
Balancing CPU Load for Irregular MPI
Applications

Jörg KELLER a, Mudassar MAJEED b and Christoph W. KESSLER b

a FernUniversität, 58084 Hagen, Germany
b Linköpings Universitet, 58183 Linköping, Sweden

Abstract. MPI applications typically are designed to be run on a parallel machine
with one process per core. If processes exhibit different computational load, either
the code must be rewritten for load balancing, with negative side-effects on read-
ability and maintainability, or the one-process-per-core philosophy leads to a low
utilization of many processor cores. If several processes are mapped per core to in-
crease CPU utilization, the load might still be unevenly distributed among the cores
if the mapping is unaware of the process characteristics.

Therefore, similarly to the MPI_Graph_create() function where the program
gives hints on communication patterns so that MPI processes can be placed favor-
ably, we propose a MPI_Load_create() function where the program supplies infor-
mation on the relative loads of the MPI processes, such that processes can be fa-
vorably grouped and mapped onto processor cores. In order to account for scalabil-
ity and restricted knowledge of individual MPI processes, we also propose an ex-
tension MPI_Dist_load_create() similar to MPI_Dist_graph_create(), where each
individual MPI process only knows the loads of a subset of the MPI processes.

We detail how to implement both variants on top of MPI, and provide experi-
mental performance results both for synthetic and numeric example applications.
The results indicate that load balancing is favorable in both cases.

Keywords. Load balancing, MPI applications

Introduction

The Message Passing Interface (MPI) [9] is a widely used standard for programming
massively parallel machines. Typically, an MPI application assumes that each of its pro-
cesses incurs a similar load on the core it runs. A second assumption, resulting from
the first one, is that each MPI process should run on a core of its own for maximum
performance by giving the application maximum control over the resources. There are
tools such as SCALASCA [6] that aid users to detect imbalances that manifest e.g. as
differing waiting times of processes at a barrier (or other collective operation), so that
users can change their code to re-establish the assumptions above. There are even efforts
to automate such change for applications with domain decomposition by adjusting the
borders of the decomposition [2].

However, changing an existing MPI application to balance computational load often
involves a lot of work and leads to unnatural and complicated code that is hard to debug
and maintain. If the different load levels persist during a whole program run, and could



be communicated from the application to the MPI system, then several lighter processes
could be mapped onto one core without negative effect on the runtime1, and the appli-
cation could — without costly changes — either run with the same performance on a
smaller machine, or a larger application could be run on the current machine. This aspect
gains some importance with the introduction of multicore processors that enable com-
pact parallel machines of medium size. For example, if half of the MPI processes have
computational load 1 each, and half of the MPI processes have computational load 0.1
each, then the application can be run on p = 0.55 · n cores with the same performance,
if 10 lighter processes get packed on one core.

An example of the application giving hints about its behavior to the underlying
MPI system is the function MPI_Graph_create() [9], where the processes specify
a communication graph with relative edge weights. The MPI system then has the chance
to reorder the ranks of the MPI processes such that processes that frequently communi-
cate larger volumes of data are placed closer together in a machine with a hierarchical
communication network. In OpenMP [3], the pragmas represent programmer knowledge
to the compiler, yet cannot incorporate information only available at runtime, such as
problem size or characteristics of input data that influence computational load among
processes. Multicore operating systems such as Linux migrate processes in the face of
imbalances, yet MPI applications normally span multiple operating system instances. In
[1], [4] and [7], dynamic load balancing in MPI applications by process migration and/or
usage of threads is presented. This resembles techniques from dynamic scheduling and
process migration in grid computing, and deeply cuts into the MPI implementation, while
our goal is to achieve load balancing with minor interference of the underlying system.
In [5], load balancing for divide-and-conquer MPI applications was presented, while we
focus on applications with arbitrary communication patterns but stable computational
loads. HeteroMPI [8] targets load balancing of MPI applications on heterogeneous ma-
chines by using performance models provided to the system. Our approach is useful also
for homogeneous systems, which still present the mainstream in the medium range.

Therefore, we propose a function similar to MPI_Graph_create(), where the
n MPI processes supply an array of n relative computational loads, and create a new
communicator where the ranks of the processes are reordered such that CPU loads are
balanced. For similarity, we name this function MPI_Load_create(). Despite the
naming, it need not necessarily be integrated into the underlying MPI system, as it can
be implemented with standard MPI functions, and thus can be seen on top of MPI. Re-
ordering ranks of MPI processes for load-balancing is a typical task assignment problem
and thus is NP-complete. As we solve it during runtime, we cannot afford expensive
algorithms and thus use a simple heuristic.

Note that MPI_Graph_create() and our function both perform a reordering of
ranks, but no process migration. However, the typical place to execute either function is
directly after calling MPI_Init(), i.e. at program start, so that the MPI processes did
not yet produce state such as data arrays or intermediate results that would have to be
migrated. Hence, the rank reordering is sufficient. As thus, our function does not intend
to provide fully dynamic load balancing at runtime, but ensures load balancing at pro-
gram start. In contrast to static load-balancers that act at compile-time, the application
at program start has some knowledge about the actual data set (for example by getting

1Note that for simplication we assume here that memory consumption of a process is proportional to its
computational load. Otherwise, negative cache effects and additional paging might influence runtime.



core 0 · · · 7 8 · · · 15
0 · · · 7 8 · · · 15

16 · · · 23 24 · · · 31
ranks 32 · · · 39 40 · · · 47

48 · · · 55 56 · · · 63

core 0 · · · 7 8 · · · 15
0 · · · 7 8 · · · 15

16 · · · 23 24 · · · 31
ranks 32 · · · 39 40 · · · 47

48 · · · 55
56 · · · 63

Figure 1. Initial round-robin rank orders for two process distributions

the data set size from the command line parameters), which can be used to provide ap-
propriate computational weights. If an application would consist of several phases with
different load behaviour, then a re-assignment is possible at runtime, however, the pro-
grammer would have to provide the data migration. However, this is also the case for
MPI_Graph_create() and thus not considered here.

Obviously, to enable a load balancing as just described, an MPI application with
n processes must be started on p cores with n > p, and typically n being an integral
multiple of p, at least in the absence of dynamic MPI process creation.

In the following, we will explain how such a function can be implemented in an MPI
system. We will also discuss an extension to provide scalability to large applications and
systems. There it is neither feasible nor practical that each MPI process supplies an ar-
ray of size n. In similarity to the MPI function MPI_Dist_graph_create(), where
each MPI process only knows part of the communication graph, we propose a function
MPI_Dist_load_create() where each MPI process only knows part of the array.
In the extreme case, each MPI process may only know its own computational load. An
experimental evaluation of a prototype implementation of our proposal indicates that it
brings the performance benefits envisioned. Finally, we briefly discuss how implemen-
tation of MPI_Load_create() may be also beneficial to MPI_Graph_create(),
i.e. how these two functions could be implemented and used in combination.

The remainder of this article is organized as follows. In Sect. 1, we present the
mapping problem induced by the load balancing task, give a solution and explain how to
implement it within MPI. In Sect. 2, we extend this solution to a distributed algorithm.
We provide an experimental evaluation in Sect. 3, and give a conclusion and outlook in
Sect. 4.

1. Load-balancing MPI applications

1.1. Ideally restricted scenario

We consider the scenario that we have started an MPI application with n processes on a
parallel machine with p cores, where n is an integral multiple of p. We assume that in this
case, k = n/p MPI processes are mapped onto each core. The MPI process Pi, where
i = 0, . . . , n − 1, runs on core i mod p, as illustrated in Fig. 1. Each process Pi will
have initialized MPI by a call to MPI_Init() and have got rank ri = i. This scenario
is very restricted, and will only hold for the communicator MPI_COMM_WORLD, if
at all. Yet, this is only to start with. We will remove the restrictions one by one in the
following paragraphs.



Each process has in its local memory an integer array load of size n, where load[i]
contains the relative computational load of the MPI process with rank i. Thus, initially,
a core j hosts processes with ranks j, j + p, . . . , j + (k − 1)p and thus has load

lj =
∑
i<k

load[j + i · p] .

Our goal is to permute the ranks of the processes by a permutation π such that the new
core loads

l′j =
∑
i<k

load[π(j + i · p)]

ensure that maxj l
′
j ≤ maxj lj , i.e. that the computational load on each core is more

balanced than before. This is a constrained variant of an optimization problem where
it is required that exactly k processes be mapped to each core. In the unconstrained
optimization problem, it might be necessary to adapt the number of processes per core.

Consider the following example, that we will use throughout the paper. We have
n = 64 MPI processes, where those with ranks less than 20 have load 4, those with ranks
between 20 and 39 have load 2, and the others have load 1. In total the processes provide
load 144 = 20 · 4 + 20 · 2 + 24 · 1. If we run the processes on p = 16 cores, then the
maximum load of a core must be at least 9 = 144/16. This can be achieved if 10 cores
host 3 processes each, with loads 4, 4, and 1, 4 cores host 5 processes each, with loads
2, 2, 2, 2, and 1, and 2 cores host 7 processes each, with loads 2, 2, 1, 1, 1, 1, and 1.
If however each core runs exactly 4 processes, then the maximum load of a core is at
least 10, because there must be cores hosting two processes with load 4 each, as there
are more than p = 16 processes of that load. As those cores will host 4 processes, and
the remaining two processes per core each have load at least 1, there will be cores with
load at least 10. This example while still not very exotic, already puts some burden on
balancers, because there is an integral optimal balancing, albeit a tricky one, and typical
strategies for assignment lead to additional loads.

A simple heuristic to spread the loads is the following. Let us assume that element
i of the array load is a tuple 〈ldi, i〉, where ldi is the original content of load[i]. We sort
the array in descending order with respect to the first component of the tuples. Then, if in
the sorted array load[i] = 〈ldj , j〉, we set π(i) = j. Thus, we distribute the loads round
robin over the cores, heaviest loads first. This heuristic can be easily computed locally
by each MPI process Pi, because it already possesses the array load. So it can extend the
array, sort it, and lookup its new rank.

In terms of MPI, a call to MPI_Load_create() will compute a new communi-
cator for the n processes, of the same size as the previous one, but the new ranks are the
permuted ones. The function thus can even be implemented in C as a library to be linked
to an application, creating the new communicator after the sorting by calling the existing
function MPI_Comm_split with color 0 and key π(i).

Getting back to our example, we would achieve maximum core load 11, because e.g.
core 0 would host two processes with load 4, one with load 2, and one with load 1. Thus,
the heuristic in this case is pretty close to the optimum. The resulting load distribution is
depicted in Fig. 2.



core 0 · · · 3 4 · · · 7 8 · · · 15
4 · · · 4 4 · · · 4 4 · · · 4
4 · · · 4 2 · · · 2 2 · · · 2

loads 2 · · · 2 2 · · · 2 1 · · · 1
1 · · · 1 1 · · · 1 1 · · · 1

core 0 · · · 3 4 · · · 7 8 · · · 15
4 · · · 4 4 · · · 4 4 · · · 4
4 · · · 4 2 · · · 2 2 · · · 2

loads 2 · · · 2 2 · · · 2 1 · · · 1
1 · · · 1
1 · · · 1

Figure 2. Heuristic round-robin load distribution for two process distributions

1.2. Removing restrictions

The first restriction to be removed is the restriction that initially, process Pi has rank i. If
the ranks are arbitrarily distributed, an appropriate order of the ranks can be achieved if
each process knows on which core it runs. On a Linux-like operating system2, a process
can find this out by calling sched_getcpu(), a function in glibc since version 2.6.

The processes perform an MPI_Allgather() operation, where each process
sends the index of the core it runs on. Each process thus has already learned the number
p of cores in use. Then, a process running on core j computes the number s of processes
with smaller rank and running on the same core. Then it assumes rank j + s · p.

The second restriction to be removed is the requirement that an equal number of
processes must run on each core. If this number is not equal, then we proceed as follows.
First, after the MPI_Allgather() operation, we renumber the cores such that the
ones with fewer processes get lower indices. Then, the ranks are assigned round-robin
again. If cores have exceeded their process count, they are ignored in the next round.
This is easy as those will always be the first ones, because the cores are renumbered by
process count in ascending order. For example, if in our example from above, 8 cores will
run 3 MPI processes each, and 8 cores will run 5 MPI processes each (for a total of 64
MPI processes), then the 8 cores with 3 processes will get indices 0 to 7, and the others
8 to 15. The processes on core 0 will be assigned ranks 0, 16, 32, the processes on core 1
will be assigned ranks 1, 17, 33, the first three processes on core 8 will be assigned ranks
8, 24, 40, and the first three processes on core 15 will be assigned ranks 15, 31, 47. Rank
48 will then be assigned to the fourth process on core 8, because after the third round,
cores 0 to 7 have exceeded their process count. This ordering is illustrated in Fig. 1. The
processes on core 0 will have highest load 10 = 4 + 4 + 2.

The third restriction, that n should be an integral multiple of p, is obviously removed
with the second restriction. If n is not an integral multiple of p, then simply the number
of processes per core varies, which is allowed since the second restriction is removed.

2In MPI systems spanning multiple operating system instances, a tuple consisting of a hash of the machine
name and the core id can be used.



1.3. Further balancing opportunities

While removing the second restriction widens the applicability of our proposal, the pro-
posed function still is restricted to the distribution of processes over cores as given. A
workaround could be to start the MPI application with n+m · p processes instead of n
processes, i.e. with k +m processes per core instead of k. The additional m processes
per core could sit idle as long as they are not needed, and by being swapped out would
neither consume much processing power nor much memory. They should however par-
ticipate in the MPI_Load_create() with load 0. Thus, the load balancing heuristic
has a better chance to compute a load distribution close to the optimum, because these
extra processes are useful in two situations: when the resulting distribution would need a
varying number of processes per core to provide good balance, and when the current dis-
tribution of (active) processes per core is not very suited to the task loads, so that it should
be evened out. The extra processes could even be shared by several sub-communicators.
In principle, this is a form of soft process migration, i.e. we reorder ranks among busy
and idle processes, so that the number of busy processes per core may vary while the
number of processes per core remains constant.

In our example, if we would provide m = 3 extra processes per core, and would
employ an optimal load balancer, we could achieve the optimal maximum load of 9, as
given above. We admit that the round-robin heuristic is not very well suited for the case
of extra processes. If we provide m = 1 extra process per core, and use the round-robin
heuristic in the case of 8 cores with 3 active MPI processes each and 8 cores with 5 active
MPI processes each, then we get the same distribution as in the case of 4 MPI processes
per core, and a maximum core load of 11 as explained above, while the heuristic achieved
a maximum core load of 10 without extra processes. For optimal load balancers however,
usage of extra processes will not lead to an anomaly as just observed.

2. Distributed load-balancing variant

The load-balancing algorithm of the previous section uses O(n + p) space per MPI
process. While this is no problem for small and medium installations and applica-
tions, it prevents scalability for large machines, i.e. n, p ≥ 104. Therefore, in sim-
ilarity to the function MPI_Dist_graph_create(), we also want to provide
a function MPI_Dist_load_create(). The purpose of this function is, as in
MPI_Load_create(), to provide a new communicator with balanced computational
load, but in the distributed function each process only provides a list of tuples consist-
ing of rank and load. In the extreme case, each process only provides its own load. Ob-
viously, for small n and p, MPI_Dist_load_create() could be implemented by
completing the load information on each process via an MPI_Allgather(), and then
calling MPI_Load_create().

For the distributed algorithm, we work in k = n/p rounds. In the first round, we
perform some precomputations and deal with heavy loads. In the remaining rounds, we
assign the remaining loads. Our goal again is to spread the heavy loads over the cores.
To do this, the processes first execute two MPI_Allreduce() operations on their load
values, one with the MAX and one with the SUM operator. Thus each process knows
the maximum load lmax of a process, and, by dividing the sum through the process



core 0 1 2 3 4 · · · 7 8 · · · 15
4 4 4 4 4 · · · 4 4 · · · 4
2 2 4 4 2 · · · 2 2 · · · 2

loads 4 1 2 1 2 · · · 2 1 · · · 1
1 4 1 2 1 · · · 1 1 · · · 1

Figure 3. Round-robin load distribution computed by the distributed heuristic

count n, the average process load la. Now each process prepares a vector v of length t.
Element i of this vector, where 0 ≤ i ≤ t − 1, is set to 1 if the process load is larger
than 2t/2−i · la, and to 0 otherwise. This means that for a process with load exactly
la, the first t/2 + 1 elements will be zero, and the remaining elements will be one.
Then the processes perform an MPI_Allreduce() with the SUM operator, receive a
sum vector sv, and thus learn the number of processes with loads larger than 2t/2 · la,
2t/2−1 · la,. . . , 2−t/2+1 · la. The parameter t is a tuning parameter of our algorithm that
allows to trade off expected load balancing quality for time and space requirements of
the algorithm. In most situations, we believe t = 16 to be sufficient. If it turns out during
runtime that it is not, then the processes could double t. If the scaling is too coarse, i.e.
if all processes belong to one or two categories, the scaling might also be adapted.

In our example, we get maximum load lmax = 4 and average load la =
144/64 = 2.25. Processes with loads 4, 2, and 1, will prepare vectors (0, 0, 0, 1, 1, 1),
(0, 0, 0, 0, 1, 1) and (0, 0, 0, 0, 0, 1), respectively, if t = 6. The processes receive a sum
vector sv = (0, 0, 0, 20, 40, 64).

Each process now seeks for the last element in the sum vector with values less or
equal to p, i.e. for the maximum i with sv(i) ≤ p. All processes perform an MPI_Scan
operation with the ADD operator. The ones with v(i) = 0 and v(i + 1) = 1 provide a
1, the other processes provide a 0. The processes with v(i) = 1, and the processes that
provided a 1 in the scan and that got a return value of at most p−sv(i) are the heavy ones
and are distributed over the cores. This is achieved if the sv(i) processes with v(i) = 1
send their ranks and loads to the processes with ranks 0 to sv(i) − 1, and each process
with v(i) = 0, v(i+1) = 1 and return value j ≤ p− sv(i) sending its rank and its load
to the process with rank j − 1 + sv(i). Here we again assume that the ranks are ordered
round-robin over the cores. In our example, i = 2, sv(i) = 0 and sv(i + 1) = 20 > p.
Thus, the processes contesting to be heavy ones all have load 4.

In the second round each process seeks for the maximum i with sv(i) ≤ 2p. In the
MPI_Scan operation, the ones with v(i+1) = 1, that are not yet assigned, provide a 1.
Thus, after k rounds, the loads are distributed. The round-robin is not as strict as in the
heuristic of the previous section. While each load assigned in a previous round is heavier
than any load of the next round, the loads may have an arbitrary order within the round.

Finally, the processes perform a MPI_Comm_split() operation as in the algo-
rithm of the previous section.

In our example, in the second round i = 3, sv(i) = 20 and sv(i+ 1) = 40. Hence,
contestors here are 20 processes with load 2, and 4 processes with load 4, as 16 processes
with load 4 are already assigned. 16 of those 24 processes will be assigned, but it is not
guaranteed that all processes with load 4 are among them. A possible load distribution
resulting from the distributed algorithm is depicted in Fig. 3.

Note that one may also use an arbitrary assignment for the last round or rounds, in
order to save computation time, without sacrificing load balance too much.



Table 1. Runtimes for synthetic benchmark program

Scenario Optimal Heuristic Pseudo-random Worst case

4 processes/core 18.6s 20.7s 22.0s 29.3s
3/5 processes/core 18.3s 18.3s 20.5s 38.6s

3. Experimental Evaluation

We have implemented the MPI_Load_create() and MPI_Dist_load_create
functions as described in Sect. 1 with the help of available MPI functions. We use system
dependent functions only to get IP addresses and core IDs. Hence, our implementation
is highly portable. The implementation of the two functions comprises about 50 and
100 lines of C code, respectively. In order to validate our load balancing heuristic, we
executed experiments representing some different load distributions from Sect. 1.

We performed experiments on a machine M1 with 4 quad-core AMD processors (2.2
GHz) with 32 GByte main memory, running under Linux, and on a machine M2 with
805 nodes, each with two 2.33 GHz Xeon quad core chips and at least 16 GiB RAM,
running under CentOS5. The nodes are interconnected by Infiniband.

In our first experiment, we measured the time to call MPI_Load_create(). With
64 MPI processes, the call needs between 5 and 8 milliseconds on machine M1 and about
2.5 milliseconds on machine M2 with 8 cores on 1 node. With 1,024 MPI processes on
machine M2 with 512 cores (64 nodes with 8 cores each), this time increases to only
36 milliseconds, i.e. a linear increase. As an application typically will call this function
only once, and as it is typically used for applications running longer than a second, we
consider this overhead negligible.

In our second and third experiments, we used a synthetic benchmark with n = 64
processes on p = 16 cores, and assigned with ranks as given below. After assigning the
ranks, each process performed a loop where it added integers, the length of the loop being
proportional to the load the process shall have. After the loop, the processes perform a
barrier synchronization. This is repeated 10 times to exclude cache miss effects or other
disturbances. For each experiment, we measured the wall-clock runtime, as no other
user jobs were running on the machine, and the operating system load was considered
negligible. The loads of our application are as in the example of Sect. 1: 20 processes
with load 4, 20 processes with load 2, and 24 processes with load 1.

For the second experiment on machine M1, we pinned 4 processes to each core, and
used the round-robin ranking. As a worst case scenario, we used a load profile where
all processes on a core had the same load, so that e.g. core 0 has load 16 = 4 · 4,
and there are cores with load 4 = 4 · 1. Then, as an average scenario, we assigned the
loads pseudo-randomly to the processes, and obtained a maximum core load of 12. As
an optimal scenario, we applied a distribution with maximum core load 10, and for the
heuristic scenario, we applied the round-robin load assignment of the previous section
with maximum core load of 11, which resulted from the call to MPI_Load_create().
The runtimes are depicted in Table 1. In the runtime measurements, we excluded the
initialization, because it is similar in all cases and seems negligible for runtimes of more
than 10 seconds. We see that the runtime of the heuristic load balancing is better than the
pseudo-random load distribution which has 6% longer runtime.

For the third experiment on machine M1, we had 8 cores with 3 processes each,
and 8 cores with 5 processes each. In this case, the MPI_Load_create() heuristic



Table 2. Runtime ratio unbalanced to balanced for LU-multiply benchmark

Scenario 1 2 3 4

matrix dim m 1,024 1,024 4,096 9,216
no. MPI processes n 64 256 256 256
no. cores 8 32 32 32
no. nodes 1 4 4 4
speedup MPI_Load_create 1.198 1.073 1.210 1.269
speedup MPI_Dist_load_create 1.059 0.971 1.082 1.154

achieves an optimal maximum core load of 10, although with a different distribution. For
the worst case scenario, we used a distribution where core 15 had 5 processes of load 4
each, for a maximum load of 20. The average scenario again had a pseudo-random load
distribution. The runtimes are also depicted in Table 1. We see a similar behavior as in
the case of an equal distribution of processes over cores, only that the runtime in the
average scenario is 11% longer than with the heuristic load distribution.

For a fourth experiment on machine M2, we implemented the multiplication of a
lower triangularm×mmatrix Lwith an upper triangularm×mmatrix U by a variant of
Cannon’s algorithm. We pin n/p MPI processes to each core3. We have a square number
n = s2 of MPI processes, each computing a block of sizem/s×m/s of the result matrix.
Blocks fromL orU that only contain zeroes are not used, so that the load for MPI process
(i, j) is about 1+min(i, j). Table 2 presents the speedup, i.e. the ratio of runtimes with-
out and with usage of MPI_Load_create and MPI_Dist_load_create for dif-
ferent matrix sizes and core counts. The ratio for MPI_Load_create closely matches
the theoretical load ratio, if the number of processes per core is large enough (for Sce-
nario 2, it seems too small). We also ran the experiment for m = 4, 096 with n = 64
processes on 64 cores, i.e. with one process per core, and achieved the same runtime as
scenario 3 with 32 cores.

The maximum time to execute MPI_Load_create is 11 milliseconds in sce-
nario 4, for MPI_Dist_load_create it is about 90 milliseconds. Thus, the cen-
tralized variant’s overhead is negligible because it is less than one percent even
in scenario 2 (less than 10−5 in the others). The overhead is notably higher for
MPI_Dist_load_create, which is the reason for the speedup less than 1 in scenario
2. A possible reason might be that the number of rounds is not well adapted to the load
situation. Also, the runtime advantage of MPI_Dist_load_create is smaller than
for MPI_Load_create, as a consequence of the load ordering not being strictly round
robin in that case.

4. Conclusion

We have proposed a load-balancing function MPI_Load_create() where MPI ap-
plications with uneven computational load per process can give hints to balance this
load, similar to what the MPI_Graph_create() function does with respect to com-
munication loads. The only prerequisite is the presence of multiple MPI processes

3We also tested the runtime without the load balancing and without pinning processes to cores. Surprisingly,
the runtime gets worse in scenarios 2 to 4.



per core, which is a necessity for any load balancing of this kind. We implemented
this function as a library without change of the underlying MPI system. An advan-
tage of our load-balancing function is that it does not require code changes in exist-
ing MPI applications with known imbalance in computational load, besides the call to
MPI_Load_create(). We have also presented how to implement a distributed variant
of our MPI function, similar to MPI_Dist_graph_create(), for large MPI appli-
cations and installations. We have provided an experimental evaluation which indicates
that usage of our function indeed provides runtime advantages4.

In the future, we plan to optimize the distributed variant of our load balanc-
ing scheme, and to provide programming support for data migration in applica-
tions with several phases. We also would like to investigate how the functions
MPI_Load_create() and MPI_Graph_create() could profit from each other.
Obviously, if both optimizations are performed together, there is a chance for profit by
mapping pairs of processes with heavy communication load on the same core. Thus,
one has to solve a multi-criterion optimization problem. In the distributed variant of our
algorithm, one might be able to favorably combine both criteria, because after the first
round, one may choose the ranks for each core according to the communication graph.

Acknowledgements

This work was partly supported by the Swedish e-Science Research Center (SeRC)
project OpCoReS, and by a PhD fellowship of Higher Education Commission (HEC)
Pakistan. We thank W. Schiffmann, P. Cichowski, U. Hönig and B. Wesarg for help with
first tests on machine M1, and J. Träff for introducing us to MPI optimizations.

References

[1] M. Bhandarkar, L.V. Kale, E. de Sturler, and J. Hoeflinger, Adaptive load balancing for MPI Programs,
in Proc. Int.l Conference in Computational Science, pp. 108–117, 2001.

[2] D. Böhme, M.-A. Hermanns, M. Geimer, and F. Wolf, Performance simulation of non-blocking com-
munication in message-passing applications, in Proc. 2nd Workshop on Productivity and Performance
(PROPER 2009), 2009.

[3] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP — Portable Shared Memory Parallel Pro-
gramming, MIT Press, 2007.

[4] J. Corbalán, A. Duran, and J. Labarta, Dynamic load balancing of MPI+OpenMP applications, in Proc.
Int.l Conference on Parallel Processing, pp. 195–202, 2004.

[5] M. Eriksson, C. Kessler, and M. Chalabine, Load balancing of irregular parallel divide-and-conquer
algorithms in group-SPMD programming environments, in Proc. 8th Workshop on Parallel Systems and
Algorithms (PASA 2006), 2006.

[6] M. Geimer, F. Wolf, B.J.N. Wylie, and B. Mohr, Scalable parallel trace-based performance analysis, in
Proc. 13th European PVM/MPI Conference, pp. 303–312, 2006.

[7] L. V. Kale, M. Bhandarkar, and R. Brunner, Run-time support for adaptive load balancing, in Proc. 4th
Workshop on Runtime Systems for Parallel Programming (RTSPP), pp. 1152–1159, 2000.

[8] A. Lastovetsky and R. Reddy, HeteroMPI: Towards a message-passing library for heterogeneous net-
works of computers, Journal of Parallel and Distributed Computing 66 (2006), 197–220.

[9] MPI Forum, MPI: A Message-Passing Interface Standard Version 2.2, 2009.

4So far we only found one large configuration where load balancing provides no advantage, possibly because
the majority of time is spent with communication, but this will require further analysis in the future.


