
Static Scheduling

of Moldable Streaming Tasks

with Task Fusion

for Parallel Systems with DVFS

Christoph Kessler Sebastian Litzinger, Jörg Keller

Linköping University FernUniversität in Hagen

Sweden Germany

ACM SIGBED International Conference on Embedded Software (EMSOFT’20)

ESWEEK, September 2020

2

Motivation

Multi-core / Many-core CPUs

Continued growth in #cores

Energy-efficient software

Embedded system: Given application, dedicated hardware

Static configuration and mapping

Leverage both inter-task and intra-task parallelism

 + DVFS + Heterogeneity + ...

 In this work: ... + Task fusion

3

Hardware Model:

Generic Multicore CPU with DVFS

Resources

p cores P0, …, Pp-1

Can be heterogeneous

Discrete Dynamic Voltage and Frequency Scaling (DVFS)

s discrete DVFS levels, ordered by frequency F = { f1=fmin, …, fs = fmax }

Includes voltage scaling by auto-co-scaling

Example: ARM Cortex A15: 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 GHz

Can change DVFS level dynamically at task switching

Ideal: Core-wise DVFS

DVFS islands: Groups of several cores that share a DVFS regulator

cores in a DVFS island will run at
same DVFS level at the same time

Power model:

Power values P(fk) measured on target for each DVFS level k (and task type)

e.g. for A15, A7 in [Holmbacka, Keller 2017]

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

DVFS island 1 DVFS island 2

0 1 2 3 4 5 6 7

big (A15) LITTLE (A7)

4

Software Model:

Streaming Computations

Streaming task graph (= actor network)

(Acyclic) pipeline graph of streaming tasks

Producer-consumer communication

Cf. Kahn Process Networks):

Software pipelining

Steady state) considered independent

T1

T4

T2 T3

T1

T4

T2 T3T1

T4

T2 T3T1

T4

T2 T3

T1

T4

T2 T3

…

5

Software Model:

Streaming Computations

Streaming task graph (= actor network)

(Acyclic) pipeline graph of streaming tasks

Producer-consumer communication

Cf. Kahn Process Networks

Software pipelining

Steady state

One round in steady state:

Independent streaming task instances

Balancing workload over all cores
→ minimizes makespan → maximizes throughput

Reducing single-packet latency might be a secondary objective

T1

T4

T2 T3

T4T2 T3T1

6

Moldable (Parallelizable) Tasks

Moldable tasks j = 1,…,n

A task j performs fixed work workloadj
(per round)

Can be run with (integer) q > 1 cores
(fixed before the task starts)

internally using a parallel algorithm

Arbitrary scalability behavior model:

parallel efficiency 0 < effj(q) < 1

predicted or measured on target system
for 1 < q < Wj

Mixed task model

Inherently sequential: max. parallelism Wj = 1

Moldable, limited scalability: fixed Wj > 1

Moldable, unlimited scalability: Wj > p

q

effj(q)

1 2 3 Wj…

1

0 q

7

Scheduling for the Steady-State

Multiple interdependent subproblems to solve (off-line):

Core allocation
for each moldable task j

Mapping

Map each task j to specific core(s)

DVFS level selection

Select for each task j a frequency level in { f1, …, fs }
dependent tasks or not

given a throughput constraint (round makespan),

to minimize overall energy usage.

P0 1 2 p-1
P P P

?<M

8

Problem – Complexity!

Combinatorial explosion of options

if unrestricted

ILP [Melot et al. ACSD’19]

(for allocation+mapping+scaling)

A parallel task should start on all its assigned cores simultaneously

Scale frequency on all cores of a parallel task equally

→ Idle times within the round

that might not be scaled away

(external fragmentation)

P0 1 2 p-1
P P P

<M

9

Idea: Constrain Resource Allocation

Define a hierarchy of processor groups

The Crown [Kessler et al. 2013]

 Example: A balanced binary crown over 8 cores

G0

P0 P1

G1

G3

G7 G8

P2 P3

G9 G10

P4 P5

G11 G12

P6 P7

G13 G14

G4 G5 G6

G2

• Tasks’ core allocations must be whole groups

(here, powers of 2)

• Reduces #possible mapping targets

(here, from 2
p
-1 to 2p-1)

10

Idea: Constrain Resource Allocation

Define a hierarchy of processor groups

The Crown [Kessler et al. 2013]

 Example: A balanced binary crown over 8 cores

G0

P7P6

G2

G6

G14G13

P5P4

G12G11

P3P2

G10G9

P1P0

G8G7

G5G4G3

G1

• Tasks’ core allocations must be whole groups

(here, powers of 2)

• Reduces #possible mapping targets

(here, from 2
p
-1 to 2p-1)

11

Idea: Constrain Resource Allocation

Define a hierarchy of processor groups

The Crown [Kessler et al. 2013]

 Example: A balanced binary crown over 8 cores

G0

G1 G2

G3 G4 G5 G6

G11 G12 G13 G14G9 G10G7 G8

P0 P1 P2 P3 P4 P5 P6 P7

• Tasks’ core allocations must be whole groups

(here, powers of 2)

• Reduces #possible mapping targets

(here, from 2
p
-1 to 2p-1)

12

Crown-restricted

Allocation

Mapping

Scaling

Tasks executed on each core within the round
in same order by non-increasing width

Within a group keep a topological order

Reduces global interferences e.g. in scaling tasks

Idle times only at end of a round

time

< MCrown Schedule

for one round of the

steady state

Crown Schedules

13

Generalization: Heterogeneous Crown

Example: ARM big.LITTLE CPU

Different core types in different subcrowns

[Litzinger et al. EUSIPCO’19]

G0 (unused)

G1 G2

G3 G4 G5 G6

G11 G12 G13 G14G9 G10G7 G8

P0 P1 P2 P3 P4 P5 P6 P7

0 1 2 3 4 5 6 7

big (A15) LITTLE (A7)

cluster

level

14

Generalization: Crown with DVFS Islands

Example:
CPU with 2 DVFS islands of 4 cores each

Crown structure aligned with DVFS islands [Melot et al. PDP’20]

ILP constraint on DVFS level selection

All tasks with allocations < island size
mapped to cores of the same island
need to run at same DVFS level

scaling

constraint

applies here

island level

G0

G1 G2

G3 G4 G5 G6

G11 G12 G13 G14G9 G10G7 G8

P0 P1 P2 P3 P4 P5 P6 P7

0 1 2 3 4 5 6 7

DVFS island 1 DVFS island 2

15

Task Fusion

Here, for groups of dependent tasks

☺ Fusion internalizes data flow

☺ reduces communication overhead

☺ Writes and reads of intermediate data
get closer to each other in time

☺ data locality, cache hits,
use of registers or core-local memory

☺ need less temporary storage

☺ May even use a different algorithm

☺ Might benefit both throughput/energy and latency

BUT:

 Loss of pipeline (inter-task) parallelism

 Higher stress on mapping and allocation

 Constrained max-parallelism of fused task

 Might also increase critical path length for latency

→ Fusion should be decided together with allocation, mapping and scaling!

foo

bar

Fusion
foo&bar

16

Fusion Gains for Microbenchmarks

Times measured on
Odroid XU+E board
ARM big.LITTLE
(Cortex A15, A7) CPU

Fusion speedup
ca. 15% up to and
beyond 2x

fscale: inverse speedup
– lower is better

Similarly, also for
energy savings

Similarly, also on a
Xeon E5-2620 CPU

vmult

vsum

mrg mrg

mrg

4-way-mrg

sobel

graysc

0 1 2 3 4 5 6 7

big (A15) LITTLE (A7)

17

Task Fusion

Here, for groups of dependent tasks

☺ Fusion internalizes data flow

☺ reduces communication overhead

☺ Writes and reads of intermediate data
get closer to each other in time

☺ data locality, cache hits,
use of registers or core-local memory

☺ need less temporary storage

☺ May even use a different algorithm

☺ Might benefit both throughput, energy and latency

BUT:

 Loss of pipeline (inter-task) parallelism

 Higher stress on mapping and allocation

 Constrained max-parallelism of fused task

 Might also increase critical path length for latency

→ Fusion should be decided together with allocation, mapping and scaling!

foo

bar

Fusion
foo&bar

18

Task Fusion

Here, for groups of dependent tasks

☺ Fusion internalizes data flow

☺ reduces communication overhead

☺ Writes and reads of intermediate data
get closer to each other in time

☺ data locality, cache hits,
use of registers or core-local memory

☺ need less temporary storage

☺ May even use a different algorithm

☺ Might benefit both throughput/energy and latency

BUT:

 Loss of pipeline (inter-task) parallelism

 Higher stress on mapping and allocation

 Constrained max-parallelism of fused task

 Might also increase critical path length for latency

→ Fusion should be decided together with allocation, mapping and scaling!

foo

bar

Fusion
foo&bar

T2 T3T1

T4

T2T1

T3

T4

19

Crown-Scheduling for the Steady-State

With Fusion

Multiple interdependent subproblems to solve (off-line):

Crown allocation and

Crown mapping

Map each task j to some group

DVFS level selection

Select for each task j a frequency level in { f1, …, fs }

Task fusion

Merge dependent tasks or not

given a throughput constraint (round makespan),

to minimize overall energy usage.

P0 1 2 p-1
P P P

<M

20

Two Methods – Details in the paper ...

Fully integrated Crown Scheduling including Task Fusion

Mixed ILP (MILP) model

 Energy-optimal fusion + core allocation + mapping + scaling,

– given throughput goal (maximum makespan)

 maximum latency parameter (→ Pareto-optimization)

 Homogeneous / heterogeneous multicore platform, DVFS islands

 Constraints to avoid that fusion creates artificial cycles in the task graph

Solution is not constrained by a detached pre-fusion phase.

Two-step approach

Step 1: Pre-fusion

 Inductively generate promising fusion candidates

 Heuristic pruning of generated options

 then greedy fusion

Step 2: classical Crown Scheduling (ILP) on pre-fused task graph

Generalization (→ paper):
Crown Scheduling ILP on a hierarchical multi-variant task graph

 supertasks with variants (here: fused, nonfused)
b

a
ab

21

Experimental Evaluation

Target Platform

Heterogeneous: big.LITTLE

Homogeneous: A15 cluster

Applications

Parallel mergesort: binary merger trees

SDE stereo depth estimation

1x1 (8), 2x2 (32), 3x3 (72) partitioning

H.263 encoder (DFbench)

Synthetic Task Graphs

Irregular topology;
scaling up

0 1 2 3 4 5 6 7

big (A15) LITTLE (A7)

22

Pareto-Optimization (Energy, Latency)

Baseline (1.0): Two-step method: Pre-fusion + Crown scheduling ILP

Crown scheduling with fully integrated fusion

Iterate Max-Latency parameter in MILP from upper bound until infeasible

Further results (Crown scheduling with supertasks) in the paper

Where > 1, fusion-integrated CS MILP did not find an optimal solution

and the two-step heuristic was better.

Trade-off:

higher energy for

lowest possible

latency

23

Scaling Up:

Fully Integrated vs. Two-Step Method

200 random task graphs

based on Fibonacci trees of order 4, 5, 6, 7

Target: generic heterogeneous multicore CPU
based on big.LITTLE
with 4+4, 8+8 cores

Fully integrated fusion Crown scheduler
leads to 10% to 25% lower energy on average
compared to two-step pre-fusion + crown scheduling

Two-step method gets closer for larger task sets and core numbers

0 1 2 3 4 5 6 7

big (A15) LITTLE (A7)

24

Real Overall Gains
in Throughput, Energy

Mergesort application, 4-level merger tree

Integrated scheduler: Use 2 fully fused levels of 4-way mergers

Runtime system for the A15 cluster of XU+E big.LITTLE

Predicted vs. measured time and energy, averaged over 100 rounds:

Throughput

gain 7.5%

Energy

savings

58%

scheduler’s

runtime prediction

within 2% of real

A15 cluster:

5 DVFS levels:

0.8, 1.0, 1.2, 1.4, 1.6GHz

1 single DVFS island

0 1 2 3 4 5 6 7

big (A15) LITTLE (A7)

25

Summary

Streaming task graphs with moldable tasks

Static scheduling to multi-/many-core CPUs with discrete DVFS

Minimize total energy, given a throughput requirement

Packet latency as secondary objective

Co-optimize core allocation, mapping, DVFS, task fusion

Crown-Scheduling: group hierarchy, restricts core allocations+mapping

Integrated exact solution by ILP becomes feasible

Can model DVFS islands and heterogeneous multicore

Fully integrating task fusion in Crown scheduling MILP

Pareto-optimization (energy, latency)

Two-step method: Heuristic pre-fusion + ILP crown scheduler (with variants)

Evaluation on big.LITTLE based target platforms (model + real)

Using synthetic and realistic task graphs / applications

Crown scheduler better than alternative static scheduler (Xu et al.’12), see paper

MILP / ILP methods are computationally feasible

 Pre-fusion + crown ILP with variants generally < 0.3s (Gurobi 8.1.0)

 Fully integrated crown scheduler needs typ. 10..100x longer, yet << Xu-scheduler

Fully integrated task fusion: less energy than with two-step method

Can trade energy for latency improvements

Static Scheduling

of Moldable Streaming Tasks

with Task Fusion

for Parallel Systems with DVFS

Christoph Kessler Sebastian Litzinger, Jörg Keller

Linköping University FernUniversität in Hagen

Sweden Germany

ACM SIGBED International Conference on Embedded Software (EMSOFT’20)

ESWEEK, September 2020

Questions?

APPENDIX

Backup Slides, Abstracts,

References to previous work

30

Task Fusion Example

// producer task:
... read in1[0:B-1] from buffer
for (i=0; i<B; i++)
out1[i] = foo(in1[i],...);

... write out1[0:B-1] to buffer

// consumer task:
...read out1[0:B-1] from buffer
for (i=0; i<B; i++)
out2[i] = bar(out1[i],...);

...write out2[0:B-1] to buffer

Fusion

// fused task:
... read in1[0:B-1] from buffer
for (i=0; i<B; i++)
out2[i] = bar(foo(in1[i],..).);

... write out2[0:B-1] to buffer

foo

bar

foo&bar

31

Example
Packet latency depends on mapping (1)

Need 3 rounds to process an input packet completely

T1 T2 T4T3

T1

T4

T2 T3

...

0 1 2 3

Streaming task graph A schedule for 4 cores

T1

T4

T2 T3T1

T4

T2 T3T1

T4

T2 T3

T1

T4

T2 T3

32

Example
Packet latency depends on mapping (2)

Need 2 rounds to process an input packet completely

T1

T2

T3

T4

T1

T4

T2 T3

...

0 1 2 3

Streaming task graph A schedule for 4 cores

similarly, after fusing T1+T2, T3+T4

33

Example
Packet latency depends on mapping (3)

Need 2 rounds to process an input packet completely

T1+T2 T3+T4

T1

T4

T2 T3

...

0 1 2 3

Streaming task graph A schedule for 4 cores

similarly, after fusing T1+T2, T3+T4

34

T1

T3T2

T4

T1

T2 T3

T4

T24

T12

T1

T2 T3

T4

T124

Avoiding Artificial Cycles by Fusion

T1+T2+T4 not fusable

– creates artificial cycle

35

Crown ILP vs. Xu ILP schedulers
Effect of Fusion on Energy and Latency

For homogeneous 4-core (A15) target

Baseline (1.0): Pre-fusion heuristic + regular Crown Scheduler

Lower is better

Regular crown: No fusion + Regular Crown scheduler

Xu: No fusion + Energy-optimizing moldable task scheduler by Xu et al. '12

Pre-fused Xu: Pre-fusion heuristic + scheduler by Xu et al.

Crown scheduler outperforms Xu scheduler on energy (... and on scheduling time)

Higher energy for SDE 1x1:

Pre-fusion too aggressive,

too few tasks remain;

schedule becomes sequential

at high DVFS level

Xu scheduler (ILP)

with pre-fusion

does not find a

feasible solution

38

H.263 Encoder from DFbench

39

Fibonacci Tree of Order 7

40

Abstract

Static Scheduling of Moldable Streaming Tasks With Task Fusion for
Parallel Systems With DVFS

Christoph Kessler, Sebastian Litzinger, Jörg Keller

Abstract: We consider the problem of statically scheduling a task graph of
moldable streaming tasks (i.e., the actor network) to a multicore or many-
core CPU with discrete dynamic voltage and frequency scaling (DVFS).
We employ an integer linear programming (ILP) approach that combines
allocating cores to tasks, mapping tasks to core subsets, selecting a DVFS
level for each task, and considering all options for task fusion as provided
by a cost model, given data throughput and latency requirements and
targeting low energy consumption. We also propose a partly decoupled
approach that applies greedy prefusion before running an ILP-based
scheduler considering the other three subproblems together. We use
microbenchmarking on an ARM big.LITTLE architecture to quantify the
advantage of task fusion in the above setting, and evaluate the use of task
fusion in terms of energy savings, latency improvement, and scheduling
time for three real-world applications. We confirm the scheduling results by
running the applications with and without task fusions on the ARM
big.LITTLE. Results indicate that streaming applications can profit from
task fusion, as we achieve a significant reduction of energy consumption in
most cases, while scheduling time is only moderately increased.

41

Referenced Previous Work
This work:

Christoph Kessler, Sebastian Litzinger, Jörg Keller: Static Scheduling of Moldable Streaming Tasks with Task Fusion for Parallel
Systems with DVFS. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 39 no. 11, S.I. on ESWEEK
2020. DOI: 10.1109/TCAD.2020.3013054

Our previous work on Crown Scheduling:

Christoph Kessler, Nicolas Melot, Patrick Eitschberger, Jörg Keller: Crown Scheduling: Energy-Efficient Resource Allocation,
Mapping and Discrete Frequency Scaling for Collections of Malleable Streaming Tasks. In: Proc. 23rd Int. Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS 2013), Karlsruhe, Sept. 2013, pp. 215–222. IEEE, 2013. DOI:
10.1109/PATMOS.2013.6662176

Nicolas Melot, Christoph Kessler, Jörg Keller, Patrick Eitschberger: Fast Crown Scheduling Heuristics for Energy-Efficient Mapping
and Scaling of Moldable Streaming Tasks on Many-Core Systems.
ACM Trans. on Architecture and Code Optimization (TACO), Vol. 11(4), Art. 62, Jan. 2015. DOI: 10.1145/2687653

Nicolas Melot, Christoph Kessler, Jörg Keller: Improving Energy-Efficiency of Static Schedules by Core Consolidation and
Switching Off Unused Cores. ParCo-2015 conference, Edinburgh, UK, 1-4 Sep. 2015. Published in: Gerhard R. Joubert, Hugh Leather,
Mark Parsons, Frans Peters, Mark Sawyer (eds.): Advances in Parallel Computing, Volume 27: Parallel Computing: On the Road to
Exascale, IOS Press, Apr. 2016, pp. 285-294. DOI 10.3233/978-1-61499-621-7-285.

Nicolas Melot, Christoph Kessler, Jörg Keller, Patrick Eitschberger: Co-optimizing Core Allocation, Mapping and DVFS in Streaming
Programs with Moldable Tasks for Energy Efficient Execution on Manycore Architectures. In: Proc. 19th International Conference
on Application of Concurrency to System Design (ACSD-2019), Aachen, Germany, June 23-28, 2019. IEEE. DOI:
10.1109/ACSD.2019.00011

Sebastian Litzinger, Jörg Keller, Christoph Kessler: Scheduling Moldable Parallel Streaming Tasks on Heterogeneous Platforms
with Frequency Scaling. Proc. 27th European Signal Processing Conference (EUSIPCO 2019), A Coruna, Spain, Sep. 2019, IEEE.
DOI: 10.23919/EUSIPCO.2019.8903180.
On-line appendix: https://e.feu.de/ii

Nicolas Melot, Christoph Kessler, Jörg Keller: Voltage Island-Aware Energy-Efficient Scheduling of Parallel Streaming Tasks on
Many-Core CPUs.. Proc. 28th Euromicro Conference on Parallel, Disributed and Network-Based Processing (PDP’20), Västerås,
Sweden, March 2020. IEEE, 2020. DOI: 10.1109/PDP50117.2020.00030

Our previous work on task type aware scheduling of sequential streaming tasks on big.LITTLE:

S. Holmbacka, J. Keller: Workload type-aware scheduling on big.LITTLE platforms. In: S. Ibrahim, K.-K. R. Choo, Z. Yan, and W.
Pedrycz, Eds., Algorithms and Architectures for Parallel Processing, pp. 3–17, Springer, 2017

The Xu et al.’12 ILP scheduler used for comparison:

H. Xu, F. Kong, Q. Deng: Energy Minimizing for Parallel Real-Time Tasks Based on Level-Packing. Proc. 18th Int. Conf. on Emb. and
Real-Time Comput. Syst. and Appl., 2012, pp. 98–103.

