Efficient Simulation of Fork Programs on Multicore
Machines

Jorg Keller!, Christoph Kefler?, and Bert Wesarg?

! FernUniversitit in Hagen, Dept. of Math. and Computer Science, 58084 Hagen, Germany
joerg.keller@fernuni-hagen.de
2 Linkopings Universitet, Dept. of Computer and Inf. Science, 58183 Linkoping, Sweden
chrke@ida.liu.se
3 Techn. Univ. Dresden, Center for Inf. Services and High Performance Computing, 01062 Dresden, Germany
bert.wesarg@tu-dresden.de

Abstract. The SB-PRAM project resulted in the PRAM programming language Fork and in a com-
plete tool chain from algorithms, libraries and a compiler to a prototype hardware and a sequential
simulator of that prototype. With the prototype becoming defunct, the necessity arose to parallelize
the simulator to be able to simulate larger Fork programs in a reasonable time on a multicore machine.
We present an approach to increase the granularity of parallelism in the simulation and hence increase
the speedup. The compiler forwards structural information of the Fork programming model via the
code to the simulator. The simulator exploits this information at runtime to reduce synchronization
overhead. We report on preliminary experimental results with a synthetic benchmark that indicate
that our approach is advantageous.

Key words: PRAM simulation, granularity of parallelism, multicore programming

1 Introduction

The parallel random access machine (PRAM) is an important concept to study the inher-
ent parallelism of problems and to devise parallel algorithms without consideration of or
tweaking to architectural particulars of a target machine. While PRAM algorithms were
considered unpractical for a long time, the SB-PRAM project provided the programming
language Fork together with a compiler, a runtime system and the PAD library of basic
algorithms on top of the SB-PRAM machine, a parallel architecture to efficiently execute
Fork programs. In addition, the SB-PRAM simulator program provides support for Fork
program development and debugging. See [1] for a detailed introduction into all of these
issues.

Yet, as typically happens with prototypes, the SB-PRAM hardware became outdated
quite fast and finally got disassembled in 2006. While the simulator remained, it is a sequen-
tial code and simulation of larger program instances would take days. As teaching of parallel
algorithms and programming has become popular again because of multicore CPUs being
rather the rule than the exception these days, and practical assignments should go beyond
toy problems [2]|, we decided to provide a more powerful platform for Fork programming:
a parallelized simulator program to emulate the SB-PRAM instruction set architecture on
a contemporary shared memory parallel machine. While there are other PRAM languages
such as Il [3], e [4] and XMTC [5], they either do not mention a simulator, or only provide
a sequential simulator, so that we could hardly build on related work, except for parallel
discrete event simulation in general [6].

In a previous attempt to parallelize this simulator [7| we explored the inherent parallelism
between the PRAM processors but had to learn that this parallelism is very fine-grained,
down to the level where the synchronization overhead is overall dominant. We were mod-
erately successful in enlarging this granularity but could only achieve speedups on quite
artificial program code.

In the present work we present a new approach to reduce the synchronization overhead
by exploiting structural information available in the Fork programming model. Each Fork

program maintains a logical partitioning of the processors into groups. Initially all started
processors run synchronously in a root group. Upon arrival of a fork statement or control
flow statements such as if with a condition that depends on the processor ID (e.g. by using
processor-local variables) the participating processors are split into subgroups, two in the
latter case, more in the former case. At the end of the statement, the subgroups synchronize
and join again to form the original group. The (sub)groups form a tree starting with the
root group of all started processors. Only the leaf groups (which contain disjoint subsets
of processors) of this tree are active. Fork only guarantees the synchronicity among the
processors of each leaf group.

We have instrumented the Fork compiler to emit new instructions to communicate with
the simulator in a one way fashion. These annotations signal the simulator when a group
splits and when its subgroups will join again. With this information the simulator is capable
to maintain the group tree by itself at runtime. The simulator uses this group tree to
execute leaf node groups with low overhead. All PRAM processors in one leaf node group
are simulated sequentially on one core round-robin instruction by instruction to maintain
the synchronicity property of the Fork language, therefore avoiding any synchronization
overhead of this fine-grained parallelism. Different leaf node groups can be executed in
parallel without any synchronization because they are independent. Only in the case of
group merges a synchronization is necessary. A side effect of this group monitoring approach
is the avoidance of busy waiting when subgroups join again, so that already a 1-threaded
version of our approach achieves a speedup over the previous simulator. With multi-threaded
versions, we achieve a speedup over the previous simulator, and achieve a small speedup
over the 1-threaded version for frequent situations. We explore the performance advantages
with the help of a parameterizable synthetic benchmark.

The remainder of this article is organized as follows. In Sect. 2 we briefly summarize
challenges in the simulation of PRAM programs that motivate our simulator design. In
Sect. 3 we report on preliminary experimental results. Section 4 concludes.

2 Challenges in Parallel PRAM Simulation

The PRAM model assumes that all processors are executing their instructions synchronously,
so this also is the semantics of the SB-PRAM instruction set architecture which is the target
of the Fork compiler. In Fork all processors in the beginning execute the same instructions
in an SPMD style like in MPI, i.e. they form a synchronous processor group. With the
fork-statement, processors can be split into subgroups by evaluating an expression which is
directly or indirectly dependent on the processor IDs. A similar situation with two subgroups
appears when a group executes an if-statement with a condition somehow dependent on
the processor IDs. Other situations where a group splits exist, such as a loop where the
number of iterations is dependent on the processor IDs. The processors of each subgroup
are synchronous, while the different subgroups are asynchronous. As a subgroup can be
split again, at any time the groups form a group tree of which only the leaf node groups are
currently active, and those leaves contain a partitioning of all PRAM processors.

When a group has split into subgroups, the subgroups unite again into the previous
group after they have executed their block of instructions, such as then and else branches
in the case of an if-statement. As the subgroups are asynchronous, they must pass a barrier
to unite again. As the SB-PRAM was considered a single-user machine, a busy-waiting has
been implemented.

In order to simulate the SB-PRAM sequentially, the processors are simulated round-
robin, one instruction at a time. This guarantees the synchronous semantics but does not
directly lead to a parallel simulation.

Note that there is also an asynchronous mode within Fork entered by the farm-statement.
In this mode, all processors execute statements independently, i.e. they may become asyn-
chronous. The user is responsible for taking appropriate action for coordination and avoid-
ing race conditions, as is the case with other shared memory environments such as POSIX
threads. Therefore, simulation on a multicore can be done by distributing the PRAM pro-
cessors onto the cores and simulating larger blocks of instructions for each PRAM processor
before switching to the next. As the asynchronous mode does not provide major challenges,
we concentrate on the simulation of the synchronous mode.

In a previous attempt to parallelize the simulation for the synchronous mode [7], we have
surveyed a number of possible approaches and finally implemented the time-warp optimistic
simulation technique to perform a parallel simulation of all processors, taking access to
shared memory as the events to be ordered by the time-warp simulation. However, the
granularity of the available parallelism was so fine that only a moderate speedup could be
achieved with a combination of techniques to coarsen that granularity, and on quite artificial
benchmarks.

Therefore, we try a different approach here: The processors of each leaf node group are
simulated sequentially as in the sequential simulator. The different leaf node groups can be
simulated in parallel without overhead on different cores of our multicore platform as they
are asynchronous. The PRAM shared memory is realized by allocation on the heap of the
shared memory in the multicore platform. Access by PRAM processors of each group is
serialized and hence the PRAM semantics is maintained. Access by different groups is not
coordinated. The reasons are explained below. When a group is split into subgroups, the
group tree representation in the simulator is extended, and the processors of the group are
split onto the subgroups. As long as there are more threads than active leaf node groups,
each group is assigned to a thread of its own. If there are more groups than threads, we use a
runqueue of active groups served by the threads. When a group is joining again with another
group, it is taken out of the runqueue until the other group has arrived as well. Thus, the
busy waiting overhead is avoided. The threads are not terminated when groups join, but
are re-used as we use a form of thread pooling. Also, there is no involuntary migration of
groups between threads. One simulator thread executes a processor group until it either
merges with its siblings or it splits itself into subgroups. Therefore the thread overhead is
restricted to the split and merge of groups.

Unfortunately, the overhead for maintaining the group tree inside the simulator is not
negligible in all cases. For example, if there are many leaf node groups that regularly merge
again, then the threads regularly access the runqueue so that its lock has contention. Yet,
in typical code with some structure the overhead is small as the results in Sect. 3 indicate.

In order to perform the operations above, the simulator must know when groups split
and unite again. To achieve this, we enhanced the Fork compiler to instrument the generated
code to provide this information to the simulator. The instrumentation comes in the form of
additional instructions inserted by the compiler. We assigned a new instruction opcode to
create the instrumentation instruction, because no existing instruction should be overloaded.
This approach has the advantage that only the compiler backend had to be modified. The
parallel simulator will not execute these instructions but act as described above.

The PRAM instruction set comprises read-modify-write instructions which are used as
synchronization primitives between processor groups. These instructions were simulated with
non-atomic instructions in the sequential simulator. In the multi-threaded simulator these
instructions are implemented with atomic instructions provided by the host architecture.
Using atomic memory access is not always required by the simulated code, but there is
currently no information available whether the affected memory location will be accessed
by multiple groups or not. This can lead to performance regressions in the simulator.

While two subgroups are asynchronous, they still both may access the same shared
variable, such as in the following example code.

sh int a;

if (...private condition...) { // subgroup 1
a= ...;

oA .

// subgroup 2
a ..

} else

= n -

Here subgroup 1 first writes into shared variable a, then a is read and the new value
is used in the second assignment. Subgroup 2 reads a and uses it in the assignment. As
Fork makes no assumption about the subgroups’ progress relatively to each other, two cases
can occur: either all processors in subgroup 2 read the old value of a, or all processors
in subgroup 2 read the new value of a. Typically, we assume that an algorithm does not
depend on which case actually occurs; we call such algorithms robust. Algorithms that are
not robust may lead to race conditions depending on the simulation, so we do not consider
them further.

Textbooks on PRAM algorithms such as [8,9,10,11] do not encounter this problem, as
they do not treat hierarchical partitioning of processors in detail and consider all processors
as one group executing one code synchronously, even when if statements with private
conditions appear. Still, the algorithms presented there normally are robust.

3 Experimental Results

We use a synthetic benchmark to explore the benefits of our implementation. Although the
code is rather simple, it covers a wide range of PRAM algorithms. The pseudo-code looks
as follows:

times (4) {
fork (#subgroups) {
do_work(load +/- groupdev);
}

do_work(load * loadratio);

First, the p PRAM processors are split into an adjustable number of subgroups which
all have the same size (assuming that #subgroups divides p.) Each subgroup then exe-
cutes routine do_work with an adjustable load modified by variation groupdev. Then the
subgroups synchronize and the root group (consisting of all p processors) executes routine
do_work with the load scaled by parameter loadratio. The whole benchmark is repeated
four times to even out runtime effects from other processes.

The parameter load serves to model the amount of useful work in contrast to the over-
head of group splitting and joining. The parameter groupdev serves to model the runtime
differences of different subgroups. The parameter loadratio serves to model the fraction of
the simulation that is purely sequential because all PRAM processors form a single group.

All experiments simulate p = 4096 PRAM processors. We compare the sequential sim-
ulator with our approach using 1, 4 and 8 threads respectively, running on a quadcore
processor (AMD Phenom II X4 920 processor, 4 x 2.8 GHz, 4 x 512 kB L2-cache, 6MB
shared L3-cache.)

Fig. 1 depicts a situation with a very low workload of 16, no load deviation, and a
strong sequential part with a load ratio of 50%, i.e. a situation quite uncomfortable for our
approach. Still all versions achieve a speedup of about 1.4 for up to 256 subgroups, although
we only see a small speedup of the multi-threaded versions over the single-threaded version
for 2 and 4 subgroups, which however is a frequent case resulting from an if-statement (or two
nested if-statements) with private condition. For large numbers of subgroups, the overhead in
group tree administration strongly increases without providing appropriate benefit because
the large number of subgroups leads to negative cache effects. The 8-threaded version is only
slightly faster than the 4-threaded version in some situations, which indicates that already
one thread per core is able to keep that core busy.

p = 4096, load = 16, loadratio = 50%, groupdev = 0%

— strict slequentielll I I I I I I I
group sequential
---%--- group 4 threads 3
75 =] group 8 threads 7]
7 - .
i
g 6.5 ,74%,/——+ww,,,,%,,/+¢¢,,+fi*—r——r——"""'*""""\7%4,,,x%—f—x***g"”””:
£ f
S et .
o
g)
E
& 55 R
5| 4
% /% -
(23 o
45 | S IR E
4 1 1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

#subgroups [#]

Fig. 1. Runtimes with low even workload and strong sequential part.

In Fig. 2 the load increases to 256. The situation is not really different from the previous
one, which indicates that the group tree administration is not a bottleneck. In Fig. 3 we
decrease the load ratio to 1% and see a sharp increase to a speedup of 2 over the sequential
simulator, and a notable increase in the speedup of the multi-threaded versions over the
single-threaded version for 2, 4 and 8 subgroups. In Fig. 4 we let the load deviate by up to
25%. We immediately notice that the runtime of the sequential simulator is increasing with
the number of subgroups, because the load is not balanced anymore, and groups waiting
for synchronization do a busy-wait. The speedup over the sequential version is larger than
in any previous figure, because the groups waiting for a join with other groups are simply
taken out of the run-queue until all groups participating in the join have arrived there.
The speedup of the multi-threaded versions over the single threaded version for 2, 4 and 8
subgroups is still small but visible.

4 Conclusions

We have presented a new approach to accelerating the execution of Fork programs on mul-
ticore processors by exploiting the processor group structure in Fork. Our experimental

simulation time [sec]

simulation time [sec]

80

75

70

65

60

55

50

45

40

55

50

45

40

35

30

25

20

p = 4096, load = 256, loadratio = 50%, groupdev = 0%

4096

A — strict slequentiall I I I I I I I I
fffffff group sequential
--%*--- group 4 threads
I o group 8 threads
,;774»,,,,,,”‘#777 - "
L * |
L i i
B
o %
* . 5|
L : L i
g e Y = R i
BEEER o 5]
1 1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512 1024 2048
#subgroups [#]
Fig. 2. Runtimes with workload increased compared to Fig. 1.
p = 4096, load = 256, loadratio = 1%, groupdev = 0%
T m— T T T T T T T T T L
—+— strict sequential B
fffffff group sequential
--%--- group 4 threads
L =] group 8 threadi - o J,,,,%ff+—/— —
a
p
‘D v
¥ N) e
L e H i
py e e
1 1 1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512 1024 2048

#subgroups [#]

Fig. 3. Runtimes with sequential part decreased compared to Fig. 2.

4096

p = 4096, load = 256, loadratio = 1%, groupdev = 25%

80 T —T I T T . . : : I I
—+—— strict sequen1|a|
group sequential
%= group 4 threads
£~ group 8 threads B
70 o _
7777+77———4/k
A
P
60 _
'G Y
o}
2,
: *
E |
T s0f]
kS .
E .
£ |
7]
40 . _
V'ﬂ
30 _
& p
. - L
S Pommmronme] B B
2 I I ! 1 L 1 1 1 1 1 1
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

#subgroups [#]

Fig. 4. Runtimes with load deviation increased compared to Fig. 3.

results indicate that already a single-threaded version shortens simulation time by a factor
of 1.5 to 2. The multi-threaded versions achieve a small but noticeable speedup over the
single-threaded version for the important case of a small number of subgroups.

For future work, another acceleration could be achieved by having the instruction stream
for all processors of one group only decoded once and only execute the same instruction on
different processors with different register contents as in a SIMD style.

It would also be nice to have a forecast on the simulation speedup to be expected when
compiling the program. While this is possible in simple cases where the group tree structure
is quite regular and not depending on input data, the general case would involve more or
less a complete runtime analysis of the parallel program and thus seems out of reach.

References

1. Keller, J., Kefler, C.W., Traff, J.L.: Practical PRAM Programming. Wiley & Sons (2001)
2. Kessler, C.W.: A practical access to the theory of parallel algorithms. In: Proc. of ACM SIGCSE’04 Symposium
on Computer Science Education. (2004)
3. Leo6n, C., Sande, F., Rodriguez, C., Garcia, F.: A PRAM oriented language. In: Proc. EUROMICRO PDP’95
Workshop on Parallel and Distributed Processing. (1995) 182-191
4. Forsell, M.: e—a language for thread-level parallel programming on synchronous shared memory NOCs. WSEAS
Transactions on Computers 3(3) (2004) 807-812
5. Wen, X., Vishkin, U.: FPGA-based prototype of a PRAM-on-chip processor. In: CF '08: Proceedings of the 5th
conference on Computing frontiers. (2008) 55-66
6. Fujimoto, R.M.: Parallel discrete event simulation. Communications of the ACM 33(10) (1990) 30-53
7. Wesarg, B., Blaar, H., Keller, J., Kessler, C.: Emulating a PRAM on a parallel computer. In: Proc. 21st
Workshop on Parallel Algorithms and Architectures (PARS 2007). (2007)
8. Akl, S.G.: The Design and Analysis of Parallel Algorithms. Prentice Hall, Englewood Cliffs, NJ (1989)
9. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press (1988)
10. J&Ja, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA (1992)
11. Karp, R.M., Ramachandran, V.L.: A survey of parallel algorithms for shared—memory machines. In van Leeuwen,
J., ed.: Handbook of Theoretical Computer Science, Vol. A. Elsevier (1990) 869-941

