Particularly, we
want to learn how to support the task by adding new technology in useful ways.

To reach innovative and relevant support at the end of the DJavadoc project
we will continue the development guided by real-user input. The evaluation of
the implementation should be viewed as a component in the development and
in the process of acquiring real-user views on the project. Minutely determin-
ing the value of the dynamic-typography features implemented in DJavadoc is
beyond the scope of this work. It would be a time-consuming activity with rela-
tively limited benefit for our research goal. We also believe that the preliminary
results we have achieved support our ideas.

75

76 CHAPTER 5. PRELIMINARY STUDIES

5.2 Preliminary Results

So far we have achieved preliminary results as part of the task of trying to
achieve study opportunities. Acquiring access to the real world is a time-
consuming activity. According to Gummesson [10], access is one of the major
issues in qualitative research. As part of this process we have had informants
viewing the DJavadoc implementation. Their comments, based on a demon-
stration of functionality, form what we call preliminary studies.

At a glance, there has been a positive response to the ideas implemented
in DJavadoc by informants that we have had contact with. As part of the
contact-making process 15 programmers and program managers, and 7 tech-
nical writers have looked at the DJavadoc-generated documentation and com-
mented positively. However, the comments have been shallow and perhaps also
overly positive as part of their social interaction with us. Two contacts have
been made on the informants’ initiative: one from England and one from the
USA. What was most appreciated was the possibility of collapsing and expand-
ing the method description. One informant expressed the desire to continue
expansion down to the source-level; thus exposing the inner workings of the
methods. One informant commented on the table-of-contents as being of lit-
tle importance because the informant used a development environment that
enabled navigation directly from the code (see Section 6.3).

Other than our personal use of the DJavadoc-generated documentation, no
real experience has been gained. Personally, we have experienced the DJavadoc-
generated documentation in action. In programming we have found it valuable
to collapse and expand method descriptions and also to change the default
setting as our interests change. In our experience, several default settings are
relevant, which support the idea of a user-controlled dynamic typography as
opposed to a new static typography. Also, for a programming project the
ability to create bookmarks of relevant classes was beneficial. However, these
findings are personal and cannot be considered valid results.

From these preliminary results we can only conclude that there has been
some interest in the user-controlled views of information implemented in DJavadoc.
Our initial contacts have pointed to the possible usefulness of DJavadoc in rela-
tion to the Standard Doclet (see Section 2.1.5). We may conclude that there is
a range of dynamic-typography functionality that may be useful for program-
mers reading API reference documentation. However, we cannot conclude that
the functionality is genuinely useful and not just appealing.

In the process of acquiring real-world contacts we have learned lessons that
other may find relevant. Setting up real-world study opportunities is a time-
consuming activity. It is desirable that studies are as non-intrusive as possible
because commercial partners can be pressed for time and have limited resources
for external activity. It is also important to be precise about goals, costs, and
benefits in the early stages of cooperation. Here, DJavadoc has served as
a concrete demonstration of design principles. However, using a particular

5.3. FUTURE STUDIES 77

platform, such as Microsoft Internet Explorer, has also been a hindrance in
some cases since companies can have policies about the software they use.

5.3 Future Studies

5.3.1 Setting Up Real-World Studies

It is our desire to perform studies in real-world settings. We have established
contacts with commercial organizations that can provide us with DJavadoc
testing for real use in real-world situations. These study opportunities are still
being developed.

It is possible for us to gain access to informants all over the world through
the World Wide Web but currently we see it as a supplementary source. We
have already made contact through the WWW with a USA cooperation which
has started experimenting and using our API reference documentation. How-
ever, we acknowledge the difficulties of handling this relation and consider
studies with them as supplementary.

5.3.2 Character of the Informants

The desired type of informants are professional developers because we assume
they are interested in use-oriented support. Ideally, we want to collaborate
with experienced professionals who have used Java for some years. However,
finding several experienced professionals may require a distribution over several
work places since Java has only been around since 1995 [74]. Generally, our
desire to work with professional developers is a straightforward consequence of
the fact that we are focusing on support for them. Our hope is to gain access
to a number of commercial groups of programmers and to gather data from
interaction with them, preferably to have deeper relations to one or two groups.

5.3.3 Study Procedure

We believe it is possible to determine whether DJavadoc genuinely improves
the design found in the Standard Doclet (see, Section 2.1.5). By studying
DJavadoc in use we can determine if the implemented extensions in DJavadoc
provide genuine value. Our plan is to perform such studies in real-world settings
and for this purpose we have started setting up study opportunities. It is from
these activities our preliminary studies are drawn.

For the study of DJavadoc it would be possible to determine value by log-
ging system data. A relevant measure is the use of the default settings. If
users continuously change their default setting, it may indicate that the type
of flexibility that DJavadoc introduces has genuine value and that it is not
feasible to aim for one form of content and typography of the API reference

78 CHAPTER 5. PRELIMINARY STUDIES

documentation. In particular, if different readers use the default settings differ-
ently the need for flexibility is supported. Another appropriate measurement
is how much scrolling DJavadoc removes, if any. Such measurements would
require a control group for the scrolling behavior of the official Java API ref-
erence documentation. The hypothesis underlying the scrolling measurement
is that DJavadoc moves relevant information up into the visible space of the
browser. Thus, DJavadoc users should scroll less than Javadoc users.

Such quantitative measurements should also be complemented with small
qualitative studies. By asking the users of DJavadoc if they find the support
it provides rewarding and why, we can supplement the quantitative measure-
ments. The studies can be performed either by interview or by having infor-
mants fill out forms.

Chapter 6

Related Work

In this chapter we present systems and documentation related to the DJavadoc
project. In our studies we have focused on computer-reading environments
for API reference documentation of programming languages and application-
programming interfaces (APIs). Javadoc is, of course, related to the DJavadoc
project but since it is discussed throughout the thesis we do not address it in
this chapter. The related work is not described in full but rather contrasted
with Djavadoc. For explanations of terms see chapter 2.

6.1 MSDN Online Workshop

The MSDN Online Workshop is the Microsoft Developers Network workshop
for Web-developers available on Internet which we consider to represent the
state of the art in relation to DJavadoc [64]. At the MSDN Online Workshop
readers are presented with a mixture of general articles and API reference doc-
umentation about software components available in applications such as the
Internet Explorer browser. A concrete example of such API reference docu-
mentation is the section on DHTML from which the screen-shot presented in
Figure 6.1 is taken.

79

80 CHAPTER 6. RELATED WORK

Figure 6.1: In the Microsoft Developers Online Workshop, API reference docu-
mentation for Microsoft Web-technologies is presented using the same DHTML
technologies as in DJavadoc. However, the collapse and expand functionality
is predefined and readers therefore must continuously reorganize the pages as
they are loaded.

6.2. MATHEMATICA HELP BROWSER 81

MSDN Online Workshop API reference documentation uses dynamic typog-
raphy in similar ways to DJavadoc. In the MSDN API reference documentation
components are presented using collapse and expand functionality. The table of
contents is presented as a collapsible list. Individual component documents also
contain collapsed and expanded information. Figure 6.1 describes an HTML
element. The syntax of the HTML element is hidden and can be expanded.
The HTML element also has methods, properties and so on (being a DHTML
object in the Internet Explorer browser). Different lists of these members (of
the HTML element) can be presented to provide multiple views of the func-
tionality. The style properties of the HTML element are also collapsed in a
separate list (not visible in Figure 6.1).

However, unlike DJavadoc, MSDN does not allow users to control the vis-
ibility of information types by setting default views for the information. The
dynamics of MSDN are set to a static default. As a result, readers continuously
have to reorganize homogenous documents to access information as they browse
the documentation. Sometimes the right information may even be hidden from
the readers. This is an important impediment since the MSDN API reference
documentation is read by continuously jumping among different components.
Furthermore, MSDN does not expand member descriptions but instead loads
a new page, which from our stand-point is a negative feature in MSDN but
which also may be a domain-specific design choice.

6.2 Mathematica Help Browser

In the Mathematica Help Browser the Mathematica language is described. The
Mathematica environment contains a Mathematica kernel (a runtime environ-
ment) and Mathematica front-ends. The Notebook is a graphical front-end
to Mathematica which combines Mathematica input and output with texts,
graphics, and so on. Notebooks are interactive documents that have access to
the full capacity of the Mathematica language. The Mathematica Help Browser
is an example of the type of interactive documents that can be built using the
Mathematica Notebook. The Help Browser is hypertext-based API reference
documentation of the Mathematica language which describes all Mathematica
functions (see [22]).

The Help Browser collapses and expands example sections, see Figure 6.2.
In the Help Browser, functions are presented individually with a description
and a section of usage examples. The usage examples are collapsed by default
and can be expanded by the reader.

82 CHAPTER 6. RELATED WORK

Figure 6.2: The Mathematica Help Browser expands and collapses example
sections. Furthermore, the examples presented can be executed and the result
is presented.

6.3. DEVELOPMENT ENVIRONMENTS 83

The examples can also be executed in the Help Browser. The result is pre-
sented in the browser and the reader can thereby test the components described
in the API reference documentation.

In DJavadoc the same type of component testing could be achieved, in
particular since Java is a Web-enabled language in browsers such as Netscape
and Internet Explorer. The methods of a class could be listed and executed
on an object of that class. The result would project itself on the object and in
some cases it would have a graphical result.

Though intriguing, this kind of support can be difficult to automate for
all JDK classes and in some cases it would require visualization. Graphical
widgets could easily be displayed and prepared for manipulation. The reader
could test the effects of method calls on the objects and see the result. However,
for a large part of the method additional objects are required as parameters,
which would increase the complexity. Sometimes return values may also be
relatively abstract objects that in turn require visualization. Furthermore,
classes may not produce easily presentable results (for instance streams, files,
URLs, Data Models) and therefore require visualization. Another complication
for execution support in DJavadoc is the fact that several classes are often
needed to produce a relevant composite component.

Automatizing the creation of test execution is possible but the Doclet API
would have to supply more information and therefore the Javadoc tagging
mechanism should be extended. It is possible in DJavadoc to automate test
execution for part of JDK 1.2 but it requires manual tagging of how classes can
be tested. Such tagging should be added Javadoc tagging convention and be
delivered by the Doclet API. The original developers have the expert knowl-
edge needed to decide how classes should be presented and which methods are
relevant. The original developer may also have to supply test programs that
set up graphical simulations that can be manipulated.

6.3 Development Environments

Visual Age is an example of a development environment that also represents a
computer-reading environment, see [76]. IBM delivers a development environ-
ment for programming directed at supporting the programming task. In the
Java version JDK source code is included and the environment therefore be-
comes a computer-reading environment for components used in programming.
JDK source is treated as code in general and presented in the same way as
code under development. Source code is reorganized into projects, classes, and
interfaces that in turn contain methods.

Compared to the Standard Doclet and DJavadoc, Visual Age presents the
source as raw code and not as documentation of that code. Visual Age does
not generate documentation of the source. It is less similar to the book format
and does not take advantage of the range of typography features that can help

84 CHAPTER 6. RELATED WORK

present information.

We find some features of Visual Age relevant for computer-reading environ-
ments of API reference documentation. In Visual Age it is easier to copy and
paste because the editor is also a part of the reading environment. Further-
more, Visual Age enables the reader to filter methods based on their public
modifier (public methods are the methods most developers are intended to
use). Methods are made more visible than other members of a class which in
our opinion represents a use-oriented design choice.

Another example of a development environment acting as a reading envi-
ronment is Visual Cafe, see [77]. Visual Cafe is a development environment
developed by Symantec. The environment incorporates Javadoc documenta-
tion and is therefore also a computer-reading environment. Similarly to Visual
Age, Visual Cafe organizes code into projects and classes.

Visual Cafe delivers more use-oriented navigation than does Javadoc and
DJavadoc. In Visual Cafe it is possible to access Javadoc documentation from
the code. By selecting a class name in the code the reader can access the
documentation. Navigation, to some extent, originates from the code and not
from within the hypertext documentation. By integrating navigation and the
code a use-oriented navigation mechanism is achieved. The classes used in
the code are perhaps likely to be more frequently accessed. Achieving use-
oriented navigation is particularly interesting for large information repositories
such as Javadoc-generated documentation. We find the coupling of the source
code and the documentation particularly interesting, both for inspection of the
programmer’s own code and that of others.

Doc++ is a Javadoc authoring and editing tool that is also integrated in
JBuilder. Doc++ is a tool delivered by WoodenChair Software as part of their
Utility+ product line of which part is prepared for integration with the JBuilder
development environment from Borland [61], and also Visual Cafe, and Visual
Age [80]. Doc++ is a Javadoc application that enables graphical handling of
tags and also spell checking. We find the Doc++ application relevant to the
DJavadoc project because it is an advanced Javadoc application. However, to
our knowledge it does not include any features of dynamic typography.

Other development environments also contain the features we have de-
scribed in this section. We choose to point to specific development environ-
ments as representatives of a group of systems that have relevant functionality
for the DJavadoc project. Other development environments also include these
features but we will not discuss them individually. Examples of other devel-
opment environments for Java include Microsoft’s Visual J++ [78], and Java’s
experimental Java Workshop [56].

6.4. HYPERTEXT REFERENCE MANUALS 85

6.4 Hypertext Reference Manuals

Several programming languages have hypertext-based reference manuals avail-
able online. Most programming languages have online API reference documen-
tation available on Internet. Java [62], Ada [42], Perl [67], Python [70], and so
on. The use of hyperlinks is, to our knowledge, seldom exploited to a higher
degree than in the Standard Doclet.

6.5 WEB

Literate programming, of which Javadoc is an example, was introduced by
Knuth and implemented in the WEB-system for Pascal [6] and also for C
and C++ in the CWEB version [37]. The idea of literary programming was to
write code and documentation simultaneously in one format and then separate
the two into source code and documentation. A vision of writing programs as
essays was presented. The full vision of literate programming is perhaps more
romantic that useful. In relation to WEB, we believe that Javadoc requires less
work, handles change in source-code better, and is less dependent upon the ef-
forts of the individual programmer because of the higher degree of automation
and standardization. In our view, programming should contain a minimum of
documentation to reduce the risk of faulty descriptions and to reduce mainte-
nance work. Documentation should preferably not describe the code but rather
make the code more readable. In this view documentation takes the role of an
outline and is written to support a code-reading task. Javadoc defines a limited
form of literate programming.

In WEB programmers have full control over both content and typesetting
of the API reference documentation. Programmers write WEB in TEX-format
and therefore have complete control over the generated documentation, both
content and typesetting of the documentation (even though the TEX-system
separates the typesetting and content). In Javadoc the programmer must write
a new Doclet to change the typesetting but with the same control, in principle.
However, developers do not generally design new Doclets because it is a major
programming effort. To allow for greater control of content and typesetting
more tags should be introduced into Javadoc or a meta-tag language should be
developed to allow for dynamic-incorporation of tags.

6.6 Emacs Info System

An interesting feature in the info reader of Emacs [48] is the use of both
command-line interface and direct-manipulation interface. Texinfo is a hyper-
text system commonly read in Emacs and often used for technical documen-
tation [49]. The use of both command-line interface and direct-manipulation
interface is relevant in relation to the DJavadoc project. In many situations,

86 CHAPTER 6. RELATED WORK

programmers know which class they are looking for and a command-line navi-
gation tool could therefore increase the speed with which they navigate. Also,
programmers are perhaps tolerant towards command-line interfaces because
they often have previous experience of using such systems.

6.7 Documentation Function in LISP

In Common LISP the documentation of a function can be accessed online [23].
In Common LISP there is a convention to include a documentation string in
function specifications to describe the function. This function also exists in
other programming languages and systems. In the interactive LISP environ-
ment the documentation function can be used to produce the documentation
string online.

Similarly, a connection between the API reference documentation and Java
editors could be achieved to provide explanations of classes, methods, and so
on interactively. In the DJavadoc project we have looked at the API reference
documentation and the editor as separate entities. However, whether a separa-
tion is the best solution is left undecided. In any case, the editor (or rather the
Java files under development) contains information about the reader’s context
that is of importance to the reading environment. Getting closer to the reader’s
needs is a key goal for the DJavadoc project. The editor represents a much
more use-oriented browser than do the Standard Doclet and DJavadoc. The
editor can become a portal into the API reference documentation, given that
the editor and the reading environment are integrated. In a sense, the docu-
mentation function in Common LISP can be viewed as a means of navigation
(in the context of a computer-reading environment).

6.8 Summary of Related Work

DJavadoc provides control over the presented material on the basis of the un-
derlying information model unlike the systems presented here. Though MSDN
Online Workshop and the Mathematica Help Browser enable collapse and ex-
pand functionality to some extent, the reader is not in control of the visibility
of the entire information set. The MSDN Online Workshop API reference
documentation is the system most silimar to DJavadoc API reference docu-
mentation. In our view, MSDN Online Workshop also represents the state of
the art in computer-reading environments for API reference documentation.
However, unlike DJavadoc, the MSDN API reference documentation does not
allow for views controlled by the user and therefore often presents excessive
information and pushes relevant information out of the visible space of the
browser. Hence we believe that for DJavadoc-type API reference documenta-
tion DJavadoc control adds substantial value.

6.8. SUMMARY OF RELATED WORK 87

The systems presented in relation to DJavadoc can be divided into computer-
reading environments, systems with relevant navigational features, and sys-
tems for combining programming and documentation. The Mathematica Help
Browser, the MSDN Online Workshop, the hypertext reference manuals, and
DJavadoc are all examples of computer-reading environments used by program-
mers in the development process. Development environments, to some degree,
also fit into this category. The systems presented in this chapter based on their
navigational features are the LISP documentation function and the Emacs Info
System. Development environments also fit into this category, for instance Vi-
sual Cafe. WEB and also Javadoc are systems for combining programming and
documentation.

88 CHAPTER 6. RELATED WORK

Chapter 7

Discussion

In this chapter we discuss the results of the DJavadoc project. We discuss the
Javadoc approach, how implications for object orientation can be discovered,
and how we would like Javadoc to evolve. Further we identify and discuss
requirements and generalizations that can be made. We discuss dynamic ty-
pography as a concept. Finally we summarize with a view of the future. The
terms and technologies we refer to are discussed in chapter 2.

7.1 The Javadoc Approach

Depending upon perspective Javadoc and Java API reference documentation
can be seen as different things. Though Javadoc delivers documentation in
various forms, Javadoc can be viewed as several different types of systems, as
discussed in the following.

The most common view is probably that Javadoc is a documentation sys-
tem. Javadoc is an automated tool for Java source code documentation. As
such it can be compared to Rational’s SoDA system that generates reports
from Rational’s tools [72]. However, Javadoc describes only the details of the
source code since the tagging structure does not currently support higher-level
comments.

Javadoc can also be seen as a specification system, a principle discussed by
Douglas Kramer from the Javadoc Team in [9]. At Sun the decision was made
to put the specification of Java APIs in the source code as tagged comments.
Since Sun was not in control of all specifications, some had to be referenced
via hyperlinks in the comments.

An alternative view of the output of Javadoc is a computer-reading environ-
ment for source code. The official API reference documentation is, to a great
extent, a typeset view of the source code. Thus, Javadoc delivers increased
visibility of relevant parts of the source code. The API reference documenta-

89

90 CHAPTER 7. DISCUSSION

tion is the graphical user interface of the API. (Note that in computer science
a product may be equivalent to its documentation, unlike other engineering
areas.) In this view, the role of Javadoc is to enable more efficient acquisition
of knowledge from the source code.

Javadoc can also be seen as a programming tool used by developers to
produce applications. Just like compilers, editors, debuggers and other pro-
gramming tools the Javadoc API reference documentation is a programming
tool. Actually it is, in our view, one of the most commonly used Java program-
ming tools. Javadoc should not be considered as delivering documentation but
rather information systems (i.e., applications). As such it should perhaps not
only passively describe components but actively advocate the use of particular
components for certain application profiles.

Furthermore, Javadoc can be seen as an application platform. The Javadoc
structure, illustrated in Figure 2.4, is an application platform for the use of the
information structure that Javadoc delivers. This structure was designed to
allow for different forms of documentation and also provide the basis for a wider
range of applications. For instance, editors could use the Javadoc structure to
access information about classes and class members. For such purposes Java
Reflection is often used, see [54]. However, via Reflection developer comments
cannot be accessed.

Moreover, Javadoc-generated API reference documentation can be viewed
as one of the major Java learning environments. Developers learn to program
from tutorials, books, code examples, and so on. They also learn from the API
reference documentation. How well the API reference documentation visualizes
structures, underlying assumptions, design patterns, and so on have, in our
view, an impact on the software programmers deliver. From this perspective,
by making design choices in API reference documentation, we are in fact making
choices about how programming should be performed. For instance, if a set
of methods in a class is intended for external use and others for use within
an internal structure, the API reference documentation should present these
methods differently to support the original design. (This situation exists in
the Swing packages in JDK, see [75], which provide functionality related to
graphical widgets.)

7.2 Implications for Object Orientation

The Javadoc API reference documentation can unveil limitations in the Java
programming language and ultimately object orientation as a programming
paradigm. An important advantage of automatically generated documentation
is that it maps directly to the source code (unlike manual descriptions which
often deviate from the source code). However, automatically generated docu-
mentation can only reflect what the programming language can express. By
examining what is difficult to understand in Java API reference documenta-

7.3. POTENTIAL IMPROVEMENTS TO JAVADOC 91

tion we may discover deficiencies in the Java programming language. Another
source of limitations is the difference in content between manually written
documentation (such as the tagged source-code comments) and automatically
generated documentation. Key concepts of object orientation are challenged
by the effects they have on the communication of functionality in the API
reference documentation.

As an example, inheritance has led to a separation of class functionality into
declared and inherited functionality which represents a systems-oriented organi-
zation but not a use-oriented organization. Inheritance leads to classes that, for
instance, accumulate large sets of methods. For instance, the java.awt.Button
class has 178 methods in JDK 1.2. It has 10 declared methods, 157 methods
inherited from java.awt.Component and 11 from java.lang.Object. For ab-
solute basic use there are 1 or 2 methods at Button-level that are relevant.
However, beyond the absolute basics, such as changing the background, a few
of the 157 methods at Component-level must be used. Most methods declared
in Button are still not relevant to the user. (Another extreme example is the
javax.swing.JMenu class that has 381 methods declared in the class or inher-
ited from its 6 ancestors.) In the official Java API reference documentation, the
declared and inherited methods are presented separately for practical reasons.
However, as our Button example illustrates, the set of methods most commonly
used is not likely to be the declared methods but rather a subset of methods
from all levels in the hierarchy. In effect, relevant methods are presented as
less important than other methods in the API reference documentation simply
because these methods are inherited. Thus, we conclude that inheritance does
not provide an efficient mechanism for separating functionality into use-related
categories.

What is difficult to understand from documentation or difficult to docu-
ment suffers from poor design (which is the point being made in this section).
Being the graphical user interface of the API, reference documentation is the
publication of Java classes and thus advocates the Java language and object
orientation. In a sense, functionality in Java and object orientation that is
not communicated well is irrelevant. Of course, deficiencies in the API refer-
ence documentation cannot automatically be contributed to the design of the
programming language or the programming paradigm. For instance, problems
with the Java API reference documentation may follow from insufficient anal-
ysis of the source code. However, if complex analysis must be performed to
discover important information, this also reflects negatively on the program-
ming language.

7.3 Potential Improvements to Javadoc

On a number of issues we have design requests for the continued development of
Javadoc-generated API reference documentation. The DJavadoc project only

92 CHAPTER 7. DISCUSSION

focuses on a small aspect of the computer-reading environment and the official
Javadoc API reference documentation. However, our work with DJavadoc and
our experience as Java programmers has led us to certain conclusions.

Javadoc should use the source code directly instead of generating inter-
mediate HTML format (i.e., Javadoc should provide a source-code browser).
Javadoc generates documentation automatically to counteract the possible de-
viation of documentation and source code. However, the documentation is gen-
erated in HTML. To achieve a tighter coupling between the source code and
the API reference documentation we suggest that a source code browser is de-
veloped that parses source code and presents Standard Doclet-type documents.
However, such a browser would not remove the need to generate documentation
in other formats. For instance, the current HTML format protects the integrity
of the source code by only containing the signature of APIs.

The analysis that is performed by Javadoc on the source code should be
developed with the aim of finding structural information such as key classes,
key class members, and particular chains of methods. Some classes or class
members play key roles in program structures such as the Java runtime. For
example, java.awt graphical widgets must be added to a java.awt.Container
object using one of the java.awt.Container.add() methods or else the wid-
get will not appear on the screen. These methods are thus central to the
graphical user interface structure. Also, there are chains of methods cutting
across several classes to deliver a relevant result. For instance, the method chain
DriverManager.getConnection().createStatement().executeQuery() de-
livers an object representing the answer to an SQL query, unlike the method
chain DriverManager.getConnetion().createStatement().close() which
is pointless. Analysis of the source code can perhaps uncover structural in-
formation of these types, representing knowledge difficult to acquire from the
current API reference documentation.

The layout of the class documents should be designed for use to a higher
degree. Heuristics about use could be applied to the layout of the API reference
documentation to achieve a more use-oriented design. For instance, methods
are central to the use of Java class and should therefore be placed as high
up in the browser as possible. Another example is to group ’get’ and ’set’
methods together (get and set are a general naming convention for methods that
manipulate data). Furthermore, methods with the same name but different
parameters represent the same functionality and the space they take should be
minimized.

The tags used to write source code comments should be further developed.
Developers document their classes using tags. There are a series of tags that
may become part of future Javadoc implementations [68]. The tags play an
important role in the documentation process by advocating documentation
practice. Ideally, these tags communicate a disposition of what quality docu-
mentation contains. We would like to see a continued development of the tags
to further specify the desired content. One example is the description which

7.4. REQUIREMENTS 93

could be modularized into a set of tags that separate general description, de-
scriptions about the context of class or a class member, descriptions of version
changes, and so on.

Furthermore, we would like to see a more dynamic tagging mechanism that
allows for new tags to appear in the Javadoc even though they were not con-
ceived of from the beginning. Currently the tags that the Standard Doclet
handles are statically defined. The opposite of the current solution is a sepa-
rate tag programming language that allows for any type of tag constructions.
Such full-fledged dynamics are principally what the WEB system delivered
(see Section 6.5). We believe in a dynamic tagging mechanism within reason.
Javadoc should be more flexible to enable additions and also provide the basic
set of tags that define quality documentation. We envision tag types being
used instead of specific tags. These tags types represent the kind of informa-
tion documentation should consist of. As an example the @decriptionItem tag
could be used to provide a general tag for class-member-description items. The
convention for the tag would be @decriptionItem name text and it would
be placed into the member-description with the name as a headline and text
as a paragraph under that headline. Javadoc would not need to know what
developers put under name. Similarly such a dynamic tagging mechanism could
enable dynamic DJavadoc filtering (e.g., @filter name).

We would also like to see command-based navigation in the API reference
documentation. Scrolling down to the method summary is a tedious task.
Pressing Ctrl-M would speed up this process. Several navigational issues could
be dealt with through a command-base approach. Even though such command-
based navigation is domain-dependent and therefore requires training, it would
provide experienced users with a powerful navigational tool. Loading particular
classes by simply writing the name is another example of how command-based
navigation can be helpful (e.g., by typing Ctrl-L java.lang.String), partic-
ularly if the API reference documentation completed the name when possible.

7.4 Requirements

From our work on DJavadoc we have found some requirements on API reference
documentation concerning the type of support DJavadoc delivers. DJavadoc
focuses on only a part of the entire architecture of API reference documenta-
tion. However, for this part and from our work with DJavadoc we list some
requirements on the computer-reading environment for API reference docu-
mentation.

The dynamic changes in the documents (i.e., the collapse and expand func-
tionality) must be instantaneous. The idea behind DJavadoc is that the reader
continuously manipulates the documentation because what is relevant informa-
tion changes as the reader proceeds. In view of this scenario, if performance is
slow it severely handicaps the reader. For a while we had performance problems

94 CHAPTER 7. DISCUSSION

in the table of contents and waiting for the collapse and expand functionality
to take a few seconds seemed very long. The need for seemingly instanta-
neous performance makes client-side solutions more feasible than server-side
solutions (dynamic generation on the server side is often preferred to overcome
the shortcomings of older web browsers).

Using collapse and expand functionality seems to work best for smaller
sections that do not push all of the following text out of the visible space of the
browser. As sections are expanded they push information down and ultimately
out of the visible space of the browser. In our experience, it can be somewhat
disorienting if the all the information below a section is pushed out of the visible
space.

It is not feasible to envision one design for API reference documentation that
will please everyone. From my contacts with programmers, both students and
in industry, it is clear that people want different things from the API reference
documentation. Different persons want different types of information, some
written descriptions and others source code examples. The knowledge they are
after is the same; they just want it presented in different ways. API reference
documentation should therefore support multiple views, for instance in the way
DJavadoc does.

Ultimately programmers must provide the source code with structural in-
formation alongside the source code descriptions to enable the type of API
reference documentation we envision. The ability to collapse and expand parts
of the documentation is useful. In particular, the ability to collapse or expand
individual elements by direct manipulation is important. The functionality also
scales well but is, of course, dependent on the quality of the underlying infor-
mation structure. In some cases the structural information must be provided
by developers because the programming language does not capture this knowl-
edge. Thus, documenting becomes the task of both describing and providing
filtering information used by the computer-reading environment. The proposed
Javadoc tags include some tags related to this (for instance the @category tag)
[68].

7.5 Task Generalization of DJavadoc

Java programmers read to do or to learn to do (see Schriver [18]), that is with
the purpose of learning to perform or of executing some type of action. Soft-
ware development requires detail knowledge about the components program-
mers reuse. Several other work categories require the same type of knowledge.
For instance, engineering in general is often based on the reuse of predefined
components. Physicians, too, are required to read patient records during work.
There are numerous work categories that continuously read to do or to learn
to do.

The text Java programmers work with represents a homogenous, structured,

7.6. DOCLET EDITOR 95

work-related text. The Java API reference documentation can be characterized
as a component catalogue or as a set of reports containing the same type of
information. A characteristic of this text is also its integral relation to work
tasks and the need for efficient acquisition of knowledge through reading.

In principle our solution relies only on an underlying information model,
even though we currently have a technical solution restricted to the Java-
domain. The support we have built for Javadoc-generated API reference doc-
umentation is general in nature. In a sense, DJavadoc extends the computer-
reading environment rather than the API reference documentation. In the
current DJavadoc implementation this generality is hard coded to Java. How-
ever, a continued development could achieve support for structured information
sources in general.

7.6 Doclet Editor

Another generalization step that we would find relevant makes DJavadoc a
Doclet editor, providing the reader with the freedom to define the content
and typography of Java API reference documentation. The official Javadoc-
generated API reference documentation is currently set in its ways. Changes
to the API reference documentation can be achieved by creating a new Doclet.
However, developing Doclets such as the Standard Doclet is a major program-
ming task (more than 11,000 lines of code in the 1.2.2 version). However, a
Doclet could be both API reference documentation and a Doclet editor. Others
have worked with tools of this kind, see for instance [33].

In short, a Doclet editor can simplify the design of higher specialized and
more individual versions. The development of editor support can reduce the
effort needed to define alternative Doclets. It can also increase the possibility of
rapid reference-documentation prototyping. Furthermore, it can also increase
the speed with which new version of the Standard Doclet can be developed
(even though individual programmers never use the tool). The lack of a Doclet
editor may be a reason for the fact that there are not many alternative Doclet
implementations available of the size of the Standard Doclet.

Both a Doclet scripting language and a graphical Doclet editor are plausi-
ble. Since our readers have a background in computer science, they can handle
programming-based development. The content could perhaps be defined as a
mapping of the methods found in the Doclet API. However, for the typog-
raphy it is not equally clear how to construct a simple but powerful scripting
language. A graphical Doclet editor would handle the typography by providing
a graphical-user-interface editor.

DJavadoc can be viewed as a client-side Doclet editor. In DJavadoc we
enable client-side manipulation of the official Java API reference documenta-
tion. Both client-side and server-side editors could be useful, and perhaps also
for different purposes. For a server-side editor we envision alternative views

96 CHAPTER 7. DISCUSSION

like the output of the Standard Doclet. However, dynamic functionality on the
client-side may still be relevant.

7.7 Alternative Technical Solutions for DJavadoc

Let us discuss some alternative technical solutions to DJavadoc that we did not
take but that could have been considered. In the DJavadoc project we choose a
DHTML solution because we thought that the new technology would drive our
research in a different direction. The use of DHTML has definitively produced
such results, for instance the concept of dynamic typography that we would
not have come across in many other technological environments. However, in
order to support readers of Javadoc-generated API reference documentation
the choice of technology is not as clear. Other technical solutions would have
proven equally beneficial, perhaps even more so than the DHTML approach.
Let us discuss some alternative approaches.

Building a Javadoc application in Java instead of the current Web-based ap-
plication is a resonable alternative. Since the beginning Javadoc has generated
HTML. However, a Java-based reading environment is an alternative, espe-
cially since most readers already have a Java environment installed. Javadoc
applications could use the highly developed graphical components available in
Java to create a multifaceted computer-reading environment. However, Java
has a shortage of advanced text-widgets in comparison to Web-technologies. Of
course, it is plausible that we would have been able to find a third-party library
supporting our needs. We could also have developed them ourselves. Building
an application, we would not have been equally restrained to store data as in
the Web-solution. A Java based application would not have to transform the
Doclet API to another format but could work directly from the stored objects.
Coupling the API reference documentation to development environments would
perhaps be easier from a Java application than from a Web-solution. A nega-
tive point about Java applications is the poor performance that the language
is only starting to come to grips with.

Considering the 1,800 classes and 15,000 methods in JDK 1.2, a database
solution is perhaps motivated. The need for multiple views of the same infor-
mation also supports a database solution. Building a database from the Doclet
API and delivering dynamic class documents by SQL-query composition is, of
course, an alternative. The database solution works both on the Web and for
applications. It would scale better than ordinary files since databases are de-
signed to handle large amounts of data. Also, if the DJavadoc project included
editing of the API reference documentation, a database solution would provide
valuable content management. A negative point from our research perspective
is that the database solution would probably reduce dynamic typography to dy-
namic composition thus reducing text from an animate entity to a dynamically
composed static entity.

7.8. DYNAMIC TYPOGRAPHY 97

Building a client-server application (Web or application) is another technical
alternative that would increase the possibilities of service integration. A client-
server solution would increase the possibilities of handling external data. It
can serve to address the limitations made in Web-browsers to store personal
data, particularly for off-line versions in which the browser works with the file
system. In this case the server would have to be downloaded and run locally.
Also, a central server could be used to exchange data among Java programmers
to disseminate browsing information. A knowledge-sharing server could be set
up that tracks the browsing behavior of a group of readers. The individuals
could then benefit by asking what other readers examine, perhaps in relation
to a particular class. The negative side of several client-server approaches is
the need to be online. However, for intranet solutions this may not be an issue.

7.8 Dynamic Typography

A result of the DJavadoc project is the concept of dynamic typography. We
define dynamic typography as changeable appearance of information with the
purpose of supporting knowledge acquisition through reading. The concept is
relevant both for information-system research and typography research. Dy-
namic typography has the potential of making text more of an animate entity
that reacts to changes in the surroundings and reconfigures itself to best sup-
port the reader in a new context.

Developing support for dynamic typography as well as guidelines is a rele-
vant area for continued research that we feel should be explored but that would
also take us in a drastically new direction. Currently Internet is filling up with
active text and dynamic typography but the field of dynamic typography is not
singled out and dealt with in a scientific manner. For the field of typography,
dynamic typography should be relevant because it removes the fundamentals
on which static typography rests (2D, defined measurements of the reading
surface, content always being visible on the reading surface, and so on). For
the electronic text community, dynamic typography complements hypertext as
an attribute of electronic text. In our view, dynamic typography characterizes
a large portion of the Web-development that is currently taking place better
than hypertext does. The use of hypertext is often the result of a desire to
present text in small chunks and not a desire to achieve non-linearity. This
may well result in documents that are difficult to read, print, and maintain. In
our view, the concept of non-linear text does not apply to all texts and should
be used with care. It is also important to note that non-linear reading does
not always require non-linear writing.

Dynamic typography is a genuine feature of the electronic text and by devel-
oping it the computer-reading environment will increase its distinctive features
in relation to print. Reading from print and electronic text are often com-
pared. A common comment is that electronic texts will never replace print

98 CHAPTER 7. DISCUSSION

until the screen resolution is at least comparable to print resolution. However,
Web browsers did not need a resolution comparable to print to have impact on
the reading behavior of a large community. Instead it provided functionality
that did not exist in print. In our view, print and electronic texts are different
altogether and should not be compared as equals. The computer-reading envi-
ronment has the potential of being a completely different reading environment
that supports another kind of reading than does print. By developing the con-
cept of dynamic typography we could increase the set of distinctive features
that the electronic text holds.

Web technologies can serve as a basis for experimentation with dynamic
typography because of the highly developed text technology. The Web consists
mostly of text (even though other media are also available) and the technol-
ogy for describing typography of text is highly developed compared to other
applications platforms. With the DHTML development the ability to define
dynamic behavior in text has also evolved. Furthermore, with the coming of
XML as a meta-language that Web browsers can interpret, it becomes possi-
ble to design new Web languages that have dynamic typography but resemble
HTML in simplicity.

7.9 Summary and Continued Work

We are filled with anticipation for the future because we feel that the DJavadoc
project provides the relevant groundwork required for our continued studies.
There are several open questions and research issues that arise from our work
with DJavadoc: how should API reference documentation evolve into a more
use-oriented tool; how can more complex analysis of the source code deliver
use-oriented information about software components and the structures of soft-
ware components; what implications for object orientation can be found by
analyzing documentation; how can quality documentation be ensured in the
Javadoc approach; and how can we define measures for dynamic typography.
A concrete example of how to continue the work is to analyze the design of
the Java programming language from the perspective of communications of
functionality. Differences in hand-written documentation and automatically-
generated documentation can point to limitations in the language. However,
our possibilities for continued work stretch across several general and relevant
research areas such as API reference documentation, automatic documentation,
programming tools, programming languages, typography, and Web technology.
Also, in our opinion such work is needed because the growing size and complex-
ity of APIs (or more generally work-related information repositories) present
cost and quality problems in software development (or in knowledge-intensive
work in general).

Chapter 8

Summary and Conclusions

8.1 Summary

API reference documentation is an important programming tool. Modern pro-
gramming is often component-based in the sense that a vast number of com-
ponents are used by programmers developing applications. Programmers have
to acquire detailed knowledge to learn which components to use and how to
handle these components. Java programmers perform this acquisition by read-
ing the Javadoc-generated API reference documentation. The acquisition of
knowledge is integral in the work-task and it is performed continuously.

DJavadoc strives to support programming by further developing the API
reference documentation and thereby improve the process of the acquisition of
detailed knowledge. The DJavadoc project supports computer-reading of API
reference documentation for Java programmers. Generalizing, DJavadoc sup-
ports software development. Currently we are addressing the need for multiple
views of the Java API reference documentation. The Javadoc-generated API
reference documentation is written for multiple needs and therefore contains
excessive information in all situations. The project strives to provide a more
efficient reading environment that can be dynamically tailored by the reader.
Currently we are applying DHTML technology available in Microsoft Internet
Explorer 4 (and more recent versions) to achieve dynamic typography.

So far we have achieved preliminary results for the evaluation of DJavadoc.
In the process of acquiring real-world study opportunities we have demon-
strated DJavadoc to several members of software development teams (pro-
grammers, project managers, and technical writers). Their responses have
been positive which indicates that DJavadoc may well add genuine value to
the API reference documentation. However, these results are only preliminary
and must be complemented with more thorough evaluation based on use expe-
rience. Currently we have a handful of contacts that are promising. Our first

99

100 CHAPTER 8. SUMMARY AND CONCLUSIONS

users have already started using DJavadoc.

8.2 Conclusion

From the DJavadoc project we can so far conclude that our preliminary studies
support the usefulness of the DJavadoc design. However, more thorough studies
must be performed. We have also found that DHTML provided adequate and
straightforward technology for client-side real-time redesign of documentation
such as the official Java API reference documentation.

DJavadoc adds an explicit information model to the official Java API refer-
ence documentation and provides mechanism (based on the underlying model)
by which the reader controls the visibility of information. From our experi-
ence with DJavadoc, we conclude that instantaneous performance is required
for dynamic typography such as collapse and expand functionality. Also, such
dynamic typography works best for smaller changes. We believe these require-
ments favor the type of client-side architecture that DJavadoc contains.

We also conclude from our work in this field that API reference documen-
tation is system oriented and should be designed for more use-orientation. The
redesign concerns both reading issues, such as typography and navigation, and
issues in automated generation of documentation.

Currently the process of designing alternative Java API reference documen-
tation is cumbersome, judging from the size and complexity of the Standard
Doclet. More rapid development tools should be designed, for instance in the
form of Doclet editors.

Furthermore, we conclude that the documentation can play an important
role in the analysis of the Java language and ultimately object orientation.
The documentation is the graphical user interface to the source code and will
therefore reflect limitations in the programming language. In our opinion, the
ability with which a programming language facilitates automated documen-
tation will have direct impact on software cost and quality, particularly for
component-based programming.

Finally, we conclude that design applied in DJavadoc fundamentally rep-
resents an extension to the computer-reading environment and electronic text.
Dynamic typography as a concept should be further developed to discover ty-
pographical knowledge to control and enhance computer-reading.

For the future we believe there is great potential in the further development
of use-oriented API reference documentation as a communicator of functional-
ity in software engineering.

Bibliography

[1] Andrew Dillon and. Designing Usable Electronic Text : Ergonomic Aspects
of Human Information Usage. Taylor and Francis, 1994.

[2] Barry Phillips and. Designers: The browser war casualities. IEEE Com-
puter, 31(10):14–16, 1998.

[3] Christer Hellmark and. Typografisk handbok (The Typographers Guide).
Ordfront, 1998.

[4] David Flanagan and. Javascript: The Definitive Guide. O’Reily and
Assosiates, 1998.

[5] David K. Farkas and. Layering as a safety net for minimalist documenta-
tion. In John M. Carroll and, editor, Beyond the Nurnberg Funnel. MIT
Press, 1998.

[6] Donald E. Knuth and. Literate Programming. Center for the Study of
Language and Information, Leland Stanford Junior University, 1991.

[7] Donald E. Knuth and. The Stanford GraphBase: a platform of combina-
torial computing. ACM Press, 1993.

[8] Douglas A. Norman and. The Design of Everyday Things. Basic Books,
1988.

[9] Douglas Kramer and. Api documentation for source code comments: A
case study of javadoc. In the Seventeenth Anual International Conference
of Computer Documentation, September 12-14 1999.

[10] Evert Gummesson and. Qualitative Methods in Management Research.
SAGE Publications, 1991.

[11] Ian Sommerville and. Software Engineering. The Bath Press, 1989.

[12] J. G. Brookshear and. Computer Science An Overview. Ben-
jamnin/Cummings, 1994.

101

102 BIBLIOGRAPHY

[13] J. Nielsen and. Multimedia and Hypertext: the Internet and Beyond. AP
Professional, 1995.

[14] Jay David Bolter and. Writing Spaces The Computer, Hypertext and the
History of Writing. Lawrence Erlbaum Associates, 1991.

[15] JoAnn T. Hackos and. Choosing a minimalist approach for expert users.
In John M. Carroll and, editor, Beyond the Nurnberg Funnel. MIT Press,
1998.

[16] John M. Carroll and. The Nurnberg Funnel. MIT Press, 1990.

[17] John M. Carroll and, editor. Minimalism Beyond the Nurnberg Funnel.
MIT Press, 1998.

[18] Karren A. Schriver and. Dynamics in Document Design. Wiley, 1997.

[19] Lisa Friendly and. The design of distributed hyperlinked programming
documentation. In 1995 International Workshop on Hypermedia Design,
1995.

[20] Norman Meyrowitz and. Hypertext - does it reduce cholesterol too? In
James Nyce and Paul Kahn and, editors, From Memex to Hypertext :
Vannevar Bush and the Mind’s Machine. Academic Press, 1991.

[21] R. Bringhurst and. The Elements of Typographic Style. Hartley and Marks,
1996.

[22] S. Wolfram and. The Mathematica Book. Wolfram Media/Cambridge
University Press, 1996.

[23] Steel JR. Gy L. and. Common LISP. Digital Press, 1990.

[24] Steinar Kvale and, editor. Issues of Validation in Qualitative Research.
Studentlitteratur, 1989.

[25] Stephen R. Schach and. Software Engineering with Java. Irwin, 1997.

[26] Steven P. Reiss and. Software tools and environments. ACM Computing
Surveys, 28(1):281–284, 1996.

[27] Theodor H. Nelson and. Literary Machines. The Distributors, 1987.

[28] William Horton and. Designing and Writing Online Documentation Help
Files to Hypertext. John Wiley and Sons, 1990.

[29] Doug Bell, Ian Morrey, and John Pugh and. Software Engineering A
Programming Approach. Prentice Hall, 1987.

BIBLIOGRAPHY 103

[30] Erik Berglund and Henrik Eriksson and. Intermediate knowledge through
conceptual source-code organization. In Tenth International Conference
on Software Engineering and Knowledge Engineering, June 18-19 1998.

[31] M. Bieber, F. Vitali, H. Ashman, V. Balasubramanian, and H. Oinas-
Kukkonen and. Fourth generation hypermedia: some missing links for
the world wide web. International Journal of Human-Computer Studies,
47:31–65, 1997.

[32] Mary Campione and K. Walrath and. The Java tutorial : object-oriented
programming for the Internet. Addison-Wesley, 1998.

[33] Henrik Eriksson and Mark A. Musen and. Metatools for knowledge acqui-
sition. IEEE Software, 10(3):23–29, 1993.

[34] Henrik Eriksson, Angel R. Puerta, and Mark A. Musen and. Generation of
knowledge-acquisition tools from domain ontologies. International Journal
of Human Computer Studies, 41:425–453, 1994.

[35] Ivar Jacobson, Gary Booch, and James Rumbaugh and. Unified Software
Development Process. Addison-Wesley, 1999.

[36] Paul Kahn and Krzysztof. Lenk and. Principles of typography for user
interface design. Interactions, pages 15–29, 1998.

[37] Donald E. Knuth and L. Silvio and. The CWeb System of Structured
Documentation, version 3.0. Addisson Wesley, 1994.

[38] M. T. Maybury and W. Wahlster and. Readings in Intelligent User Inter-
faces. Morgan Kaufmann, 1998.

[39] James Nyce and Paul Kahn and, editors. From Memex to Hypertext Van-
nevar Bush and the Mind’s Machine. Academic Press, 1991.

[40] Hans van Vilet and. Software Engineering Principles and Practice. John
Wiley and Sons, 1993.

[41] About W3C. www.w3.org/Consortium/.

[42] Ada Online. www.adahome.com/rm95/.

[43] CSS at W3C. www.w3.org/Style/CSS/.

[44] DJavadoc Home Page. www.ida.liu.se/ eribe/djavadoc.

[45] DOM at W3C. www.w3.org/DOM/.

[46] ECMA Home Page. www.ecma.ch.

[47] ECMAScript Specification (PDF). www.ecma.ch/e262-pdf.pdf.

104 BIBLIOGRAPHY

[48] Gnu Emacs. www.gnu.org/software/emacs/emacs.html.

[49] Gnu Texinfo. www.delorie.com/gnu/docs/texinfo/texinfo toc.html.

[50] HTML 4.0 Specification. www.w3.org/TR/REC-html40/.

[51] HTML at W3C. www.w3.org/MarkUp/.

[52] Java. java.sun.com.

[53] Java Hotspot. www.java.sun.com/products/hotspot/index.html.

[54] Java Reflection. java.sun.com/products/jdk/1.2/docs/guide/reflection/index.html.

[55] Java Tutorial. java.sun.com/docs/books/tutorial/.

[56] Java Workshop. www.sun.com/workshop/java/.

[57] Javadoc. java.sun.com/products/jdk/javadoc/.

[58] Javadoc FAQ: memory and time requirements.
java.sun.com/products/jdk/javadoc/faq.html#memory.

[59] Java’s XML Home Page. java.sun.com/xml.

[60] JavaScript at Netscape. developer.netscape.com/tech/javascript/index.html.

[61] JBuilder. www.borland.com/jbuilder.

[62] JDK 1.2. java.sun.com/products/jdk/1.2/.

[63] JPython. www.jpython.org/.

[64] MSDN Online Workshop. msdn.microsoft.com/workshop/.

[65] Netscape Cookie Discussion. help.netscape.com/kb/consumer/970226-
2.html.

[66] Netscape Cookie Discussion. msdn.microsoft.com/workshop/networking/wininet/overview/http

[67] Perl Online. reference.perl.com/.

[68] Proposed Additional Javadoc Tags. java.sun.com/products/jdk/javadoc/proposed-
tags.html.

[69] Protege Home Page. www.smi.stanford.edu/projects/protege/.

[70] Python Online. www.python.org/doc/current/lib/lib.html.

[71] Rational Home Page. www.rational.com.

[72] Rational SoDA. www.rational.com/products/soda/.

BIBLIOGRAPHY 105

[73] SGML Home Page. www.oasis-open.org/cover/sgml-xml.html,
www.sgml.org.

[74] Some Java History. java.sun.com/features/1998/05/birthday.html.

[75] Swing. java.sun.com/products/jfc/tsc/index.html.

[76] Visual Age. www-4.ibm.com/software/ad/vajava/.

[77] Visual Cafe. www.symantec.com/domain/cafe/vc4java.html.

[78] Visual J++. msdn.microsoft.com/visualj.

[79] W3C. www.w3.org.

[80] WoddenChair Software. www.woodenchair.com.

[81] XML at W3C. www.w3.org/XML/.

[82] XML Specification. www.w3.org/TR/1998/REC-xml-19980210/.

	Thesis No. 790
	Use-Oriented Documentation in Software Development
	by
	Erik Berglund
	Linköping 1999
	Submitted to the School of Engineering at Linköping University in partial fulfillment of the requ...

	Use-Oriented Documentation in Software Development
	by
	Erik Berglund
	Nov. 1999
	ISBN 91-7219-615-7
	Linköping Studies in Science and Technology
	Thesis No. 790
	ISSN 0280-7971
	LiU-Tek-Lic-1999:48
	ABSTRACT

