
E�
ient Simulation of Fork Programs on Multi
oreMa
hinesJörg Keller1, Christoph Keÿler2, and Bert Wesarg3

1 FernUniversität in Hagen, Dept. of Math. and Computer S
ien
e, 58084 Hagen, Germanyjoerg.keller�fernuni-hagen.de
2 Linköpings Universitet, Dept. of Computer and Inf. S
ien
e, 58183 Linköping, Sweden
hrke�ida.liu.se

3 Te
hn. Univ. Dresden, Center for Inf. Servi
es and High Performan
e Computing, 01062 Dresden, Germanybert.wesarg�tu-dresden.deAbstra
t. The SB-PRAM proje
t resulted in the PRAM programming language Fork and in a
om-plete tool
hain from algorithms, libraries and a
ompiler to a prototype hardware and a sequentialsimulator of that prototype. With the prototype be
oming defun
t, the ne
essity arose to parallelizethe simulator to be able to simulate larger Fork programs in a reasonable time on a multi
ore ma
hine.We present an approa
h to in
rease the granularity of parallelism in the simulation and hen
e in
reasethe speedup. The
ompiler forwards stru
tural information of the Fork programming model via the
ode to the simulator. The simulator exploits this information at runtime to redu
e syn
hronizationoverhead. We report on preliminary experimental results with a syntheti
 ben
hmark that indi
atethat our approa
h is advantageous.Key words: PRAM simulation, granularity of parallelism, multi
ore programming1 Introdu
tionThe parallel random a

ess ma
hine (PRAM) is an important
on
ept to study the inher-ent parallelism of problems and to devise parallel algorithms without
onsideration of ortweaking to ar
hite
tural parti
ulars of a target ma
hine. While PRAM algorithms were
onsidered unpra
ti
al for a long time, the SB-PRAM proje
t provided the programminglanguage Fork together with a
ompiler, a runtime system and the PAD library of basi
algorithms on top of the SB-PRAM ma
hine, a parallel ar
hite
ture to e�
iently exe
uteFork programs. In addition, the SB-PRAM simulator program provides support for Forkprogram development and debugging. See [1℄ for a detailed introdu
tion into all of theseissues.Yet, as typi
ally happens with prototypes, the SB-PRAM hardware be
ame outdatedquite fast and �nally got disassembled in 2006. While the simulator remained, it is a sequen-tial
ode and simulation of larger program instan
es would take days. As tea
hing of parallelalgorithms and programming has be
ome popular again be
ause of multi
ore CPUs beingrather the rule than the ex
eption these days, and pra
ti
al assignments should go beyondtoy problems [2℄, we de
ided to provide a more powerful platform for Fork programming:a parallelized simulator program to emulate the SB-PRAM instru
tion set ar
hite
ture ona
ontemporary shared memory parallel ma
hine. While there are other PRAM languagessu
h as ll [3℄, e [4℄ and XMTC [5℄, they either do not mention a simulator, or only providea sequential simulator, so that we
ould hardly build on related work, ex
ept for paralleldis
rete event simulation in general [6℄.In a previous attempt to parallelize this simulator [7℄ we explored the inherent parallelismbetween the PRAM pro
essors but had to learn that this parallelism is very �ne-grained,down to the level where the syn
hronization overhead is overall dominant. We were mod-erately su

essful in enlarging this granularity but
ould only a
hieve speedups on quitearti�
ial program
ode.In the present work we present a new approa
h to redu
e the syn
hronization overheadby exploiting stru
tural information available in the Fork programming model. Ea
h Fork

program maintains a logi
al partitioning of the pro
essors into groups. Initially all startedpro
essors run syn
hronously in a root group. Upon arrival of a fork statement or
ontrol�ow statements su
h as if with a
ondition that depends on the pro
essor ID (e.g. by usingpro
essor-lo
al variables) the parti
ipating pro
essors are split into subgroups, two in thelatter
ase, more in the former
ase. At the end of the statement, the subgroups syn
hronizeand join again to form the original group. The (sub)groups form a tree starting with theroot group of all started pro
essors. Only the leaf groups (whi
h
ontain disjoint subsetsof pro
essors) of this tree are a
tive. Fork only guarantees the syn
hroni
ity among thepro
essors of ea
h leaf group.We have instrumented the Fork
ompiler to emit new instru
tions to
ommuni
ate withthe simulator in a one way fashion. These annotations signal the simulator when a groupsplits and when its subgroups will join again. With this information the simulator is
apableto maintain the group tree by itself at runtime. The simulator uses this group tree toexe
ute leaf node groups with low overhead. All PRAM pro
essors in one leaf node groupare simulated sequentially on one
ore round-robin instru
tion by instru
tion to maintainthe syn
hroni
ity property of the Fork language, therefore avoiding any syn
hronizationoverhead of this �ne-grained parallelism. Di�erent leaf node groups
an be exe
uted inparallel without any syn
hronization be
ause they are independent. Only in the
ase ofgroup merges a syn
hronization is ne
essary. A side e�e
t of this group monitoring approa
his the avoidan
e of busy waiting when subgroups join again, so that already a 1-threadedversion of our approa
h a
hieves a speedup over the previous simulator. With multi-threadedversions, we a
hieve a speedup over the previous simulator, and a
hieve a small speedupover the 1-threaded version for frequent situations. We explore the performan
e advantageswith the help of a parameterizable syntheti
 ben
hmark.The remainder of this arti
le is organized as follows. In Se
t. 2 we brie�y summarize
hallenges in the simulation of PRAM programs that motivate our simulator design. InSe
t. 3 we report on preliminary experimental results. Se
tion 4
on
ludes.2 Challenges in Parallel PRAM SimulationThe PRAMmodel assumes that all pro
essors are exe
uting their instru
tions syn
hronously,so this also is the semanti
s of the SB-PRAM instru
tion set ar
hite
ture whi
h is the targetof the Fork
ompiler. In Fork all pro
essors in the beginning exe
ute the same instru
tionsin an SPMD style like in MPI, i.e. they form a syn
hronous pro
essor group. With thefork-statement, pro
essors
an be split into subgroups by evaluating an expression whi
h isdire
tly or indire
tly dependent on the pro
essor IDs. A similar situation with two subgroupsappears when a group exe
utes an if-statement with a
ondition somehow dependent onthe pro
essor IDs. Other situations where a group splits exist, su
h as a loop where thenumber of iterations is dependent on the pro
essor IDs. The pro
essors of ea
h subgroupare syn
hronous, while the di�erent subgroups are asyn
hronous. As a subgroup
an besplit again, at any time the groups form a group tree of whi
h only the leaf node groups are
urrently a
tive, and those leaves
ontain a partitioning of all PRAM pro
essors.When a group has split into subgroups, the subgroups unite again into the previousgroup after they have exe
uted their blo
k of instru
tions, su
h as then and else bran
hesin the
ase of an if-statement. As the subgroups are asyn
hronous, they must pass a barrierto unite again. As the SB-PRAM was
onsidered a single-user ma
hine, a busy-waiting hasbeen implemented.In order to simulate the SB-PRAM sequentially, the pro
essors are simulated round-robin, one instru
tion at a time. This guarantees the syn
hronous semanti
s but does notdire
tly lead to a parallel simulation.

Note that there is also an asyn
hronous mode within Fork entered by the farm-statement.In this mode, all pro
essors exe
ute statements independently, i.e. they may be
ome asyn-
hronous. The user is responsible for taking appropriate a
tion for
oordination and avoid-ing ra
e
onditions, as is the
ase with other shared memory environments su
h as POSIXthreads. Therefore, simulation on a multi
ore
an be done by distributing the PRAM pro-
essors onto the
ores and simulating larger blo
ks of instru
tions for ea
h PRAM pro
essorbefore swit
hing to the next. As the asyn
hronous mode does not provide major
hallenges,we
on
entrate on the simulation of the syn
hronous mode.In a previous attempt to parallelize the simulation for the syn
hronous mode [7℄, we havesurveyed a number of possible approa
hes and �nally implemented the time-warp optimisti
simulation te
hnique to perform a parallel simulation of all pro
essors, taking a

ess toshared memory as the events to be ordered by the time-warp simulation. However, thegranularity of the available parallelism was so �ne that only a moderate speedup
ould bea
hieved with a
ombination of te
hniques to
oarsen that granularity, and on quite arti�
ialben
hmarks.Therefore, we try a di�erent approa
h here: The pro
essors of ea
h leaf node group aresimulated sequentially as in the sequential simulator. The di�erent leaf node groups
an besimulated in parallel without overhead on di�erent
ores of our multi
ore platform as theyare asyn
hronous. The PRAM shared memory is realized by allo
ation on the heap of theshared memory in the multi
ore platform. A

ess by PRAM pro
essors of ea
h group isserialized and hen
e the PRAM semanti
s is maintained. A

ess by di�erent groups is not
oordinated. The reasons are explained below. When a group is split into subgroups, thegroup tree representation in the simulator is extended, and the pro
essors of the group aresplit onto the subgroups. As long as there are more threads than a
tive leaf node groups,ea
h group is assigned to a thread of its own. If there are more groups than threads, we use arunqueue of a
tive groups served by the threads. When a group is joining again with anothergroup, it is taken out of the runqueue until the other group has arrived as well. Thus, thebusy waiting overhead is avoided. The threads are not terminated when groups join, butare re-used as we use a form of thread pooling. Also, there is no involuntary migration ofgroups between threads. One simulator thread exe
utes a pro
essor group until it eithermerges with its siblings or it splits itself into subgroups. Therefore the thread overhead isrestri
ted to the split and merge of groups.Unfortunately, the overhead for maintaining the group tree inside the simulator is notnegligible in all
ases. For example, if there are many leaf node groups that regularly mergeagain, then the threads regularly a

ess the runqueue so that its lo
k has
ontention. Yet,in typi
al
ode with some stru
ture the overhead is small as the results in Se
t. 3 indi
ate.In order to perform the operations above, the simulator must know when groups splitand unite again. To a
hieve this, we enhan
ed the Fork
ompiler to instrument the generated
ode to provide this information to the simulator. The instrumentation
omes in the form ofadditional instru
tions inserted by the
ompiler. We assigned a new instru
tion op
ode to
reate the instrumentation instru
tion, be
ause no existing instru
tion should be overloaded.This approa
h has the advantage that only the
ompiler ba
kend had to be modi�ed. Theparallel simulator will not exe
ute these instru
tions but a
t as des
ribed above.The PRAM instru
tion set
omprises read-modify-write instru
tions whi
h are used assyn
hronization primitives between pro
essor groups. These instru
tions were simulated withnon-atomi
 instru
tions in the sequential simulator. In the multi-threaded simulator theseinstru
tions are implemented with atomi
 instru
tions provided by the host ar
hite
ture.Using atomi
 memory a

ess is not always required by the simulated
ode, but there is
urrently no information available whether the a�e
ted memory lo
ation will be a

essedby multiple groups or not. This
an lead to performan
e regressions in the simulator.

While two subgroups are asyn
hronous, they still both may a

ess the same sharedvariable, su
h as in the following example
ode.sh int a;if (...private
ondition...) { // subgroup 1a = ...;... = ... a ...;} else { // subgroup 2... = ... a ...;} Here subgroup 1 �rst writes into shared variable a, then a is read and the new valueis used in the se
ond assignment. Subgroup 2 reads a and uses it in the assignment. AsFork makes no assumption about the subgroups' progress relatively to ea
h other, two
ases
an o

ur: either all pro
essors in subgroup 2 read the old value of a, or all pro
essorsin subgroup 2 read the new value of a. Typi
ally, we assume that an algorithm does notdepend on whi
h
ase a
tually o

urs; we
all su
h algorithms robust. Algorithms that arenot robust may lead to ra
e
onditions depending on the simulation, so we do not
onsiderthem further.Textbooks on PRAM algorithms su
h as [8,9,10,11℄ do not en
ounter this problem, asthey do not treat hierar
hi
al partitioning of pro
essors in detail and
onsider all pro
essorsas one group exe
uting one
ode syn
hronously, even when if statements with private
onditions appear. Still, the algorithms presented there normally are robust.3 Experimental ResultsWe use a syntheti
 ben
hmark to explore the bene�ts of our implementation. Although the
ode is rather simple, it
overs a wide range of PRAM algorithms. The pseudo-
ode looksas follows:times (4) {fork (#subgroups) {do_work(load +/- groupdev);}do_work(load * loadratio);} First, the p PRAM pro
essors are split into an adjustable number of subgroups whi
hall have the same size (assuming that #subgroups divides p.) Ea
h subgroup then exe-
utes routine do_work with an adjustable load modi�ed by variation groupdev. Then thesubgroups syn
hronize and the root group (
onsisting of all p pro
essors) exe
utes routinedo_work with the load s
aled by parameter loadratio. The whole ben
hmark is repeatedfour times to even out runtime e�e
ts from other pro
esses.The parameter load serves to model the amount of useful work in
ontrast to the over-head of group splitting and joining. The parameter groupdev serves to model the runtimedi�eren
es of di�erent subgroups. The parameter loadratio serves to model the fra
tion ofthe simulation that is purely sequential be
ause all PRAM pro
essors form a single group.All experiments simulate p = 4096 PRAM pro
essors. We
ompare the sequential sim-ulator with our approa
h using 1, 4 and 8 threads respe
tively, running on a quad
orepro
essor (AMD Phenom II X4 920 pro
essor, 4 × 2.8 GHz, 4 × 512 kB L2-
a
he, 6MBshared L3-
a
he.)

Fig. 1 depi
ts a situation with a very low workload of 16, no load deviation, and astrong sequential part with a load ratio of 50%, i.e. a situation quite un
omfortable for ourapproa
h. Still all versions a
hieve a speedup of about 1.4 for up to 256 subgroups, althoughwe only see a small speedup of the multi-threaded versions over the single-threaded versionfor 2 and 4 subgroups, whi
h however is a frequent
ase resulting from an if-statement (or twonested if-statements) with private
ondition. For large numbers of subgroups, the overhead ingroup tree administration strongly in
reases without providing appropriate bene�t be
ausethe large number of subgroups leads to negative
a
he e�e
ts. The 8-threaded version is onlyslightly faster than the 4-threaded version in some situations, whi
h indi
ates that alreadyone thread per
ore is able to keep that
ore busy.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 16, loadratio = 50%, groupdev = 0%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 1. Runtimes with low even workload and strong sequential part.In Fig. 2 the load in
reases to 256. The situation is not really di�erent from the previousone, whi
h indi
ates that the group tree administration is not a bottlene
k. In Fig. 3 wede
rease the load ratio to 1% and see a sharp in
rease to a speedup of 2 over the sequentialsimulator, and a notable in
rease in the speedup of the multi-threaded versions over thesingle-threaded version for 2, 4 and 8 subgroups. In Fig. 4 we let the load deviate by up to25%. We immediately noti
e that the runtime of the sequential simulator is in
reasing withthe number of subgroups, be
ause the load is not balan
ed anymore, and groups waitingfor syn
hronization do a busy-wait. The speedup over the sequential version is larger thanin any previous �gure, be
ause the groups waiting for a join with other groups are simplytaken out of the run-queue until all groups parti
ipating in the join have arrived there.The speedup of the multi-threaded versions over the single threaded version for 2, 4 and 8subgroups is still small but visible.4 Con
lusionsWe have presented a new approa
h to a

elerating the exe
ution of Fork programs on mul-ti
ore pro
essors by exploiting the pro
essor group stru
ture in Fork. Our experimental

 40

 45

 50

 55

 60

 65

 70

 75

 80

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 256, loadratio = 50%, groupdev = 0%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 2. Runtimes with workload in
reased
ompared to Fig. 1.

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 256, loadratio = 1%, groupdev = 0%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 3. Runtimes with sequential part de
reased
ompared to Fig. 2.

 20

 30

 40

 50

 60

 70

 80

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

si
m

ul
at

io
n

tim
e

[s
ec

]

#subgroups [#]

p = 4096, load = 256, loadratio = 1%, groupdev = 25%

strict sequential
group sequential
group 4 threads
group 8 threads

Fig. 4. Runtimes with load deviation in
reased
ompared to Fig. 3.results indi
ate that already a single-threaded version shortens simulation time by a fa
torof 1.5 to 2. The multi-threaded versions a
hieve a small but noti
eable speedup over thesingle-threaded version for the important
ase of a small number of subgroups.For future work, another a

eleration
ould be a
hieved by having the instru
tion streamfor all pro
essors of one group only de
oded on
e and only exe
ute the same instru
tion ondi�erent pro
essors with di�erent register
ontents as in a SIMD style.It would also be ni
e to have a fore
ast on the simulation speedup to be expe
ted when
ompiling the program. While this is possible in simple
ases where the group tree stru
tureis quite regular and not depending on input data, the general
ase would involve more orless a
omplete runtime analysis of the parallel program and thus seems out of rea
h.Referen
es1. Keller, J., Keÿler, C.W., Trä�, J.L.: Pra
ti
al PRAM Programming. Wiley & Sons (2001)2. Kessler, C.W.: A pra
ti
al a

ess to the theory of parallel algorithms. In: Pro
. of ACM SIGCSE'04 Symposiumon Computer S
ien
e Edu
ation. (2004)3. León, C., Sande, F., Rodríguez, C., Gar
ía, F.: A PRAM oriented language. In: Pro
. EUROMICRO PDP'95Workshop on Parallel and Distributed Pro
essing. (1995) 182�1914. Forsell, M.: e�a language for thread-level parallel programming on syn
hronous shared memory NOCs. WSEASTransa
tions on Computers 3(3) (2004) 807�8125. Wen, X., Vishkin, U.: FPGA-based prototype of a PRAM-on-
hip pro
essor. In: CF '08: Pro
eedings of the 5th
onferen
e on Computing frontiers. (2008) 55�666. Fujimoto, R.M.: Parallel dis
rete event simulation. Communi
ations of the ACM 33(10) (1990) 30�537. Wesarg, B., Blaar, H., Keller, J., Kessler, C.: Emulating a PRAM on a parallel
omputer. In: Pro
. 21stWorkshop on Parallel Algorithms and Ar
hite
tures (PARS 2007). (2007)8. Akl, S.G.: The Design and Analysis of Parallel Algorithms. Prenti
e Hall, Englewood Cli�s, NJ (1989)9. Gibbons, A., Rytter, W.: E�
ient Parallel Algorithms. Cambridge University Press (1988)10. JáJá, J.: An Introdu
tion to Parallel Algorithms. Addison-Wesley, Reading, MA (1992)11. Karp, R.M., Rama
handran, V.L.: A survey of parallel algorithms for shared�memory ma
hines. In van Leeuwen,J., ed.: Handbook of Theoreti
al Computer S
ien
e, Vol. A. Elsevier (1990) 869�941

