
To appear in: Proc. 2015 44th International Conference on Parallel Processing Workshops (ICPP-EMS’15), Beijing, 1-4 Sep. 2015. c©IEEE

XPDL: Extensible Platform Description Language
to Support Energy Modeling and Optimization

Christoph Kessler∗, Lu Li∗, Aras Atalar† and Alin Dobre‡
∗Linköping University, Linköping, Sweden. Email: firstname.lastname@liu.se

†Chalmers Technical University, Gothenburg, Sweden. Email: aaras@chalmers.se
‡Movidius Ltd, Dublin, Ireland. Email: firstname.lastname@movidius.com

Abstract—We present XPDL, a modular, extensible platform
description language for heterogeneous multicore systems and
clusters. XPDL specifications provide platform metadata about
hardware and installed system software that are relevant for
the adaptive static and dynamic optimization of application
programs and system settings for improved performance and
energy efficiency. XPDL is based on XML and uses hyperlinks
to create distributed libraries of platform metadata specifi-
cations. We also provide first components of a retargetable
toolchain that browses and processes XPDL specifications, and
generates driver code for microbenchmarking to bootstrap
empirical performance and energy models at deployment
time. A C++ based API enables convenient introspection of
platform models, even at run-time, which allows for adaptive
dynamic program optimizations such as tuned selection of
implementation variants.

I. INTRODUCTION

The EU FP7 project EXCESS (www.excess-project.eu)
aims at providing a generic framework for system-wide
energy optimization. In particular, its ambition is to finally
have a retargetable optimization framework that can handle
a significant variety of systems, ranging from embedded
systems such as the Movidius MV1.53 card via CPU and
GPU servers up to clusters of GPU-equipped compute nodes.
For retargetability, the framework must be parameterized in
a formal description of the (optimization-relevant) properties
of the given platform. A platform should be considered
in the most general sense, i.e., it includes not only the
hardware with its various components, but also installed
system software such as libraries, programming models,
compilers etc. Accordingly, a platform description language
should allow to express both hardware and software entities
and relations between them. Platform description languages
must be formal enough to be processed automatically (by
tools reading or modifying platform information) but should
ideally also be readable and editable by humans, possibly
with the help of tool support.

A wide variety of platform modeling languages, often
referred to as architecture description languages, have been
proposed in the literature, at various levels of granularity,
detail, and purpose, often for single-processor architectures.
Some are intended as a source language for hardware syn-
thesis or for simulator generation, others are geared towards

automatic generation of program development tool chains
including compilers, assemblers and linkers. See Section V
for a short survey of related work and references.

In the EU FP7 project PEPPHER, which was a prede-
cessor of EXCESS focusing on performance rather than
energy optimization, a platform description language called
PDL (PEPPHER platform description language) [1] has
been developed and was used in the PEPPHER composition
tool [2] for conditional composition [3]. The PDL design
contains a number of limitations, which we will elaborate
on in Section II in order to motivate why we decided not to
adopt PDL in EXCESS but to develop a new design for a
more modular platform description language for EXCESS,
called XPDL.

In this paper we present the design of XPDL, a modular,
extensible platform description language for heterogeneous
multicore systems and clusters. For pragmatic reasons (tool
support), we adopt XML as primary syntax for XPDL,
but would like to emphasize that this syntactic appearance
is not the key point for its applicability. Some unique
features of XPDL include its support for modularity and
the use of hyperlinks to create distributed libraries of plat-
form metadata specifications, the inclusion of metadata for
microbenchmarking code that can be used to automatically
derive parameters of performance and energy models at
deployment time, and the possibility to introspect (parts of)
the platform model in a running application, which allows
for customized, adaptive dynamic program optimizations
such as tuned selection of implementation variants. We also
provide first components of a retargetable toolchain that
browses and processes XPDL specifications.

The remainder of this paper is organized as follows.
After discussing PDL and its limitations in Section II, we
introduce the XPDL design in Section III and show how
it can be used to build platform models of target systems,
ranging from HPC clusters down to embedded processors
and their components. Due to lack of space, extensive
example models for concrete systems are omitted and can be
found in a technical report [4]. The XPDL toolchain and its
current implementation status are described in Section IV.
Section V discusses related work, and Section VI concludes.



II. A REVIEW OF PEPPHER PDL
PDL, described by Sandrieser et al. [1], has been de-

veloped in the EU FP7 project PEPPHER (2010-2012,
www.peppher.eu), as a XML-based platform description lan-
guage for single-node heterogeneous systems, to be used by
tools to guide performance prediction, automated selection
of implementation variants of annotated application software
components (”PEPPHER components”), or task mapping. In
particular, it establishes naming conventions for the entities
in a system such that they can be referred to by symbolic
names. Beyond that, it is also intended to express so-called
platform patterns, reusable templates for platform organi-
zation that could be instantiated to a complete platform
specification.

PDL models the main architectural blocks and the hierar-
chical execution relationship in heterogeneous systems. All
other entities (e.g., installed software) are modeled as free-
form properties in the form of key-value pairs.

The main architectural blocks, which distinguish between
types and instances, include
– Processing Units (PU), describing the processing elements
in a heterogeneous machine;
– Memory regions, specifying data storage facilities (such as
global/shared main memory, device memories); and
– Interconnect.
For PDL example specifications see [1] or [4, Sec. 4.1].

A. Control Relation

The overall structure of these hardware components de-
scriptions in a PDL specification is, however, not organized
from a hardware perspective (i.e., the structural organization
of the hardware components in the system) but follows the
programmer perspective by formalizing the control relation
between processing units as a logic tree consisting of so-
called Master, Hybrid and Worker PU. There must be one
Master PU, a feature-rich general purpose PU that marks
a possible starting point for execution of a user program,
thus acting as the root of the control hierarchy; there are a
number of Worker PUs that are specialized processing units
(such as GPUs) that cannot themselves launch computations
on other PUs and thus act as leaves of the control hierarchy;
and Hybrid PUs that can act both as master and worker PU
and thus form inner nodes in the control hierarchy. A system
might not contain all three types of PUs (i.e., control roles)
simultaneously. For instance, a standard multicore server
without accelerators has no workers, and the Cell/B.E., if
used stand-alone (i.e., not coupled with a host computer
acting as Master), has no hybrid PUs.

In practice, which PU is or could be host and which one
is a device depends not only on the hardware but mainly on
the programming model used, which might be defined by
the compiler, runtime system and/or further system layers.
The PDL control relation usually reflects the system’s native
low-level programming model used (such as CUDA).

The actual workings of the launching of computation
modeled by the control relation cannot be explicitly specified
in PDL. In practice, this aspect is typically hardcoded in the
underlying operating system scheduler or the heterogeneous
runtime system, making the specification of a unique, spe-
cific Master PU questionable, for instance in a dual-CPU
server.
Discussion The motivation of emphasizing the control role
in PDL was to be able to define abstract platform patterns
that can be mapped to concrete PUs. However, we find
that using the control relation as the overarching structure
of a platform description is not a good idea, especially as
the control relationship may not always be fixed or even
accessible to the programmer but might, for instance, be
managed and hardcoded in the underlying heterogeneous
runtime system.

In particular, from the EXCESS project point of view, it
makes more sense to adopt a hardware-structural organiza-
tion of platform descriptions, because power consumption
and temperature metrics and measurement values naturally
can be attributed to coarse-grain hardware blocks, such as
CPU, memory or devices, but not to software roles. Most
often, the software roles are implicitly given by the hardware
blocks and/or the underlying heterogeneous runtime system,
hence a separate role specification is usually not necessary.

Hence, we advocate a language structure that follows the
hardware composition of the main architectural blocks, that
is also more aware of the concrete architectural block type
(e.g., that some hardware component is actually a GPU), and
that allows to optionally model control relations separately
(referencing the involved hardware entities) for complex
systems where the control relation cannot be inferred auto-
matically from the hardware entities alone. This should still
allow the definition of abstract platform (i.e., generic control
hierarchy) patterns, but rather as a secondary aspect to a
more architecture oriented structural specification. Where
appropriate, the control relation could also be specified as
a feature of the runtime system rather than the architectural
structure itself.

In the PEPPHER software stack, the mechanisms and con-
straints of launching tasks to other PUs are managed entirely
by the runtime system (StarPU [5]); as a consequence, the
control relation information in PDL specifications was not
needed and not used by the PEPPHER tools. If suitably
complemented by control code specification, it might rather
become relevant in scenarios of generating code that runs
directly on the bare hardware without a managing runtime
system layer in between.

B. Interconnect Specification

The interconnect specification in PDL is intended to
model communication facilities between two or more PUs,
in a style similar to xADML [6] inter-cluster communication
specifiers. In PEPPHER this information was not used, as the



communication to and from an accelerator is managed com-
pletely within the PEPPHER runtime system, i.e., StarPU.

C. Properties Concept
The possibility of specifying arbitrary, unstructured plat-

form properties (e.g., installed software) as key-value pairs1

provides a very flexible and convenient extension mechanism
in PDL, as long as the user(s) keep(s) control over the
spelling and interpretation of introduced property names.
Properties can also be used as placeholders if the actual
values are not known yet at meta-data definition time or can
change dynamically, e.g. due to different possible system
configurations. The existence and, where existing, values
of specified properties can be looked up by a basic query
language.
Discussion Properties allow to extend PDL specifications
beyond the defined tags and attributes given by the fixed
PDL language syntax, in an ad-hoc way. This is highly
flexible but can also lead to inconsistencies and confusion
due to lack of standardization of naming conventions for
properties.

Properties in PDL can be mandatory or optional. We
think that mandatory properties should better be modeled
as predefined XML tags or attributes, to allow for static
checking. For instance, a property within a CPU descriptor
such as x86_MAX_CLOCK_FREQUENCY [1] should better
be specified as a predefined attribute.
Using Platform Descriptions for Conditional Composition
In our recent work on conditional composition [3] we
used PDL specifications to guide the dynamic selection of
implementation variants of PEPPHER components. In the
PEPPHER composition tool [2], which builds an adaptive
executable program for a PEPPHER application from its
annotated multi-variant components, the target system’s PDL
specification is parsed and stored in an internal representa-
tion, which can be inspected at composition time to check
for selectability constraints that depend on static property
values. In order to also enable constraints that involve
dynamic properties or property values, the composition tool
also writes the PDL representation to a file that is loaded
by the PEPPHER application’s executable code on startup
into a run-time data structure. This data structure thus
holds the platform metadata which the composition code
can introspect via a C++ API, i.e. read access property
values in the evaluation of constraints that guide selectability
of implementation variants. In a case study with a single
sparse matrix vector multiply component in [3], we used
this feature to let each CPU and GPU implementation
variant specify its specific constraints on availability of
specific libraries (such as sparse BLAS libraries) in the target
system, and to add selection constraints based on the density
of nonzero elements, leading to an overall performance
improvement.

1Both keys and values are strings in PDL.

D. Modularity Issues

Another limitation of PDL is its semi-modular structure
of system specifications. While it is generally possible to
decompose any XML specification into multiple submodules
(files), PDL does not specifically encourage such modularity
and tends to produce monolithic system descriptions, which
limits the reuse of specifications of platform subcomponents.

III. XPDL DESIGN PRINCIPLES

In contrast to the PDL default scenario of a single mo-
nolithic platform descriptor file, XPDL provides a modular
design by default that promotes reuse of submodels and
thus avoids replication of contents with the resulting risk
for inconsistencies. XPDL defines a hierarchy of submodels,
organized in model libraries containing separate models for
entities such as

• CPUs, cores, caches,
• Memory,
• GPUs and other accelerators with own device memory,
• Interconnects, such as inter-node networks (e.g. In-

finiband), intra-node networks (e.g. PCIe) and on-chip
networks, and

• System software installed.
In principle, a XPDL descriptor is a machine-readable

data sheet of the corresponding hardware or system software
entity, containing information relevant for performance and
energy optimization. The descriptors for the various types of
CPUs, memory etc. are XPDL descriptor modules (.xpdl
files) placed in a distributed model repository: XPDL models
can be stored locally (retrieved via the model search path),
but may, ideally, even be provided for download e.g. at
hardware manufacturer web sites. Additionally, the model
repository contains (source) code of microbenchmarks ref-
erenced from the descriptors.

In addition to the models describing hardware and system
software components, there are (top-level) models for com-
plete systems, which are (like their physical counterparts)
composed from third-party provided hardware and software
components, and reference the corresponding XPDL model
descriptors by name to include these submodels.
Alternative Views of XPDL Models Generally, XPDL offers
multiple views: XML (used in the examples in this paper),
UML (see [4]), and C++ (as used for the internal and run-
time representation of models). These views only differ in
syntax but are semantically equivalent, and are (basically)
convertible to each other.

A. Basic Features of XPDL

We distinguish between meta-models (classes describing
model element types) and concrete models of the concrete
hardware components (i.e., instances) in the modeled target
system, as several concrete models can share the same meta-
model. For example, several concrete CPUs in computer
systems can share the same CPU type definition.



In principle, each XPDL model of a (reusable) hardware
component shall be specified separately in its own descriptor
file, with the extension .xpdl. For pragmatic reasons, it
is sometimes more convenient to specify sub-component
models in-line, which is still possible in XPDL. Reusing
and referencing submodels is done by referencing them by
a unique name, so they can easily be retrieved in the same
model or in the XPDL model repository. Depending on
whether one includes a submodel at meta-level or base-level,
the naming and referencing use different attribute names.
To specify an identifier of a model element, the attribute
name is used for a meta-model, and the attribute id is
for a model. The strings used as name and id should
be unique across the XPDL repository for reference non-
ambiguity, and naming is only necessary if there is a need to
be referenced. The attribute type is used in both base-level
and meta models for referencing to a specific meta-model.

Using the extends attribute, XPDL also supports (multi-
ple) inheritance to encourage more structuring and increased
reuse by defining attributes and subcomponents common to
a family of types (e.g., GPU types) in a supertype. The
inheriting type may overscribe attribute values.

The XML element group can be used to group any
elements. If the attribute quantity is used in a group
element (as in Listing 1), then the group is implicitly homo-
geneous. In such cases, to facilitate identifier specification,
attributes prefix and quantity can be used together to
assign an id to the group member elements automatically.
For example, if we specify a group with prefix core and
quantity 4, then the identifiers of the group members are
assigned as core0, core1, core2 and core3.

For a metric such as static power, if specified as
an attribute, its unit should also be specified, in met-
ric_unit form such as static_power_unit for
static_power. As an exception, the unit for the metric
size is implicitly specified as unit.

Installed software is given by installed tags; also
these refer to separate descriptors, located in the software
directory.

The <properties> tag refers to other possibly relevant
properties that are not modeled separately by own descrip-
tors but specified flexibly by key-value pairs. This escape
mechanism (which avoids having to create new tags for such
properties and allows ad-hoc extensions of a specification)
was also suggested in PDL [1].

Not all entities are modeled explicitly. For instance, the
motherboard (which also contributes some base energy cost)
may not be modeled explicitly; its static energy share will be
derived and associated with the node when calculating static
and dynamic energy costs for each (hardware) component in
the system.

B. Hardware Component Modeling

In the following we show examples of XPDL descriptions
of hardware components. Note that these examples are
simplified for brevity. More complete specifications for some
of the EXCESS systems are given in [4].
Processor Core Modeling Consider a typical example of
a quad-core CPU architecture where L1 cache is private,
L3 is shared and L2 is shared by 2 cores. Listing 1 shows
the corresponding XPDL model. The use of attribute name
in the cpu element indicates that this specifies a name of
this meta-model in XPDL, and the attribute quantity in
the group element shows that the group is homogeneous,
consisting of identical elements whose number is defined
with the attribute quantity. Furthermore, the prefix
can define a name prefix along with quantity, which
automatically assigns identifiers to all group members that
are built by concatenating the prefix string with each group
member’s unique rank ranging from 0 to the group size
minus one.

The sharing of memory is given implicitly by the
hierarchical scoping in XPDL. In the example, the L2
cache is in the same scope as a group of two cores, thus it
is shared by those two cores.

<cpu name="Intel_Xeon_E5_2630L">
<group prefix="core_group" quantity="2">
<group prefix="core" quantity=2>

<!-- Embedded definition -->
<core frequency="2" frequency_unit="GHz" />
<cache name="L1" size="32" unit="KiB" />

</group>
<cache name="L2" size="256" unit="KiB" />

</group>
<cache name="L3" size="15" unit="MiB" />
<power_model type="power_model_E5_2630L" />

</cpu>

Listing 1. An example meta-model for a specific Xeon processor

Although the element core should rather be defined in a
separate sub-metamodel (file) referenced from element cpu
for better reuse, we choose here for illustration purposes to
embed its definition into the CPU meta-model. Embedding
subcomponent definitions gives us the flexibility to control
the granularity of modeling, either coarse-grained or
fine-grained. The same situation also applies to the cache
hierarchy.

<!-- Descriptor file ShaveL2.xpdl -->
<cache name="ShaveL2" size="128" unit="KiB" sets="2"

replacement="LRU" write_policy="copyback" />

<!-- Descriptor file DDR3_16G.xpdl -->
<memory name="DDR3_16G" type="DDR3"
size="16" unit="GB"
static_power="4" static_power_unit="W" />

Listing 2. Two example meta-models for memory modules



Memory Module Modeling Listing 2 shows example models
for different memory components, in different files.

Interconnect Modeling The tag interconnect is used
to denote different kinds of interconnect technologies, e.g.
PCIe, QPI, Infiniband etc. Specifically, in the PCIe example
of Listing 3, the channels for upload and download are
modeled separately, since the energy and time cost for the
two channels might be different [7].

<!-- Descriptor file pcie3.xpdl: -->
<interconnect name="pcie3">
<channel name="up_link"
max_bandwidth="6" max_bandwidth_unit="GiB/s"
time_offset_per_message="?"
time_offset_per_message_unit="ns"
energy_per_byte="8" energy_per_byte_unit="pJ"
energy_offset_per_message="?"
energy_offset_per_message_unit="pJ" />

<channel name="down_link" ... />
</interconnect>

<!-- Descriptor file spi1.xpdl: -->
<interconnect name="spi...">
...

</interconnect>

Listing 3. Example meta-models for some interconnection networks

Device Modeling Listing 4 shows a concrete model for a
specific Myriad-equipped server (host PC with a Movidius
MV153 development board containing a Myriad1 DSP
processor), thus its name is specified with id instead of
name. This Myriad server uses several interconnections to
connect the host server to Myriad1, e.g. SPI and USB. For
an instantiation of any kind of interconnect, the connection
information must also be specified, e.g. using the head
and tail attributes for directed communication links.

<system id="myriad_server">
...
<socket>
<cpu id="myriad_host" type="Xeon1"

role="master"/>
</socket>
<device id="mv153board" type="Movidius_MV153" />
<interconnects>
<interconnect id="connect1" type="SPI"

head="myriad_host" tail="mv153board" />
<interconnect id="connect2" type="usb_2.0"

head="myriad_host" tail="mv153board" />
<interconnect id="connect3" type="hdmi"

head="myriad_host" tail="mv153board" />
<interconnect id="connect4" type="JTAG"

head="myriad_host" tail="mv153board" />
</interconnects>
...

</system>

Listing 4. A concrete model for a Myriad-equipped server

The device with the Myriad1 processor on it is
a Movidius MV153 card, whose meta-model named
Movidius_MV153 is specified in Listing 5 and which is

type-referenced from the Myriad server model.

<device name="Movidius_MV153">
<socket>
<cpu type="Movidius_Myriad1"

frequency="180" frequency_unit="MHz" />
</socket>

</device>

Listing 5. Example meta-model for Movidius MV153 board

The MV153 model in Listing 5 in turn refers to another
meta-model named Myriad1 which models the Myriad1
processor, see Listing 6.

<cpu name="Movidius_Myriad1">
<core id="Leon" type="Sparc_V8" endian="BE" >
<cache name="Leon_IC" size="4" unit="kB"

sets="1" replacement="LRU" />
<cache name="Leon_DC" size="4" unit="kB"

sets="1" replacement="LRU"
write_policy="writethrough" />

</core>
<group prefix="shave" quantity="8">
<core type="Myriad1_Shave" endian="LE" />

<cache name="Shave_DC" size="1" unit="kB"
sets="1" replacement="LRU"
write_policy="copyback" />

</core>
</group>
<cache name="ShaveL2" size="128" unit="kB" sets="2"

replacement="LRU" write_policy="copyback" />
<memory name="Movidius_CMX" type="CMX"

size="1" unit="MB" slices="8" endian="LE"/>
<memory name="LRAM" type="SRAM"

size="32" unit="kB" endian="BE" />
<memory name="DDR" type="LPDDR"

size="64" unit="MB" endian="LE" />
</cpu>

Listing 6. Example meta-model for Movidius Myriad1 CPU

<system id="liu_gpu_server">
<socket>
<cpu id="gpu_host" type="Intel_Xeon_E5_2630L"/>

</socket>
<device id="gpu1" type="Nvidia_K20c" />
<interconnects>
<interconnect id="connection1" type="pcie3"

head="gpu_host" tail="gpu1" />
</interconnects>

</system>

Listing 7. A concrete model for a GPU server

GPU modeling is shown in Listings 7–10. The K20c GPU
(Listing 9) inherits most of the descriptor contents from
its supertype Nvidia_Kepler (Listing 8) representing a
family of similar GPU types. The 64KB shared memory
space in each shared-memory multiprocessor (SM) on
Kepler GPUs can be partitioned among L1 cache and
shared memory in three different configurations (16+48,
32+32, 48+16 KB). This configurability is modeled by
defining constants (const), formal parameters (param)



and constraints, see Listing 8. In contrast, a concrete K20c
GPU instance as in Listing 10 uses one fixed configuration
that overrides the generic scenario inherited from the
metamodel. Note that some attributes of K20c are inherited
from the Nvidia Kepler supertype, while the K20c model
sets some uninitialized parameters like global memory size
(gmsz), and overwrites e.g. the inherited default value of
the attribute compute_capability.

<device name="Nvidia_Kepler" extends="Nvidia_GPU"
role="worker">

<compute_capability="3.0" />
<const name="shmtotalsize"... size="64" unit="KB"/>
<param name="L1size" configurable="true"

type="msize" range="16, 32, 64" unit="KB"/>
<param name="shmsize" configurable="true"

type="msize" range="16, 32, 64" unit="KB"/>
<param name="num_SM" type="integer"/>
<param name="coresperSM" type="integer"/>
<param name="cfrq" type="frequency" />
<param name="gmsz" type="msize" />
<constraints>
<constraint expr=

"L1size + shmsize == shmtotalsize" />
</constraints>
<group name="SMs" quantity="num_SM">
<group name="SM">

<group quantity="coresperSM">
<core type="..." frequency="cfrq" />

</group>
<cache name="L1" size="L1size" />
<memory name="shm" size="shmsize" />

</group>
</group>
<memory type="global" size="gmsz" />
...
<programming_model type="cuda6.0,...,opencl"/>
</device>

Listing 8. Example meta-model for Nvidia Kepler GPUs

<device name="Nvidia_K20c" extends="Nvidia_Kepler">
<compute_capability="3.5" />
<param name="num_SM" value="13" />
<param name="coresperSM" value="192" />
<param name="cfrq" frequency="706" ...unit="MHz"/>
<param name="gmsz" size="5" unit="GB" />
...
</device>

Listing 9. Example meta-model for Nvidia GPU K20c

<device id="gpu1" type="Nvidia_K20c">
<!-- fixed configuration: -->
<param name="L1size" size="32" unit="KB" />
<param name="shmsize" size="32" unit="KB" />
...
</device>

Listing 10. Example model for a concrete Nvidia GPU K20c

Cluster Modeling Listing 11 shows a concrete cluster model
in XPDL. The cluster has 4 nodes each equipped with 2
CPUs and 2 different GPUs. Within each node, the GPUs
are attached with PCIe3 interconnect, while an Infiniband
switch is used to connect different nodes to each other.

<system id="XScluster">
<cluster>
<group prefix="n" quantity="4">

<node>
<group id="cpu1">

<socket>
<cpu id="PE0" type="Intel_Xeon_..." />

</socket>
<socket>
<cpu id="PE1" type="Intel_Xeon_..." />

</socket>
</group>
<group prefix="main_mem" quantity="4">

<memory type="DDR3_4G" />
</group>
<device id="gpu1" type="Nvidia_K20c" />
<device id="gpu2" type="Nvidia_K40c" />
<interconnects>

<interconnect id="conn1" type="pcie3"
head="cpu1" tail="gpu1" />

<interconnect id="conn2" type="pcie3"
head="cpu1" tail="gpu2" />

</interconnects>
</node>

</group>
<interconnects>

<interconnect id="conn3" type="infiniband1"
head="n1" tail="n2" />

<interconnect id="conn4" type="infiniband1"
head="n2" tail="n3" />

...
</interconnects>

</cluster>
<software>
<hostOS id="linux1" type="Linux_..." />
<installed type="CUDA_6.0"

path="/ext/local/cuda6.0/" />
<installed type="CUBLAS_..." path="..." />
<installed type="StarPU_1.0" path="..." />

</software>
<properties>
<property name="ExternalPowerMeter" type="..."

command="myscript.sh" />
</properties>

</system>

Listing 11. Example of a concrete cluster machine

C. Power Modeling
Power modeling consists in modeling power domains,

power states with transitions and referencing to microbench-
marks for power benchmarking. A power model (instance)
is referred to from the concrete model of the processor, GPU
etc.

Power domains or power islands are groups of cores etc.
that need to be switched together in power state transitions.
Every hardware subcomponent not explicitly declared as
(part of) a (separate) power domain in a XPDL power
domain specification is considered part of the default (main)
power domain of the system. For the default power domain
there is only one power state that cannot be switched off and
on by software, i.e., there are no power state transitions.

For each explicitly defined power domain, XPDL allows
to specify the possible power states which are the states
of a finite state machine (the power state machine) that



abstract the available discrete DVFS and shutdown levels,
often referred to as P states and C states in the processor
documentation, specified along with their static energy levels
(derived by microbenchmarking or specified in-line as a
constant value where known). A power state machine has
power states and transitions, and must model all possible
transitions (switchings) between states that the programmer
can initiate, along with their concrete overhead costs in
switching time and energy.

The dynamic power depends, among other factors, on the
instruction type [7] and is thus specified for each instruction
type or derived automatically by a specific microbenchmark
that is referred to from the power model for each instruction.

With these specifications, the processor’s energy
model can be bootstrapped at system deployment time
automatically by running the microbenchmarks to derive
the unspecified entries in the power model where necessary.

<power_domains name="Myriad1_power_domains">
<!-- this island is the main island -->
<!-- and cannot be turned off -->
<power_domain name="main_pd"

enableSwitchOff="false">
<core type="Leon" />

</power_domain>
<group name="Shave_pds" quantity="8">
<power_domain name="Shave_pd">

<core type="Myriad1_Shave" />
</power_domain>

</group>
<!-- this island can only be turned off -->
<!-- if all the Shave cores are switched off -->
<power_domain name="CMX_pd"

switchoffCondition="Shave_pds off">
<memory type="CMX" />

</power_domain>
</power_domains>

Listing 12. Example meta-model for power domains of Movidius Myriad1

<power_state_machine name="power_state_machine1"
power_domain="xyCPU_core_pd">

<power_states>
<power_state name="P1" frequency="1.2"

frequency_unit="GHz"
power="20" power_unit="W" />

<power_state name="P2" frequency="1.6" ... />
<power_state name="P3" frequency="2.0" ... />

</power_states>
<transitions>
<transition head="P2" tail="P1"

time="1" time_unit="us"
energy="2" energy_unit="nJ"/>

<transition head="P3" tail="P2" ... />
<transition head="P1" tail="P3" ... />
</transitions>

</power_state_machine>

Listing 13. Example meta-model for a power state machine of a pseudo-
CPU

Listing 12 shows an example of a power domain meta-
model. It consists of one power domain for the Leon
core, eight power domains for each Shave core, etc. The
setting for attribute enableSwitchOff specifies that the

power domain for the Leon core can not be switched off.
The attribute switchoffCondition specifies that power
domain CMX_pd can only be switched off if the group of
power domains Shave_pds (all Shave cores) is switched
off.

Listing 13 shows an example of a power state machine
for a power domain xyCPU_core_pd in some CPU, with
the applicable power states and transitions by DVFS.

<instructions name="x86_base_isa"
mb="mb_x86_base_1" >

<inst name="fmul"
energy="?" energy_unit="pJ" mb="fm1"/>

<inst name="fadd"
energy="?" energy_unit="pJ" mb="fa1"/>

...
<inst name="divsd">
...
<data frequency="2.8"

energy="18.625" energy_unit="nJ"/>
<data frequency="2.9"

energy="19.573" energy_unit="nJ"/>
...
<data frequency="3.4"

energy="21.023" energy_unit="nJ"/>
</inst>
</instructions>

Listing 14. Example meta-model for instruction energy cost

Instruction Energy The instruction set of a processor is
modeled including references to corresponding microbench-
marks that allow to derive the dynamic energy cost for each
instruction automatically at deployment time. See Listing 14
for an example. For some instructions, concrete values may
be given, here as a function / value table depending on
frequency, which was experimentally confirmed. Otherwise,
the energy entry is set to a placeholder (?) stating that the
concrete energy cost is not directly available and needs to
be derived by microbenchmarking. On request, microbench-
marking can also be applied to instructions with given
energy cost and will then override the specified values.
Microbenchmarking An example specification of a
microbenchmark suite is shown in Listing 15. It refers
to a directory containing a microbenchmark for every
instruction of interest and a script that builds and runs the
microbenchmark to populate the energy cost entries.

<microbenchmarks id="mb_x86_base_1"
instruction_set="x86_base_isa"
path="/usr/local/micr/src"
command="mbscript.sh">

<microbenchmark id="fa1" type="fadd" file="fadd.c"
cflags="-O0" lflags="..." />

<microbenchmark id="mo1" type="mov" file="mov.c"
cflags="-O0" lflags="..." />

...
</microbenchmarks>

Listing 15. An example model for instruction energy cost



A power model thus consists of a description of its
power domains, their power state machines, and of the
microbenchmarks with deployment information.

D. Hierarchical Energy Modeling

A concrete system model forms a tree hierarchy, where
model elements such as socket, node and cluster
form inner nodes and others like gpu, cache etc. may
form leaves that contain no further modeling elements as
explicitly described hardware sub-components.

Every node in such a system model tree (e.g., of type cpu,
socket, device, gpu, memory, node, interconnect, cluster, or
system) has explicitly or implicitly defined attributes such as
static_power. These attributes are either directly given
for a node or derived (synthesized). Directly given attribute
values are either specified in-line (e.g., if it is a known con-
stant) or derived automatically at system deployment time
by specifying a reference to a microbenchmark. Synthesized
attributes2 can be calculated by applying a rule combining
attribute values of the node’s children in the model tree, such
as adding up static power values over the direct hardware
subcomponents of the node.

IV. XPDL TOOLCHAIN AND RUNTIME QUERY API

The XPDL processing tool to be developed in subsequent
work runs statically to build a run-time data structure based
on the XPDL descriptor files. It browses the XPDL model
repository for all required XPDL files recursively referenced
in a concrete model tree, parses them, generates an in-
termediate representation of the composed model in C++,
generates microbenchmarking driver code, invokes runs of
microbenchmarks where required to derive attributes with
unspecified values, filters out uninteresting values, performs
static analysis of the model (for instance, downgrading band-
width of interconnections where applicable as the effective
bandwidth should be determined by the slowest hardware
components involved in a communication link), and builds a
light-weight run-time data structure for the composed model
that is finally written into a file. The XPDL processing
tool should be configurable, thus the filtering rules for
uninteresting values and static analysis / model elicitation
rules can be tailored. Then the EXCESS run-time system or
the generated composition code can use the XPDL Runtime
Query API described further below to load the run-time
data structure file at program startup time, in order to query
platform information dynamically.

One important requirement of the XPDL query API is
to provide platform information to the upper optimization
layers in the EXCESS framework. Such relevant hardware
properties include whether a specific type of processor is
available as required for a specific software component
variant (conditional composition [3]), or what the expected

2Note the analogy to attribute grammars in compiler construction.

communication time or the energy cost to use an accelerator
is, etc.

At top level, we distinguish between two types of com-
puter systems: single-node and multiple-node computers. A
single-node computer has a basic master-slave structure and
a single operating system; a multiple-node computer has
several nodes.

The XPDL run-time query API provides run-time intro-
spection of the model structure and parameters, which can
be used for platform-aware dynamic optimizations [3]. It
consists of the following four categories of functions:

1) Initialization of the XPDL run-time query library.
For example, function int xpdl_init(char

*filename) initializes the XPDL run-time query
environment and loads the file with the run-time model
data structure as generated by the XPDL toolchain.

2) Functionality for browsing the model tree. These func-
tions look up inner elements of a model element and
return a pointer to an inner model tree object or array
of model tree objects respectively if existing, and
NULL otherwise.

3) Functions for looking up attributes of model elements,
which are likewise generated getter functions.

4) Model analysis functions for derived attributes, such
as counting the number of cores or of CUDA devices
in a model subtree or adding up static power con-
tributions in a model subtree. These getters can be
generated automatically from the rules that have been
specified to calculate these derived attributes from
existing attributes.

We map basically every element in XPDL to a run-time
model class in C++. Then the XPDL Query API consists
of the (generated) set of all getter functions for the member
variables of each C++ class. As also object references can
be queried, these allow to browse the whole model object
tree at runtime.

C++ classes (as opposed to structs in C) are a natural
choice because they allow for inheritance (as in UML and
XML-XPDL) which facilitates the modeling of families
of architectural blocks, and because we do not foresee
constraints in the query language choice limiting it to C,
because the XPDL query API is intended to be used on
CPU (i.e., general purpose cores linked to main memory)
only.

The XPDL model processing tool generates for all at-
tributes Query API functions as getter functions for the cor-
responding class member variables, such as m.get_id()
to retrieve the value of the id attribute for model object m.

The major part of the XPDL (run-time) query API
(namely the C++ classes corresponding to model element
types, with getters and setters for attribute values and model
navigation support) is generated automatically from the
central xpdl.xsd schema specification, which contains the
core metamodel of XPDL. C++ class names are derived from



name attributes, getter and setter names are based on the
declared attribute names etc. As the core XPDL schema
definition is shared (to be made available for download
on our web server), it will be easy to consistently update
the Query API to future versions of XPDL. In contrast,
the model analysis functions for derived attributes (such
as aggregating the overall number of cores in a system
etc.) will not be generated from the schema but need to be
implemented manually and can be included by inheritance.

Implementation Status Currently the XML schema, parser
(based on Xerces) and intermediate representation for XPDL
are completed, and the benchmarking driver generator and
runtime model generator are under development. When fin-
ished, the XPDL toolchain will be made publically available
as open-source software at www.excess-project.eu3.

V. RELATED WORK

Architecture description languages (ADL) for describ-
ing hardware architecture4 have been developed and used
mainly in the embedded systems domain since more than
two decades, mostly for modeling single-processor designs.
Hardware ADLs allow to model, to some degree of detail,
either or both the structure (i.e., the hardware subcom-
ponents of an architecture and how they are connected)
and the behavior (i.e., the set of instructions and their
effect on system state and resources). Depending on their
design and level of detail, such languages can serve as
input for different purposes: for hardware synthesis and
production e.g. as ASIC or FPGA, for generating (parts
of) a simulator for a processor design, or for generating
(parts of) the program development toolchain (compiler,
assembler, linker). Examples of such ADLs include Mimola,
nML, LISA, EXPRESSION, HMDES, ISDL, see e.g. [8]
for a survey and classification. In particular, languages used
by retargetable code generators (such as HMDES, LISA,
ISDL and xADML [6]) need to model not only the main
architectural blocks such as functional units and register
sets, but also the complete instruction set including resource
reservation table and pipeline structure with operand read
and write timing information for each instruction, such that a
optimizing generic or retargetable code generator (perform-
ing instruction selection, resource allocation, scheduling,
register allocation etc.) can be parameterized or generated,
respectively; see also Kessler [9] for a survey of issues in
(retargetable) code generation. Note that such ADLs differ
from the traditional hardware description languages (HDLs)

3For further information on XPDL and download, see also
http://www.ida.liu.se/labs/pelab/xpdl

4Note that the same term and acronym is also used for software archi-
tecture description languages, which allow to formally express a software
system’s high-level design in terms of coarse-grained software components
and their interconnections, and from which tools can generate platform-
specific glue code automatically to deploy the system on a given system
software platform. In this section we only refer to Hardware ADLs.

such as VHDL and Verilog which are mainly used for
low-level hardware synthesis, not for toolchain generation
because they lack high-level structuring and abstraction
required from a toolchain’s point of view. However, a HDL
model could be generated from a sufficiently detailed ADL
model.

Architecture description languages for multiprocessors
have become more popular in the last decade, partly due to
the proliferation of complex multicore designs even in the
embedded domain, but also because portable programming
frameworks for heterogeneous multicore systems such as
Sequoia [10] for Cell/B.E. and PEPPHER [2], [11] for GPU-
based systems respectively, need to be parameterized in
the relevant properties of the target architecture in order to
generate correct and optimized code. Sequoia [10] includes
a simple language for specifying the memory hierarchy
(memory modules and their connections to each other and to
processing units) in heterogeneous multicore systems with
explicitly managed memory modules, such as Cell/B.E.

MAML [12] is a structural, XML-based ADL for model-
ing, simulating and evaluating multidimensional, massively
parallel processor arrays.

Hwloc (Hardware Locality) [13] is a software package
that detects and represents the hardware resources visible to
the machine’s operating system in a tree-like hierarchy mod-
eling processing components (cluster nodes, sockets, cores,
hardware threads, accelerators), memory units (DRAM,
shared caches) and I/O devices (network interfaces). Like
XPDL, its main purpose is to provide structured information
about available hardware components, their locality to each
other and further properties, to the upper layers of system
and application software in a portable way.

ALMA-ADL [14] developed in the EU FP7 ALMA
project is an architecture description language to generate
hierarchically structured hardware descriptions for MPSoC
platforms to support parallelization, mapping and code
generation from high-level application languages such as
MATLAB or Scilab. For the syntax, it uses its own markup
language, which is extended with variables, conditions and
loop constructs for compact specifications, where the loop
construct is similar to the group construct in XPDL.

HPP-DL [15] is a platform description language devel-
oped in the EU FP7 REPARA project to support static and
dynamic scheduling of software kernels to heterogeneous
platforms for optimization of performance and energy effi-
ciency. Its syntax is based on JSON rather than XML. HPP-
DL provides predefined, typed main architectural blocks
such as CPUs, GPUs, memory units, DSP boards and buses
with their attributes, similarly to the corresponding XPDL
classes. In comparison to XPDL, the current specification
of HPP-DL [15] does not include support for modeling
of power states, dynamic energy costs, system software,
distributed specifications, runtime model access or automatic
microbenchmarking.



What ADLs generally omit is information about system
software such as operating system, runtime system and
libraries, because such information is of interest rather
for higher-level tools and software layers, as for compos-
ing annotated multi-variant components in PEPPHER and
EXCESS. As discussed earlier, PDL [1] models software
entities only implicitly and ad-hoc via free-form key-value
properties. None of the ADLs considered puts major empha-
sis on modeling of energy and energy-affecting properties.
To the best of our knowledge, XPDL is the first ADL for
heterogeneous multicore systems that provides high-level
modeling support also for system software entities, and
that has extensive support for modeling energy and energy-
affecting factors such as power domains and power state
machines.

VI. CONCLUSION

We proposed XPDL, a portable and extensible platform
description language for modeling performance and energy
relevant parameters of computing systems in a structured
but modular and distributed way. It supports retargetable
toolchains for energy modeling and optimization, and allows
application and system code to introspect its own execution
environment with its properties and parameters, such as
number and type of cores and memory units, cache sizes,
available voltage and clock frequency levels, power domains,
power states and transitions, etc., but also installed system
software (programming models, runtime system, libraries,
compilers, ...). We observe that, beyond our own work,
such functionality is needed also in other projects in the
computing systems community, and we thus hope that
this work will contribute towards a standardized platform
description language promoting retargetability and platform-
aware execution.

ACKNOWLEDGMENT

This research was partially funded by EU FP7 project
EXCESS (www.excess-project.eu) and SeRC (www.e-
science.se) project OpCoReS.

We thank Dmitry Khabi from HLRS Stuttgart for sug-
gestions on cluster modeling. We thank Jörg Keller from
FernUniv. Hagen, Anders Gidenstam from Chalmers and all
EXCESS project members for comments on this work. We
also thank Ming-Jie Yang for improvements of the current
XPDL toolchain prototype.

REFERENCES

[1] M. Sandrieser, S. Benkner, and S. Pllana, “Using explicit plat-
form descriptions to support programming of heterogeneous
many-core systems,” Parallel Computing, vol. 38, no. 1-2, pp.
52–65, 2012.

[2] U. Dastgeer, L. Li, and C. Kessler, “The PEPPHER compo-
sition tool: Performance-aware composition for GPU-based
systems,” Computing, vol. 96, no. 12, pp. 1195–1211, Dec.
2014.

[3] U. Dastgeer and C. W. Kessler, “Conditional component
composition for GPU-based systems,” in Proc. MULTIPROG-
2014 wksh. at HiPEAC’14 conf., Vienna, Austria, Jan. 2014.

[4] C. Kessler, L. Li, U. Dastgeer, A. Gidenstam, and A. Atalar,
“D1.2 initial specification of energy, platform and component
modelling framework,” EU FP7 project EXCESS (611183),
Tech. Rep., Aug. 2014.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier, “StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures,” Concurrency and
Computation: Practice and Experience, Special Issue: Euro-
Par 2009, vol. 23, pp. 187–198, Feb. 2011.

[6] A. Bednarski, “Integrated optimal code generation for Digital
Signal Processors,” Ph.D. dissertation, Linköping Univ., 2006.

[7] C. Kessler, L. Li, U. Dastgeer, P. Tsigas, A. Gidenstam,
P. Renaud-Goud, I. Walulya, A. Atalar, D. Moloney, P. H.
Hoai, and V. Tran, “D1.1 Early validation of system-wide
energy compositionality and affecting factors on the EXCESS
platforms,” Project Deliverable, EU FP7 project EXCESS,
www.excess-project.eu, Apr. 2014.

[8] P. Mishra and N. Dutt, “Architecture description languages for
programmable embedded systems,” IEE Proc.-Comput. Digit.
Tech., vol. 152, no. 3, pp. 285–297, May 2005.

[9] C. Kessler, “Compiling for VLIW DSPs,” in Handbook of
Signal Processing Systems, 2nd ed., S. Bhattacharyya, E. De-
prettere, R. Leupers, and J. Takala, Eds. Springer, Sep. 2013.

[10] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston,
J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan, “Sequoia: Programming the memory hierarchy,”
in ACM/IEEE Supercomputing, 2006, p. 83.

[11] S. Benkner, S. Pllana, J. L. Träff, P. Tsigas, U. Dolinsky,
C. Augonnet, B. Bachmayer, C. Kessler, D. Moloney, and
V. Osipov, “PEPPHER: Efficient and productive usage of
hybrid computing systems,” IEEE Micro, vol. 31, no. 5, pp.
28–41, 2011.

[12] A. Kupriyanov, F. Hannig, D. Kissler, J. Teich, R. Schaffer,
and R. Merker, “An architecture description language for
massively parallel processor architectures,” in GI/ITG/GMM-
Workshop - Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Sytemen, Feb.
2006, pp. 11–20.

[13] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento,
B. Goglin, G. Mercier, S. Thibault, and R. Namyst, “hwloc: A
generic framework for managing hardware affinities in HPC
applications,” in Proc. 18th Euromicro Conf. on Par., Distr.
and Netw.-based Proc. (PDP). IEEE CS, 2010, pp. 180–186.

[14] T. Stripf, O. Oey, T. Bruckschloegl, R. Koenig, J. Becker,
G. Goulas, P. Alefragis, N. Voros, J. Potman, K. Sunesen,
S. Derrien, and O. Sentieys, “A Compilation- and Simulation-
Oriented Architecture Description Language for Multicore
Systems,” Proc. 2012 IEEE 15th Int. Conf. on Computational
Science and Engineering, Nicosia, Dec. 2012, pp. 383–390.

[15] L. Sanchez (ed.), “D3.1: Target Platform Description Spec-
ification,” EU FP7 REPARA project deliverable report,
http://repara-project.eu, Apr. 2014.


