
Proc. 23rd PARS workshop on parallel systems and algorithms, Feb. 2010, Hannover, Germany.

In M. Beigl and F. Cazorla-Almeida (Eds.): ARCS’10 workshop proceedings, ISBN 978-3-8007-3222-7, VDE-Verlag Berlin/Offenbach, Germany, pp. 83–93.

Platform-independent modeling of explicitly parallel programs

Christoph W. Kessler, PELAB, IDA, Linköping University, Sweden
Wladimir Schamai, EADS Innovation Works, Hamburg, Germany
Peter Fritzson, PELAB, IDA, Linköping University, Sweden

Abstract

We propose a model-driven approach to parallel programming of SPMD-style, explicitly parallel computations. We define
an executable, platform-independent modeling language with explicitly parallel control and data flow for an abstract
parallel computer with shared address space, and implement it as an extension of UML2 activity diagrams and a generator
for Fork source code that can be compiled and executed on a high-level abstract parallel machine simulator. We also
sketch how to refine the modeling language to address more realistic parallel platforms.

1 Introduction
The current transition to many-core systems in all IT do-
mains, including desktop and embedded computing, means
a huge challenge both for programmers and program-
ming tool providers. With the notable exception of high-
performance computing platforms, the sequential von-
Neumann model has been dominating computer instruc-
tion sets and industry-relevant higher-level programming
environments for more than half a century. We have trained
(and in many sites, we still do today) many generations of
students mainly in sequential thinking about algorithms,
control and data structures. This will have to change, as se-
quential performance of computers will not increase as in
the past, and tomorrow’s programmers will face hundreds
of hardware threads that need to be coordinated properly
to speed up a single application.

However, there is a problem with the transition to many-
core programming for the masses. The von-Neumann
model of sequential computing is a universal programming
model, as it fits virtually all sequential programming lan-
guages and also the instruction sets of most processor ar-
chitectures. A program written in a sequential language
such as C needs, in general, only recompilation to be run
on a new processor type. Many-core platforms, in con-
trast, do not have a uniform parallel programming model:
Some multicore systems are symmetric multiprocessors
with shared memory, others have a NUMA or distributed
memory, or hybrid forms; some heavily rely on SIMD
computing, others feature hundreds of hardware threads
to hide memory access latency; some have hardware-
managed memory hierarchies, others require explicit data
layout and manually orchestrated bulk data transfer to and
from memory.

The lack of a universal parallel architecture model is re-
flected in the lack of a universal high-level parallel pro-
gramming model. For instance, we have threading li-
braries like pthreads to extend sequential languages, mes-

sage passing constructs, or explicitly parallel languages
like Fork, Cilk, OpenMP, NestStep, X10 or UPC, that each
work well for certain kinds of parallel architectures but are
not appropriate for others. Porting parallel algorithms, data
structures, and entire programs from one model to another
is a tedious, error-prone manual task. Given this situation
where source code of high-level (parallel) programming
languages is no longer portable, how can we write future-
proof parallel programs?

In this paper, we propose model-driven software develop-
ment as a solution to this dilemma. Model-driven devel-
opment (MDD) comprises a hierarchy of modeling lan-
guages of decreasing level of application domain speci-
ficity and increasing level of platform specificity down to
source code. Along the lines of the OMG’s Model-Driven
Architecture R�, MDD starts with a high-level platform-
independent model (PIM), which is often expressed in a
domain-specific modeling language and focuses on the
essence of a (parallel) algorithm. Subsequent refinement
steps adapt and add details on data structures, data layout,
etc., resulting in more platform-specific models (PSMs).
The PIM-to-PSM and PSM-to-PSM transitions are partly
automated model rewrite transformations that capture typ-
ical specializations in a domain or for a given platform.
From the final PSM, source code is generated. MDD in-
creases programmer productivity, as the PIM and possibly
also higher-level PSM survive changes in the platform, and
there are less bugs because much code is generated auto-
matically. Also, models may allow for better communica-
tion of design concepts and for simulation and verification
at a higher level.

While often using semi-formal modeling languages such
as UML, we advocate in this paper to use, at each level of
the modeling hierarchy, a completely executable modeling
language that contains a complete specification of behav-
ior, such that it could be simulated on an abstract machine
corresponding to its level of abstraction. In most model-
driven approaches, high-level executable models are very

restrictive, such as state machines for modeling sequen-
tial reactive behavior, work flow for modeling control flow
with simple concurrency, or synchronous data flow, which
usually works well for the given application domain. In
contrast, we target (also) general-purpose application do-
mains, therefore we provide general control and data flow
modeling.

In this paper, we describe our proposal for a top-level mod-
eling language, which we call ParML, for explicitly par-
allel modeling language. ParML provides a shared ad-
dress space and full-fledged modeling of both sequential
and explicitly parallel control and data flow. For practical
reasons, namely in order to use existing UML editors and
tools, we base ParML on UML2 activity diagrams and give
its implementation as a UML2 profile. ParML also has
a textual modeling view, which corresponds to the high-
level shared-memory parallel programming language Fork
[13, 8].

ParML is executable: It could, for instance, be simu-
lated by a model interpreter, and we also describe how
we generate Fork source code from it that can be com-
piled and executed on the PRAM simulator pramsim [8].
But this is only a first step. The main purpose of ParML
will be to serve as a starting point for further refinement
to PSMs e.g. to platforms with advanced memory hierar-
chies, explicit communication and/or relaxed synchroniza-
tion. We sketch a first refinement step towards a PSM for
a bulk-synchronous parallel (BSP), partitioned global ad-
dress space (PGAS) platform.

In this way, executable models and model transformation
specifications could become the new ”source code” of the
next decades.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces our new modeling elements for SPMD-
parallel computations. Section 3 presents an example. Sec-
tion 4 shows how to extend the basic, shared-address-space
parallel modeling language for more platform-specific
modeling. Section 5 describes how the new modeling el-
ements are realized as UML metamodel extensions and
presents our Fork code generator. Section 6 discusses re-
lated work, and Section 7 concludes.

2 Modeling elements for SPMD-
parallel computations

Activity diagrams in UML 2.0 are based on Petri nets [19],
i.e., they are concurrent control and data flow graphs at
various levels of detail—they may even be broken down to
elementary operations in a program, although it is not nec-
essary and not common to model everything graphically
down to the statement level; in order to obtain an exe-
cutable model, it is sufficient to encapsulate pseudocode
or source code in action nodes to describe their behavior.

The activity diagram is, roughly speaking, the dual to a
UML statechart diagram: Nodes correspond to actions,

such as computations, data access, or communication, thus
state transitions, while edges correspond to control and
data flow. Activities are composite actions that fold mul-
tiple actions or activities that are single-entry, single-exit
regions of control flow (ignoring exception and error ex-
its for now). For brevity, we will refer to ”actions or ac-
tivities” (thus explicitly including folded activities) by the
term acts1. The semantics of activity diagrams is defined
by token passing along edges, as known from Petri nets.
While data flow edges alone usually imply only a partial
execution order among the acts, the control flow edges can
additionally constrain the execution order. For more infor-
mation, we refer to the UML 2.0 Superstructure document
on OMG’s web site (www.omg.org) and the book by Rum-
baugh et al. [20].

2.1 Parallel control flow

In the following subsections, we define extended activity
diagrams where we statically classify control flow edges
into sequential (Figure 1(a)) and parallel (Figure 1(b))
edges. We draw parallel control flow edges by double ar-
rows to visually distinguish them from sequential control
flow. Whereas a sequential control flow edge is traversed
by a single token at execution, a parallel edge will be tra-
versed by a group of p tokens (threads). A parallel control
flow edge could thus be regarded as a “flat-band cable”,
a bundle of p wires each corresponding to an ordinary se-
quential control flow edge. This width p of a parallel con-
trol flow edge, which may symbolically annotate the edge
as shown e.g. in Figure 1(f), needs not be static or explic-
itly given but it will be determined from the run-time con-
text in the constructs where parallel control flow originates,
that is, where a parallel activity starts (parallel initial node,
Figure 1(c)) or a thread group is split into subgroups (par-
allel fork node, Figure 1(f)). We require that an extended
activity diagram only have one (parallel) initial node and
one (parallel) final node (Figure 1(d)).

The only constructs that affect the width of parallel con-
trol flow edges are parallel forks and parallel joins, see
Figures 1(f) and (g). In these cases, the accumulated
widths of ingoing parallel edges must equal the accumu-
lated widths of outgoing parallel edges. In contrast to se-
quential fork and join nodes, no new threads are spawned
at a parallel fork and none disappear at a parallel join; in-
stead, the existing threads are simply regrouped.

Tokens (threads) may proceed across a barrier synchro-
nization point (Figure 1(e)) only if all tokens of a group
have arrived there. Note that parallel fork and join (Fig-
ures 1(f–g)) and the exit of a parallel activity (Figure 1(d))
imply barriers as well.

In order to reduce model complexity especially where we
only have standard UML editor support, we require that

1The corresponding term is apparently missing in the UML2 specifi-
cation; terms for equivalent entities at programming language level such
as ”region” have other meanings or restrictions in UML2.

(f)

p

p1 p−p1

(g)(a) (b) (c) (d) (e)

Figure 1: Constructs for parallel control flow in extended activity diagrams: (a) Sequential control flow. (b) Parallel
control flow. (c) Entry of parallel activity. (d) Exit of parallel activity. (e) Barrier synchronisation point. (f) Parallel fork
(split thread group). (g) Parallel merge (merge thread groups).

(d)(a) (g)

<<parallelControlFlow>>

<<parallelJoin>>

<<parallelControlFlow>>
<<parallelControlFlow>>

(c) (f)(e)

<<barrier>>

(b)

<<parallelStart>>

<<parallelExit>>

<<parallelControlFlow>>

<<parallelControlFlow>>

<<parallelControlFlow>>

<<parallelControlFlow>>
<<parallelControlFlow>>

<<parallelFork>><<parallelControlFlow>>

Figure 2: The parallel control flow constructs of Figure 1, current implementation using basic UML2 notation only.

extended activity diagrams defining serial activities con-
tain only serial control flow edges and that those defining
parallel activities only contain parallel control flow edges.
Hence, if a serial activity is to be integrated in a parallel
control flow (which means that it will be executed by only
one of the threads of an executing group while the others
wait), it has to be defined out-of-line in a separate extended
activity diagram or source code function.

2.2 Parallel actions and activities

Likewise, acts are classified into sequential and parallel
ones, where the parallel acts are shown as doubly framed
rounded boxes or as <<parallel>> stereotyped act
boxes with standard UML2 editors, see Figure 4(a).

Sequential control flow entering a parallel act results in
multiple tokens (threads) appearing in the parallel act’s
start node; the number is usually derived from the run-time
context. Likewise, sequential control flow leaving a paral-
lel act means that all tokens of the parallel act are waited
for to reach its exit node, and all but one thread is continu-
ing along the edge while the others are suppressed. Paral-
lel control flow entering and leaving a sequential act means
that all but one token skip the act and wait at its end for the
one executing it. Apart from these switching cases, the par-
allel acts nested within a parallel activity have one entering
and one leaving parallel control flow edge each.

As in plain UML, opaque actions can contain arbitrary
source code, in our case plain C code for sequential opaque
actions and Fork [8, 13] source code for parallel opaque ac-
tions. This allows to switch to textual modeling whenever
the use of graphical elements would be too cumbersome.

We also introduce parallel conditions, shown as doubly-
framed rhombs to distinguish from their sequential coun-
terparts. It may happen that the same condition evaluates
to different boolean values for different threads, which im-
plies group splitting. The subgroups will be reunited again

at the corresponding parallel merge node, proper nesting
assumed.

Parallel acts can be composed serially and in parallel, see
Figure 3(a) and (b). For serial composition, the widths of
the composed acts and of the control flow arrows must be
the same. Parallel composition includes a parallel fork and
a parallel join; the accumulated number of threads execut-
ing the parallel sub-acts equals the number of threads that
enter and leave the compound parallel activity.

There are two basic ways of breaking down a parallel
act into its constituent sequential tasks. One method is
to construct the task graph explicitly. For a small, stati-
cally known constant number of threads an activity could
be unfolded at the model level using swim lanes, see Fig-
ure 3(c). To unfold a parallel activity for an arbitrary num-
ber of threads, we suggest the notation in Figure 3(d), a
parallel iterator over equally defined sequential tasks that
are mapped to the executing thread group (work sharing).

Generally, the modeler has lots of design choices in the
spectrum between two primary styles: (1) to decompose a
parallel act early into its sequential threads and then mainly
use sequential modeling for each thread, or (2) to keep ac-
tivities and flows bundled as long as possible and therefore
mainly use parallel acts. While the former variant is more
convenient to integrate sequential legacy models, we con-
sider the latter one a better modeling style because it tends
to reduce model complexity and improve analyzability e.g.
of performance.

2.3 Data flow

Acts have input pins and output pins for data read and writ-
ten in the act. They are shown as rectangular symbols at-
tached to the act box, see Figure 4(b). An act can be ex-
ecuted when there is a control token and there are (data)
tokens on all input pins. Execution removes these tokens
and issues tokens on all output pins.

(a) (b) (c) (d)

Figure 3: Composing and decomposing parallel acts in extended activity diagrams: (a) Serial composition. (b) Parallel
composition. (c) Unfolding a parallel act by its constituent sequential threads. (d) Unfolding a parallel loop.

<<parallel>> B: DoubleA: Double
<<block>> <<block>>

<<block>>C: Double

(c)(b)

B: DoubleA: Double

C: Double

Vector_Addition(A,B,C) Vector_Addition(A,B,C)

(a)

Figure 4: Elementary parallel activities (a) Parallel act, enhanced graphic symbol and UML stereotype notation. (b) We
use a simplified symbol (shaded rectangle) for parallel (array) pins. (c) Extending the pins by distribution constraints for
a PSM.

Note that the control flow entry and exit points of an action
can be seen as a special sort of data flow, a triggering input
that fully serializes all acts for a thread. To distinguish
these from data flow entries and exits (data pins) of action
boxes, we do not show pins for control flow edges. Data
pins will bind to values (much like formal parameters in
procedures called by value) and can thus be connected by
data flow edges.

We mark data flow edges that bundle vector-valued data
flow (i.e., arrays, array sections, or other iteratable collec-
tions of data that allow parallel random access) between
acts with blue wide arrows, see Figure 5(d), and call them
parallel data flow edges.

Pins may be bundled in a similar way as data flow edges;
parallel pins (blue) represent vector-valued operands that
are accessible by all threads of a thread group executing
the act, see Figure 4(b). The width of a pin must match the
width of the edge(s) attached to it.

When modeling under the static single assignment (SSA)
requirement, only one single value can flow into any in-
put pin. Where necessary, multiply assigned values must
be combined in a SSA phi-node first (see Figure 5(c)).
This also holds accordingly for parallel edges, where we
provide parallel phi nodes that merge values stemming
from (potentially) different definitions on an element-by-
element basis (see Figure 5(d)). The resulting array data
flow is thus very similar to Array-SSA form [14]. Pseu-
docode or source code specified within a (parallel) opaque
action may locally deviate from Array SSA form, by ac-
cessing shared variables, arrays, and objects implicitly by
their name, as long as such multi-assignment code is prop-

erly encapsulated. Array concatenation, shown in Fig-
ure 5(f), is a special case of an array-phi with a unique
static predecessor for each section of an array.

In order to better distinguish between control and data flow
edges, we reserve black color for control flow edges while
using shaded or colored arrows for data flow edges, where
the choice of any specific color (default: blue) is up to the
modeler—it serves as a kind of comment to enhance read-
ability.

Usually, ParML modeling starts with specifying control
flow, and data flow is added afterwards, but also the oppo-
site order is possible. The control flow view and the data
flow view of ParML models can be considered separately,
in order to reduce complexity.

3 Example: Parallel merge sort
Figure 6 shows the control flow view of the extended
activity diagram for a parallel merge sort implementa-
tion. It is well suited to explain the basic structure of
the algorithm, because the two parallel recursive calls to
ParMergeSort are shown side-by-side, and not in some
serial order as in almost all parallel programming lan-
guages with text-based syntax, as e.g. in Figure 7. The in-
tegrated view with data flow can be seen in Figure 8 (there
using standard UML notation, though).

Given the complete model as in Figure 8, generating source
code e.g. in the shared memory language Fork [13, 8] (an
extension of C for SPMD shared-memory parallel com-
puting), such as the one shown in Figure 7, is straightfor-
ward, because the functionality in ParML is a subset of

(a)

φ

(d)

φ

n

n/2 n−n/2

n−n/2

n

n/2

(e) (f)(b) (c)

Figure 5: Constructs for parallel control flow (black) and data flow (blue) in extended activity diagrams: (a) Conditional
branch of parallel control flow. (b) Merge of parallel control flow. (c) Scalar phi-node for merging scalar data flows. (d)
Array phi-node for (element-wise) merging parallel data flows. (e) Array splitting. (f) Array concatenation.

call seqSort

p/2 p−p/2

p

call ParMerge

call ParMergeSortcall ParMergeSort

p=1?

ParMergeSort

Figure 6: Extended activity diagram for Parallel Merge
Sort, showing the control flow view only.

what Fork supports at the language level. Using the Fork
compiler and SBPRAM simulator [8], the correctness of
the ParML model can be tested immediately on the gener-
ated executable code.

4 Towards platform-specific parallel
models

In an approach to platform-specific modeling for NUMA
or distributed memory systems, which are likely architec-
tures for future massively parallel many-core chips, we
introduce array distributions as annotations to edges and
pins, see Figures 9(a) and 4(c). The distribution of flow-
ing data is thus a static property of a modeling element (a
kind of type extension). Explicit data redistribution actions
are marked with the notation in Figure 9(c). The array
partition owned by a thread can be extracted as shown in
Figure 9(b). Also, explicit collective communication oper-
ations such as reductions in Figure 9(d) can be specified.
Acts may be grouped into a BSP (bulk-synchronous par-
allel) superstep, with global communication/redistribution
happening at its end, using the notation in Figure 9(f).

Adding distribution, either manually or by semiautomatic
transformation rules, to a ParML PIM leads to a PSM,
which could be optimized separately (e.g. by aligning data
distributions or by merging independent subsequent BSP
supersteps) and from which source code in a partitioned
global address space (PGAS) language such as NestStep,
X10 or UPC, or even message passing or hybrid code could
be generated. We leave the details for future work and

only briefly motivate the idea for the case of the equiv-
alent transition from the PIM level (which basically cor-
responds to the PRAM programming model, represented
e.g. by the Fork language) to the parallel programming
language NestStep [12, 9] for the bulk-synchronous par-
allel (BSP) model. Due to similarity of language elements,
it is (up to a certain degree) possible to extend/adapt a
given Fork source program to obtain a NestStep source
program for the same problem. As an example, Figure 10
shows NestStep source code for bulk-synchronous paral-
lel merge sort, corresponding to the Fork source code in
Figure 7. The major new constructs to be added are:
BSP supersteps (marked by step and neststep state-
ments) that control both synchronicity and memory con-
sistency; array distribution qualifiers (such as </> for the
block-wise distribution of a shared array across the declar-
ing group of threads/processes); and update qualifiers for
shared variables written concurrently in BSP supersteps
(such as <+> for combining of concurrent writes by global
summation, or <=> for no combining of equal-valued con-
current writes). The remaining constructs such as group
splitting (neststep) work similarly to those in Fork and
differ mainly in syntax.

A similar refinement step could have been done using
the corresponding graphical elements in ParML, such as
adding elements to array data flow ports and arrows that
indicate array distribution. Figure 11 gives an overview of
the different model elaboration and transformation steps
discussed.

A more general treatment of the transition from PIM to
PSM models in ParML or its textual language counterparts
is beyond the scope of this paper and left for future work.

5 Realization as UML meta-model
extensions and Fork code genera-
tor

As UML editor and modeling tool, we use Papyrus [4],
which is an Eclipse plug-in. Papyrus is an open-source tool
with restricted graphical features. We have implemented
the above described new elements for extended activity di-
agrams as a UML profile, see Figure 12. An editor sup-
porting ParML’s extended graphical notation such as wide
or shaded arrows, doubly framed boxes etc., is an issue
of future work. For now, we use UML standard graphical

extern void seqSort(float A[], float B[], int n);
extern sync void ParMerge(sh float A[], sh int n);

sync void ParMergeSort(sh float A[], sh float B[], sh int n)
{

sh int p = groupsize(); // query run-time context to assign p
if (p==1) {

seq {
seqSort(A, B, n);

}
}
else {

int me = get_rank();
if (me < p/2) { // parallel fork with 2 subgroups

ParMergeSort(A, B, n/2);
} else {

ParMergeSort(A+n/2, B+n/2, n-n/2);
}
ParMerge(B, n/2, B+n/2, n-n/2);

}
}

Figure 7: Parallel Merge Sort in Fork source code.

compiler

Low−level
source code

Fork
source code

generate

visualizeModel
elaboration

generate

visualize

simulator
PRAM

NestStep
source code

ParML
(base elements)

 specific elements)

ParML
 with BSP−platform−

High−level
PSM (BSP)
level

Target
level

level
PIM

GRAPHICAL MODELING TEXTUAL MODELING

NestStep

Figure 11: Overview of graphical and textual modeling
languages discussed in this paper. Model elaboration and
transitions between PIM and PSM level require manual
work (bold arrows) while the remaining transitions can be
fully automated.

notation with stereotypes as concrete syntax. Switching lo-
cally from graphical to textual notation is always possible
by using OpaqueAction elements that can contain arbitrary
source code snippets. Vice versa, switching from textual
to graphical notation can be done via Fork function calls
whose target is defined as an extended activity diagram.

As a proof of concept we implemented a simple proto-
type that generates Fork source code as shown in Figure 7
from the ParML model. Generating Fork source code from
ParML (i.e., its base modeling language without platform-
specific annotations) is relatively straightforward because
of the strong similarity between ParML modeling elements

Figure 12: Excerpt of the implemented UML metamodel
extensions.

and Fork language constructs. For instance, ParML acts
correspond to Fork statements, pins to operands and results
of operations or calls, and data flow arrows to variables and
temporaries. Likewise, it would not be difficult to gener-
ate ParML diagrams from Fork source code; for instance,
this could be realized by running a graphical visualizer on
a Fork compiler’s high-level intermediate representation2.

The code generator is implemented using the Acceleo [2]
Eclipse plug-in. It generates code based on the control flow
defined in the ParML model (up to now, we use dataflow
only for descriptive modeling in our example).

2The existing Fork compiler [8, 13] is a one-pass compiler that ex-
poses only a low-level intermediate representation but no abstract syntax
tree or high-level IR and no SSA form.

Figure 8: Screenshot of the Papyrus tool, showing the ParMergeSort activity, with data flow arrows in blue color. The
model is not in SSA mode, as there is no array phi-node explicitly merging the array values arriving for output parameter
B along different control flow paths.

The code generator prototype assumes a valid model that
respects the following constraints (typically implemented
in a UML profile using OCL):

� An activity has exactly one initial node with exactly
one outgoing control flow.

� Any OpaqueAction has exactly one outgoing control
flow.

� Decision and merge nodes, as well as fork and join
nodes, are properly nested (i.e., the counterpart can
be found by following the control flow).

� One of the outgoing control flows of a decision node
has else as guard (i.e., condition).

� OpaqueActions have Fork source code (statements or
calls) in their bodies

� Any other text annotations in the model (such as the
guards of control flows) are based on Fork syntax.

The basic algorithm for generating structured code (i.e.,
with properly nested if/else blocks etc.) is as follows:

1. Generate a Fork function header for the activity de-
fined in the given model.

2. Find the initial node of the activity.

3. Follow the outgoing control flows and recursively
generate code for the next act, depending on its type
(such as decision node, fork, OpaqueAction, etc.)
based on templates, respectively:

(a) OpaqueActions: output the bodies (Fork code).

(b) Decision nodes / merge nodes are translated into
if/else code. The conditions are based on the
specified guards (Fork code). The number of
if/elseif blocks is determined by the number of
the outgoing control flows. The corresponding
merge node needs to be found in order to deter-
mine the conditional blocks and to later continue
with code generation after the if/else block (this
avoids replication of code following the merge

node). Then, code for the if/else blocks can be
generated recursively.

(c) Fork/join nodes with two subgroups are trans-
lated into if/else code with a private branch con-
dition (for more than two subgroups, the fork
statement of Fork should be used). The number
of if/elseif blocks is determined by the number
of the outgoing control flows. The conditions
of the if/elseif blocks are deduced from the fork
specification (kind, divider). After the if/else
block is generated, the corresponding join node
is found and the code generation is resumed.

(d) Final node: do nothing (end of the control flow).

6 Related work
Pllana and Fahringer [18] model the control flow of shared
memory and message passing computations by UML
stereotypes (metamodel extensions) that are very close to
the respective API’s predominant in high-performance par-
allel computing, OpenMP and MPI. Hence, their resulting
models can be viewed as platform-specific models. Their
main area of application is performance analysis. They
use the activity diagram for modeling control flow, but do
not graphically distinguish between parallel and sequen-
tial control flow. Sets of activities are composed to pro-
cesses using replication (for SPMD) or swim lines in ac-
tivity diagrams (for general MIMD systems). The collabo-
ration diagram is used to model logical process topologies
such as meshes and trees. Finally, processes are mapped
to physical topologies using the deployment diagram. Par-
allel data flow is not modeled explicitly; e.g. the type of
communication pattern for data distribution and the vol-
ume of communicated data must be specified explicitly
by the modeler. Activities for shared memory and mes-
sage passing can be mixed, which allows to model multi-
(programming)model applications for hybrid parallel plat-
forms such as SMP clusters.

Labbani et al. [15] describe the introduction of explicit
control flow (state charts) and data parallel data flow (com-
ponent diagrams) in the Gaspard2 application UML meta-
model, which targets synchronous reactive systems for sig-
nal and image processing applications. A code generator
for OpenMP is described by Taillard et al. [22].

Scherger et al. [21] describe the BSP model in UML,
using the sequence diagram to model individual parallel
processes and their message passing interactions, i.e., the
number of executing processes is hardcoded in the model.

The Nimrod/K system [1] enables graphic specification of
massively parallel dynamic grid workflows based on the
graphic dynamic dataflow tool in Ptolemy [6].

Workflows or business process modeling can be done
graphically at a high abstraction level by domain-specific
tools such as [16], based on the high level Modelica model-
ing language [7], which can be compiled to parallel archi-

tectures e.g. at a coarse grained level using an annotation-
based approach [17], or a parallel algorithmic approach to
a Modelica dialect of NestStep [10].

7 Conclusion
We have presented ParML, a platform-independent graph-
ical modeling language for explicitly parallel SPMD com-
putations based on UML activity diagrams. A prototype
of ParML is implemented as a UML2 profile extending
modeling elements of UML2s activity diagrams. ParML
models can be used to generate Fork source code for early
testing and as a starting point for platform-specific model-
ing, e.g. towards distributed memory systems.

While the proposed graphical syntax may be a matter of
taste, we strongly advocate the idea of model-driven paral-
lel programming, starting from a high-level but executable
and explicitly parallel modeling language for an abstract
parallel platform model such as the PRAM at the highest
modeling level (PIM). Due to the semantic equivalence of
ParML’s modeling elements and corresponding Fork lan-
guage constructs, the PRAM language Fork can be con-
sidered as just an alternative (text-based) syntax to ParML
and thus as another PIM-level modeling language for par-
allel programs. Indeed, graphical modeling is not suitable
for specifying every aspect of a parallel program’s behav-
ior. In practice, graphical and textual modeling will com-
plement each other. For instance, it is possible (and often
most reasonable) to model only a part of a program’s be-
havior, for instance its control flow as in the example of
Figure 6, graphically with ParML and fill in the remaining
aspects in the generated source code skeleton.

The (nearly) one-to-one correspondence between ParML
elements and Fork language constructs would even allow
for automated round-trip engineering (see e.g. [5]), such
that also manual edits or transformations that are applied
to the generated source code are consistently propagated
back to the modeling level.

The modeling layer also allows for PIM-level model trans-
formations such as model elaboration before source code
or PSM generation. An example is the conversion from a
dataflow model to a model explicitly expressing in-place
computation, as we had shown in Figure 13.

The implementation of the suggested graphical modeling
elements in ParML with existing UML syntax was moti-
vated by convenience to have a quick prototype; for a bet-
ter leveraging of the graphical elements, we would need
model editors with richer graphical capabilities.

Future work will focus on model transformations for
mapping ParML (semi-)automatically to more platform-
specific models, on combining ParML with both textual
and graphical domain-specific languages, by adding mod-
eling support for parallel component frameworks (e.g.
skeletons [3] or self-tunable components [11]), on model-

level optimizations, and on automatic code generation
from platform-specific ParML.

Acknowledgements: This research was partially funded by SSF
ePUMA and Itea2 OPENPROD.

References

[1] David Abramson, Colin Enticott, and Ilkay Altinas.
Nimrod/K: towards massively parallel dynamic grid
workflows. In Proc. Supercomputing Conf., Austin,
Texas. IEEE, November 2008.

[2] Acceleo. Acceleo code generator for MDA.
http://www.acceleo.org/pages/home/en, 2009.

[3] Markus Ålind, Mattias Eriksson, and Christoph
Kessler. Blocklib: A skeleton library for Cell Broad-
band Engine. In Proc. ACM Int. Workshop on Multi-
core Software Engineering (IWMSE-2008) at ICSE-
2008, Leipzig, Germany, May 2008.

[4] CEA. Papyrus for UML, web site.
www.papyrusuml.org, 2009.

[5] Mikhail Chalabine and Christoph Kessler. A for-
mal framework for automated round-trip software en-
gineering in static aspect weaving and transforma-
tions. In Proc. ACM SIGSOFT/IEEE 29th Int. Conf.
on Software Engineering (ICSE-2007), May 2007.

[6] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity—the Ptolemy approach. Pro-
ceedings of the IEEE, 91(2), January 2003.

[7] Peter Fritzson. Principles of Object Oriented Model-
ing and Simulation with Modelica 2.1. Wiley-IEEE
Press, February 2004.

[8] Jörg Keller, Christoph Kessler, and Jesper Träff.
Practical PRAM Programming. Wiley, New York,
2001.

[9] Christoph Kessler. Managing distributed shared ar-
rays in a bulk-synchronous parallel environment.
Concurrency – Pract. Exp., 16:133–153, 2004.

[10] Christoph Kessler, Peter Fritzson, and Mattias Eriks-
son. NestStepModelica – mathematical model-
ing and bulk-synchronous parallel simulation. In
Bo Kågström, Erik Elmroth, Jack Dongarra, and
Jerzy Wasniewski, editors, Applied Parallel Com-
puting – State-of-the-Art in Scientific and Parallel
Computing (PARA 2006, Umea, Sweden, June 2006),
pages 1006–1015. Springer LNCS vol. 4699, 2007.

[11] Christoph Kessler and Welf Löwe. A framework for
performance-aware composition of explicitly paral-
lel components. In Proc. ParCo-2007 conference,
Jülich/Aachen, Germany, Sep. 2007. In C. Bischof et

al. (eds.): Parallel Computing: Architectures, Algo-
rithms and Applications, Advances in Parallel Com-
puting Series, Volume 15, IOS Press, pages 227–234,
February 2008. Also published as: NIC Series Vol.
38, Dec. 2007.

[12] Christoph W. Keßler. NestStep: Nested Parallelism
and Virtual Shared Memory for the BSP model. The
J. of Supercomputing, 17:245–262, 2000.

[13] Christoph W. Keßler and Helmut Seidl. The Fork95
Parallel Programming Language: Design, Implemen-
tation, Application. Int. J. Parallel Programming,
25(1):17–50, February 1997.

[14] Kathleen Knobe and Vivek Sarkar. Array SSA form
and its use in parallelization. In Proc. 25th ACM SIG-
PLAN Symp. Principles of Programming Languages,
pages 107–120, 1998.

[15] Ouassila Labbani, Jean-Luc Dekeyser, Pierre Boulet,
and Eric Rutten. Introducing control in the Gaspard2
data-parallel metamodel: Synchronous approach. In
Proc. Int. Workshop MARTES: Modelling and Anal-
ysis of Real-Time and Embedded Systems (with Mod-
els/UML 2005), Montego Bay, Jamaica, October
2005.

[16] Hannu Niemistö, Teemu Lempinen, and Tommi
Karhela. System dynamic business process
modelling and simulation tool based on Open-
Modelica. In Proc. 2nd OpenModelica An-
nual Workshop, Linköping, Sweden, Feb. 8, 2010
(www.openmodelica.org), 2010.

[17] Kaj Nyström and Peter Fritzson. Parallel simulation
with transmission lines in Modelica. In Proc. 5th Int.
Modelica Conference (Modelica’2006), Vienna, Aus-
tria, September 2006.

[18] Sabri Pllana and Thomas Fahringer. UML based
modeling of performance oriented parallel and dis-
tributed applications. In Proc. 2002 Winter Simula-
tion Conference, pages 497–505, 2002.

[19] Wolfgang Reisig. Petri Nets, An Introduction.
Springer, 1985.

[20] James Rumbaugh, Ivar Jacobson, and Grady Booch.
The Unified Modeling Language Manual, Second
Edition. Addison-Wesley, 2004.

[21] M. Scherger, J. Baker, and J. Potter. Using the UML
to describe the BSP model of parallel computation. In
Proc. Int. Conf. Parallel and Distributed Processing
Technology and Applications, 2002.

[22] Julien Taillard, Frederic Guyomarch, and Jean-Luc
Dekeyser. OpenMP code generation based on a
model driven engineering approach. In Proc. High-
Performance Computing and Simulation Conference,
2008.

(d)(b) (c)(a)

<<owned>>

<<cyclic>><<block>>

(e)

Figure 9: Constructs for parallel data flow and collective communication in extended activity diagrams, tailored towards
distributed memory platforms and generation of code in a partitioned global address space language: (a) Annotation of
a parallel data flow edge, indicating storage in a block-wise distributed shared array. (b) Extraction of the thread-owned
(local) partition of a cyclically distributed shared array. (c) Data redistribution. (d) Parallel reduction of a shared array
(global sum). (e) BSP superstep. For (a)–(c), parallel control flow arrows are not shown. For (c) and (e), data flow pins
and arrows are not shown.

sh<=> float weight[] = { 0.5, 0.5 };

extern void seqSort(float A[], float B[], int n);
extern void BSParMergeInPlace(sh float B[]</>, sh<=> int n);

void BSParMergeSort(sh float A[]</>, sh float B[]</>, sh<=> int n)
// A, B are block-wise distributed shared arrays

{
if (thisgroup_size()==1)

seqSort (owned(A), owned(B), n); // works on local arrays
else {

neststep (2, weight) { // nested superstep, group splitting
if (@==0) BSParMergeSort(); // first subgroup
else BSParMergeSort(); // second subgroup

}
step

BSParMergeInPlace(B, n);
}
}

Figure 10: Bulk-Synchronous Parallel Merge Sort in NestStep source code.

Figure 13: Screenshot of the Papyrus tool, showing the ParMergeSort activity after manually adapting the data flow
towards the ParMerge call activity for in-place merging. The array data flow join element enforces that both subarrays
are placed in a common array that becomes input to ParMerge. Explicit copying for this purpose can be avoided if the
placement constraint is backwards propagated to make the dataflow predecessor activities write their result directly into
the right destination locations.

