
pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

1

High Level Mathematical Modeling and
Parallel/GRID Computing with Modelica

Peter Fritzson
PELAB – Programming Environment Laboratory

Department of Computer and Information Science, PELAB
Linköping University, SE 581-32 Linköping, Sweden

{petfr}@ida.liu.se

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

2

OutlineOutline

• Complex Systems and High Performance
Simulations

• Introduction to Modelica
• Overview of OpenModelica Environment
• Automatic fine-grained parallelization
• Explicit model-based parallelization
• Explicit parallel programming

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

3

Examples of Complex Examples of Complex SystemsSystems

• Robotics
• Automotive
• Aircraft
• Living organisms
• Power plants
• Heavy Vehicles

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

4

ObjectivesObjectives

• Convenient high level mathematical modeling
and simulation of complex systems

• High performance computation using parallel
computers

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

5

TowardsTowards HighHigh--Level ParallelLevel Parallel
ModelingModeling and and SimulationSimulation

• Simulations are
time-consuming

• Moore’s ”Law”: (since 1965)
• #devices per chip area doubles

every 18 months
• CPU clock rate also doubled every

18 months – until 2003,
then: heat and power issues, limited ILP, ...

superscalar technology has reached
its limits,
only (thread-level) parallelism can increase
throughput substantially

• The consequence:
Chip multiprocessors (+ clusters)
• Multi-core, PIM, ... (for general-purpose computing)

• Need parallel programming/modeling
• Automatic parallelization
• Explicit parallel modeling and parallel programming

Single-processor Performance Scaling

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

L
o
g

2
 S

p
e
e
d

u
p

Limit: Clock rate

Limit: RISC ILP

Throughput incr. 55%/year

65 nm45 nm 32nm 22nm90 nm

Pipelining

RISC/CISC CPI

Device speed

Parallelism

Assumed increase
17%/year possible

Source: Doug Burger, UT Austin 2005
2006

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

6

Three Approaches to Parallel Computation in Three Approaches to Parallel Computation in
Mathematical Modeling with ModelicaMathematical Modeling with Modelica

• Automatic fine-grained parallelization of
mathematical models (ModPar)

• Coarse-Grained Explicit Parallelization Using
Components (GRIDMOdelica)

• Explicit Parallel Programming Constructs in
Modelica (NestStepModelica)

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

7

Background Background

Modelica Modelica ––
thethe Next GenerationNext Generation
Modeling LanguageModeling Language

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

8

Stored Stored Scientific and Engineering KnowledgeScientific and Engineering Knowledge

Model knowledge is stored in books and human minds
which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

9

The Form The Form –– EquationsEquations

• Equations were used in the third millennium B.C.
• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

10

Declarative language
Equations and mathematical functions allow acausal modeling,
high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class
concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica Modelica –– The Next Generation Modeling The Next Generation Modeling
LanguageLanguage

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

11

Modelica Language PropertiesModelica Language Properties

• Declarative and Object-Oriented

• Equation-based; continuous and discrete equations

• Parallel process modeling of real-time applications, according
to synchronous data flow principle

• Functions with algorithms without global side-effects
(but local data updates allowed)

• Type system inspired by Abadi/Cardelli

• Everything is a class – Real, Integer, models, functions,
packages, parameterized classes....

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

12

Object OrientedObject Oriented
Mathematical Modeling with ModelicaMathematical Modeling with Modelica

• The static declarative structure of a mathematical model is
emphasized

• OO is primarily used as a structuring concept

• OO is not viewed as dynamic object creation and sending
messages

• Dynamic model properties are expressed in a declarative way
through equations.

• Acausal classes supports better reuse of modeling and design
knowledge than traditional classes

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

13

Brief Modelica HistoryBrief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge

in both language design and physical modeling
• Industry and academia

• Modelica Versions
• 1.0 released September 1997
• 2.0 released March 2002
• Latest version, 2.2 released March 2005

• Modelica Association established 2000
• Open, non-profit organization

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

14

Modelica ConferencesModelica Conferences

• The 1st International Modelica conference October,
2000

• The 2nd International Modelica conference March 18-
19, 2002

• The 3rd International Modelica conference November
5-6, 2003 in Linköping, Sweden

• The 4th International Modelica conference March 6-7,
2005 in Hamburg, Germany

• The 5th International Modelica conference September
4-5, 2006 in Vienna, Austria

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

15

Modelica Class Libraries Modelica Class Libraries -- for Reusefor Reuse
Visual ViewVisual View

Info
R= C= L=

G

A
C=

DC=

V
s Is

S

D T

-
+

Op
V i

E

 : 1

Info
shaft3DS=

S
shaft3D= shaftS=

S

shaft=

gear1=

gear2=

planetary=
diff=

sun=

planet=
ring=

bearing fixTooth

S
moveS move

torque

c= d=

fric=

fricTab clutch=
converter

r

w a t
fixedBase

S
state

Info
inertial

bar= body= bodyBar=

cylBody=bodyShape=

revS=
S

prismS=
S

screw S=

S
cylS=

S

univS

S
planarS=

S

sphereS

S

freeS

S
rev= prism=

screw =

cyl= univ planar= sphere
free

C

barC=

barC2=
x

y

C

sphereC c= d= cSer=

force

torque

lineForce=

lineTorque=

sensor

s sd

lineSensor

Library

advanced

Library

drive

Library

translation

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

16

ModelicaModelica Model ExampleModel Example –– Industry RobotIndustry Robot

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6
r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D*w
m

))
Ra=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

Rp
2=

50

Rd4=100

hall2

Rd
3=

10
0

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

Courtesy of ABB Corp. Research and of Martin Otter, DLR

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

17

Modelica Model ExampleModelica Model Example
GTXGTX Gas Turbine Power Cutoff MechanismGas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

18

Graphical Modeling /Visual Graphical Modeling /Visual Programming ViewProgramming View

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

19

Multi-Domain (Electro-Mechanical)
Modelica DCMotor Model

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component.

load

EM
DC

G

R L

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

20

Corresponding DCMotor Model Equations

Automatic transformation to ODE or DAE for simulation:

The following equations are automatically derived from the Modelica model:

(load component not included)

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

21

The Translation ProcessThe Translation Process

Modelica Model

Flat model

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor

Modelica
Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

22

• What is acausal modeling/design?
• Why does it increase reuse?

The acausality makes Modelica library classes more
reusable than traditional classes containing assignment
statements where the input-output causality is fixed.

• Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;

v := R*i;

R := v/i;

Modelica Modelica Acausal ModelingAcausal Modeling

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

23

Visual Model Design Using
Connector Classes, Components and Connections

Keyword flow indicates
that currents of connected

pins sums to zero.

A connect statement in Modelica

corresponds to

Connector Pin
Voltage v;
flow Current i;

End Pin;

connect(Pin1,Pin2)

Connection between Pin1 and Pin2

Pin1.v = Pin2.v
Pin1.i + Pin2.i = 0

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

24

Common Component Structure as SuperClass

model TwoPin
”Superclass of elements with two electrical pins”
Pin p,n;
Voltage v;
Current i;

equation
v = p.v – n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

25

Electrical Components Reuse TwoPin SuperClass

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = u

end Inductor;

model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R ”Resistance”;

equation
R*i = u

end Resistor;

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

26

DiscreteDiscrete--time vs. Continuoustime vs. Continuous--timetime

• Continuous-time variables: change at any point in time
• Discrete-time variables only change at certain points in

time

timeevent 1 event 2 event 3

y

z

y,z

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

27

Modelica Discrete and Hybrid PropertiesModelica Discrete and Hybrid Properties

• Discrete event semantics based on conditional equations (if
conditions ..., when conditions ..., etc.)

• Discrete event model follows synchronous data flow principle –
events take no time

• Efficient hybrid modeling and simulation possible

• Can handle most discrete formalisms: FSA, DEVS, Petri Nets,
State Charts, Queuing models, ...

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

28

RecentRecent Book, 2004Book, 2004

Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 2.1

Wiley-IEEE Press

940 pages

Book web page:
www.mathcore.com/drmodelica

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

29

The OpenModelica Environment The OpenModelica Environment

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

30

OpenModelicaOpenModelica EnvironmentEnvironment

The goals of the OpenModelica project is to:
• Create a complete Modelica modeling, compilation and

simulation environment.
• Provide free software distributed in binary and source

code form.
• Provide a modeling and simulation environment for

research, teaching, and industrial purposes.
• Reference implementation of Modelica in Modelica

http://www.ida.liu.se/projects/OpenModelica

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

31

OpenModelica EndOpenModelica End--Users vs. DevelopersUsers vs. Developers

• OpenModelica End-Users
• People who use OpenModelica for modeling and simulation

• OpenModelica Developers
• People who develop/contribute to parts in the OpenModelica environment

including the OpenModelica compiler

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

32

OpenModelica Environment ArchitectureOpenModelica Environment Architecture

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
OMNoteBook
Model Editor

Eclipse Plugin
Editor/Browser

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

33

OpenModelica ClientOpenModelica Client--Server ArchitectureServer Architecture
Callable via CORBA APICallable via CORBA API

Parse

Client: Eclipse
Plugin MDT

Corba

Client: OMShell
Interactive

Session Handler

Server: Main Program
Including Compiler,

Interpreter, etc.

Interactive

SCode

Inst

Ceval
plot

system

etc.

Untyped API

Typed Checked Command API

Client: Graphic
Model Editor

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

34

Interactive Session Handler Interactive Session Handler –– on dcmotor Exampleon dcmotor Example
(Session handler called OMShell (Session handler called OMShell –– OpenModelica Shell)OpenModelica Shell)

>>simulate(dcmotor,startTime=0.0,stopTime=10.0)
>>plot({load.w,load.phi})

model dcmotor
Modelica.Electrical.Analog.Basic.Resistor r1(R=10);
Modelica.Electrical.Analog.Basic.Inductor i1;
Modelica.Electrical.Analog.Basic.EMF emf1;
Modelica.Mechanics.Rotational.Inertia load;
Modelica.Electrical.Analog.Basic.Ground g;
Modelica.Electrical.Analog.Sources.ConstantVoltage v;

equation
connect(v.p,r1.p);
connect(v.n,g.p);
connect(r1.n,i1.p);
connect(i1.n,emf1.p);
connect(emf1.n,g.p);
connect(emf1.flange_b,load.flange_a);

end dcmotor;

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

35

Event Handling by OpenModelica Event Handling by OpenModelica –– BouncingBallBouncingBall

>>simulate(BouncingBall,
stopTime=3.0);

>>plot({h,flying});

model BouncingBall
parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";
Real h(start=1) "height of ball";
Real v "velocity of ball";
Boolean flying(start=true) "true, if ball is flying";
Boolean impact;
Real v_new;

equation
impact=h <= 0.0;
der(v)=if flying then -g else 0;
der(h)=v;
when {h <= 0.0 and v <= 0.0,impact} then

v_new=if edge(impact) then -e*pre(v) else 0;
flying=v_new > 0;
reinit(v, v_new);

end when;
end BouncingBall;

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

36

OpenModelica Eclipse Plugin in Action OpenModelica Eclipse Plugin in Action ––
Browsing and Building OpenModelica CompilerBrowsing and Building OpenModelica Compiler

• Browsing of
Modelica/MetaMode
lica packages,
classes, functions

• Automatic building
of executables

• Separate
compilation

• Syntax highlighting
• Code completion,

Code query support
for developers

• Automatic
Indentation

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

37

Graphic Modelica Model EditorGraphic Modelica Model Editor
(From MathCore; runs on Windows, Linux)(From MathCore; runs on Windows, Linux)

• Runs together with
OpenModelica

• Free for university
usage

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

38

OpenModelica OMNotebook Electronic Notebook OpenModelica OMNotebook Electronic Notebook
with DrModelicawith DrModelica
• Primarily for

teaching
• Interactive

electronic book
• Platform

independent
• OMNotebook

Does not need
Mathematica

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

39

Interactive Contents in DrModelica Contains Interactive Contents in DrModelica Contains
Examples and Exercises from Modelica BookExamples and Exercises from Modelica Book

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

40

Cells with bothCells with both
Text and GraphicsText and Graphics

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

41

OpenModelica MetaModelica Compiler OpenModelica MetaModelica Compiler

• Supports extended subset of Modelica
• Used for development of OpenModelica

compiler in Modelica
• Some MetaModelica Language properties:

• Modelica syntax and base semantics
• Pattern matching (named/positional)
• Local equations (local within expression)
• Recursive tree data structures
• Lists and tuples
• Garbage collection of heap-allocated data
• Arrays (with local update as in standard Modelica)
• Polymorphic functions
• Function parameters to functions
• Simple builtin exception (failure) handling mechanism

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

42

Parallelism in ModelicaParallelism in Modelica

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

43

Integrating Parallelism and Mathematical Integrating Parallelism and Mathematical ModelsModels
Three ApproachesThree Approaches

• Automatic Parallelization of Mathematical Models (ModPar)
• Parallelism over the method.
• Parallelism over time.
• Parallelism over the model equation system

• ... with fine-grained task scheduling
• [Peter Aronsson’s PhD thesis June 14, 2006]

• Coarse-Grained Explicit Parallelization Using Components
• Programmer structures the application into computational components

using strongly-typed communication interfaces.
• Co-Simulation, Transmission-Line Modeling (TLM)
• Our GridModelica project

• Explicit Parallel Programming
• Providing general, easy-to-use explicit parallel programming constructs

within the algorithmic part of the modeling language.
• NestStepModelica

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

44

• Parallelism over the method.
• Parallelism over time.
• Parallelism over the model equation system

• ... with fine-grained task scheduling
• [Peter Aronsson’s PhD thesis June 14,

2006]

Automatic Parallelization of Mathematical Models Automatic Parallelization of Mathematical Models
(ModPar) (with Peter Aronsson)(ModPar) (with Peter Aronsson)

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

45

Modelica SimulationsModelica Simulations

• Simulation = solution of (hybrid) DAEs from models

• In each step of numerical solver:
• Calculate in g (and Y in h)

• Parallelization approach: perform the calculation of
in parallel
• Called parallelization over the system.

0
0

=
=

),,(
),,,(

tYXh
tYXXg

X

X

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

46

Automatic Generation of Parallel Code Automatic Generation of Parallel Code
from Modelica Equationfrom Modelica Equation--Based ModelsBased Models

1
2

3
2

2
1

4
1

5
2

6
2

7
1

8
1

5 0

0 0 0

0 010

Clustered Task Graph

1 2 4 8 16
Proc

0.5

1

1.5

2

2.5

3
Speedup

Thermofluid Pipe Application

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

47

Multiprocessor Scheduling ProblemMultiprocessor Scheduling Problem
• Given

• Task Graph G = (V,E,τ, c)
• A fixed number of processors P1,..PN

• Find for each task
• A processor assignment (or several) and a starting time such that
• Overall execution time is minimized

• Problem: Known scheduling algorithms perform bad on
very fine grained task graphs.

• Solution : Increase granularity by merging tasks

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

48

Clustering v.s. MergingClustering v.s. Merging

1
2

3
2

2
1

4
1

5
2

6
2

7
1

8
1

5 0

0 0 0

0 010

Clustered Task Graph

1
2

3
2

2
1

4
1

5
2

6
2

7
1

8
1

5 10

5 5
5

10 10
10

merg
ing

Merged Task Graph

1
2

3,6
6

2,4,5
4

7
1

8
1

5 10

10 10
10

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

49

FineFine--Grained Automatic Parallelization Grained Automatic Parallelization
SummarySummary

• A task merging algorithm using graph rewrite system
has been proposed and used

• Improved patterns to increase applicability

• Can easily be integrated in existing scheduling tools.
• Successfully merges tasks considering

• Bandwidth & Latency
• Task duplication
• Merging criterion: decrease Parallel Time, by decreasing tlevel (PT)

• Tested on examples from simulation code
• Speedup (on current examples) e.g. up to 4.5

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

50

GridModelica GridModelica –– CoarseCoarse--Grained ComponentGrained Component--Level Level
Parallel Simulation (with Kaj NystrParallel Simulation (with Kaj Nyströöm)m)

Very large system of equations
with computational models from
several domains:

• Mechanical domain

• Electrical domain

• Chemical domain

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

51

Outline of a Partitioned Model

TLM

TLM

TLM

TLM

SubSystem 1
Solver: Dassl
Stepsize:0.1

SubSystem 2
Solver: Lsode2
Stepsize:0.01

SubSystem 3
Solver: Euler
Stepsize:0.001

SubSystem 4
Solver: LAPACK
Stepsize:1.0

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

52

Transmission Line ModelingTransmission Line Modeling

• Connections in Modelica are ideal and information
exchange takes no time

• In the real world, this is not the case.

• The Idea: Let us use this time delay to decouple a model
into smaller pieces

• Instead of one large equation system, we get two (or
more). The solution to these systems is dependent only
of the previous solutions to neighbouring systems.

• Result: Many smaller systems which can be solved
independently

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

53

Transmission Line Modeling (2)Transmission Line Modeling (2)

c2

c1

v2,i2v1,i1

c1, c2 are the TLM-parameters
Ttlm is the information propagation time
Zf is the implicit impedance

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

54

AdvantagesAdvantages

• Partitioning at model level using drag and drop
• No knowledge in parallelization techniques

needed
• Reduces model stiffness
• Domain independent (the Modelica way!)
• Separate solvers and settings possible

• ... and of course, better performance

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

55

Small Example ApplicationSmall Example Application

(To SubSystem2)

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

56

NestStepModelica NestStepModelica –– Explicit Parallel Programming in Explicit Parallel Programming in
Modelica (w. Christoph Kessler and Mattias Eriksson)Modelica (w. Christoph Kessler and Mattias Eriksson)

• Introduce simple explicit parallel programming
model in Modelica algorithmic code

• BSP – Bulk Synchronous Parallel Programming
(master-slave)

• NestStep: BSP + Nested parallelism
• NestStepModelica: Modelica + NestStep runtime

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

57

BSP BSP –– Bulk Synchronous ParallelismBulk Synchronous Parallelism

BSP Model (Bulk-Synchronous Parallelism) [Valiant 1990]

• BSP computer:
abstract MIMD parallel computer (p, L, g)

• Group of p processors / threads (SPMD)
• Message passing
• Barrier synchronisation, overhead: L
• Communication data rate: g

• BSP program:
Sequence of supersteps

• t (prog) = Σstep t (step)

• Superstep:
• Max. Computation time per processor: w
• Max. Communication volume per proc.: h
• t (step) = w + h g + L

w

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

58

NestStepNestStep

• BSP
• + shared variables / arrays
• + nested parallelism

• Set of extensions to existing languages
• NestStep-Java [K.’99]
• NestStep-C [K.’00, K.’04]
• NestStep-Modelica

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

59

NestStepNestStep--ModelicaModelica: step : step statementstatement
Shared Variables
• Integer x (mem = ”shared”);

...
step();

... = ... x ...

...
x = ...

endstep();

Invariants:
• Superstep synchronicity:

• All processors of an (active) group work on the same superstep at the same time

• Superstep memory consistency:
• At entry and exit from a superstep, all copies of a shared variable

have the same value on all processors of the group.
• Within a superstep, only its local value is visible.

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

60

• Spanning tree over all processors of the group

• 2 Phases:
• ”combine” – Communication upwards
• ”commit” – Communication downwards

• Barrier synchronisation included ;-)
• Binomial trees better than d-ary trees [Sohl’06]

ImplementationImplementation IssuesIssues

0

1 4 7

P

P P P

P2 5P 6PP3

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

61

prefixi = Σj=1 aj
for i = 1,...,N

ExampleExample: : ParallelParallel PrefixPrefix SumsSums

i-1

Example: a = { 1, 3, 1, 4 }

prefix = { 0, 1, 4, 5 }, sum = 9

// Sequential in linear time:

sum := 0;

for i in 1:N loop
prefix[i] := sum;

sum := sum + a[i];

end for;

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

62

ParallelParallel PrefixPrefix SumsSums
in in NestStepModelicaNestStepModelica (1)(1)

function parPrefix "Compute prefix sums in parallel"
input Integer[:] arr1 (mem="shared", distr="block“);
output Integer[size(arr,1)] arr (mem="shared", distr="block") := arr1;

protected
parameter Integer p = nProcessors();
Integer Ndp = N div p; // Assume p divides N for simplicity
Integer[Ndp] prefix; // Local prefix array
Integer myPreSum; // Local prefix offset for this processor
Integer sum (mem="shared“); // Shared, consistent at superstep boundary
Integer i, j;

algorithm
... // the parallel code comes here, see next slide

end parPrefix;

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

63

ParallelParallel PrefixPrefix SumsSums
in in NestStepModelicaNestStepModelica (2)(2)

algorithm
j := 1; // In Modelica, arrays start at >=1
step(); // Start of BSP superstep

for i in arr loop // Iterate over local elements
prefix[j] := sum;
sum := sum + arr[i];
j := j + 1;

end for;
endstepReduce (result=sum, op=Operators.plus,

prefixVar=myPreSum);
endstep(); // End of BSP superstep
j := 1;
step();

for i in arr loop // Put prefix sum results into arr
arr[i] := prefix[j] + myPreSum;
j := j + 1;

end for;
endstep();

end parPrefix;

a:

P0 P1

P0: sum: P1: sum:

P0: prefix P1: prefix

a:

myPreSum: myPreSum:
sum: sum:

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

64

SpeedupSpeedup for for ParallelParallel prefix prefix sumssums

Xeon cluster Monolith,
NSC Linköping

[Sohl’06]

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

65

NestedNested BSPBSP--ParallelismParallelism
• Parallelism-creating constructs can be nested:

• statically: e.g. nested parallel loops
• dynamically: e.g. parallel divide-and-conquer computations

• generates massive parallelism

• In NestStep: split the group
(= fork a parallel process)
neststep(nsubgroups = 2,

mysubgroup = ...);
.....
if (thisgroup().gid==0) foo();
else bar();
.....

endneststep();

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

66

Summary NestStepModelicaSummary NestStepModelica

• NestStep Run-time
• Shared-Memory Programming on Message-Passing Systems
• Alternative to OpenMP and UPC
• Simple, deterministic memory consistency and synchronization model
• Structured parallelism
• Run-time system on top of MPI on Linux clusters [Sohl’06]:

• Scalable implementation,
up to 30x faster than OpenMP on Cluster-DSM with 32 processors

• NestStepModelica
• Expose explicit parallelism at the language level
• Encapsulated in the imperative parts of Modelica code
• Front-end (NestStep-Modelica C + NestStep RTS)

as Modelica-Metamodel extension, under development
• Plans for further targets:

• CC-NUMA
• Chip multiprocessors, e.g. IBM CELL

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

67

ConclusionsConclusions

• Finegrained automatic parallelization of models
• Now operational and give speedups. Could give more for larger

applications and if solver sould not be a single-processor bottleneck

• Coarse-grained manual component-oriented
model parallelization on the GRID
(GRIDModelica)
• Preliminary prototype started running.

• Explicit parallel programming in Modelica
algorithmic code (NestStepModelica)
• Run-time system gives speedups compared to OpenMP. Integration

with OpenModelica compiler under way.

pelabPeter Fritzson
Parallel Programming Workshop Linköping 2006 June 13

68

www.ida.liu.se/projects/OpenModelica
Download OpenModelica and drModelica

www.mathcore.com/drmodelica
Book web page, Download book chapter, DrModelica

www.modelica.org
Modelica Association

ContactContact

peter.fritzson@ida.liu.se.com
OpenModelica@ida.liu.se

