
PARS�Mitteilungen ��� ������ Dec� �		
� ISSN 	�

�	���� GIITG PARS�

Models for Parallel Computing�

Review and Perspectives

Christoph Kessler� and J�rg Keller�

� PELAB� Dept� of Computer Science �IDA�
Link�ping university� Sweden

chrke�ida�liu�se
� Dept� of Mathematics and Computer Science

Fernuniversit�t Hagen� Germany
joerg�keller�FernUni�Hagen�de

Abstract� As parallelism on di�erent levels becomes ubiquitous in today�s computers�
it seems worthwhile to provide a review of the wealth of models for parallel computation
that have evolved over the last decades� We refrain from a comprehensive survey and con�
centrate on models with some practical relevance� together with a perspective on models
with potential future relevance� Besides presenting the models� we also refer to languages�
implementations� and tools�

Key words� Parallel Computational Model� Survey� Parallel Programming Language� Par�
allel Cost Model

� Introduction

Recent desktop and high�performance processors provide multiple hardware threads �tech�
nically realized by hardware multithreading and multiple processor cores on a single chip��
Very soon� programmers will be faced with hundreds of hardware threads per processor chip�
As exploitable instruction�level parallelism in applications is limited and the processor clock
frequency cannot be increased any further due to power consumption and heat problems�
exploiting �thread�level� parallelism becomes unavoidable if further improvement in proces�
sor performance is required	and there is no doubt that our requirements and expectations
of machine performance will increase further� This means that parallel programming will
actually concern a majority of application and system programmers in the foreseeable fu�
ture� even in the desktop and embedded domain� and no longer only a few working in the
comparably small HPC market niche�

A model of parallel computation consists of a parallel programming model and a corre�
sponding cost model� A parallel programming model describes an abstract parallel machine
by its basic operations �such as arithmetic operations� spawning of tasks� reading from and
writing to shared memory� or sending and receiving messages�� their e�ects on the state of
the computation� the constraints of when and where these can be applied� and how they
can be composed� In particular� a parallel programming model also contains� at least for
shared memory programming models� a memory model that describes how and when mem�
ory accesses can become visible to the di�erent parts of a parallel computer� The memory
model sometimes is given implicitly� A parallel cost model associates a cost �which usually
describes parallel execution time and resource occupation� with each basic operation� and
describes how to predict the accumulated cost of composed operations up to entire parallel
programs� A parallel programming model is often associated with one or several parallel
programming languages or libraries that realize the model�

Parallel algorithms are usually formulated in terms of a particular parallel program�
ming model� In contrast to sequential programming� where the von Neumann model is the
predominant programming model �notable alternatives are e�g� data
ow and declarative
programming�� there are several competing parallel programming models� This heterogene�
ity is partly caused by the fact that some models are closer to certain existing hardware
architectures than others� and partly because some parallel algorithms are easier to express
in one model than in another one�

Programming models abstract to some degree from details of the underlying hardware�
which increases portability of parallel algorithms across a wider range of parallel program�
ming languages and systems�

In the following� we give a brief survey of parallel programming models and comment
on their merits and perspectives from both a theoretical and practical view� While we
focus on the� in our opinion� most relevant models� this paper is not aimed at providing a
comprehensive presentation nor a thorough classi�cation of parallel models and languages�
Instead� we refer to survey articles and books in the literature� such as by Bal et al� ����
Skillicorn ����� Giloi ����� Maggs et al� ����� Skillicorn and Talia ���� ���� Hambrusch �����
Lengauer ���� and Leopold �����

� Model Survey

Before going through the various parallel programming models� we �rst recall in Section
�� two fundamental issues in parallel program execution that occur in implementations of
several models�

��� Parallel Execution Styles

There exist several di�erent parallel execution styles� which describe di�erent ways how
the parallel activities �e�g� processes� threads� executing a parallel program are created and
terminated from the programmer�s point of view� The two most prominent ones are fork�
join�style and SPMD�style parallel execution�

Execution in Fork�join style spawns parallel activities dynamically at certain points
�fork� in the program that mark the beginning of parallel computation� and collects and
terminates them at another point �join�� At the beginning and the end of program execution�
only one activity is executing� but the number of parallel activities can vary considerably
during execution and thereby adapt to the currently available parallelism� The mapping of
activities to physical processors needs to be done at run�time by the operating system� by a
thread package or by the language�s run�time system� While it is possible to use individual
library calls for fork and join functionality� as in the pthreads package� most parallel pro�
gramming languages use scoping of structured programming constructs to implicitly mark
fork and join points� for instance� in OpenMP they are given by the entry and exit from an
omp parallel region� in Cilk� they are given by the spawn construct that frames a function
call�

Nested parallelism can be achieved with fork�join style execution by statically or dynam�
ically nesting such fork�join sections within each other� such that e�g� an inner fork spawns
several parallel activities from each activity spawned by an outer fork� leading to a higher
degree of parallelism�

Execution in SPMD style �single program� multiple data� creates a �xed number p

�usually known only from program start� of parallel activities �physical or virtual processors�
at the beginning of program execution �i�e�� at entry to main�� and this number will be kept
constant throughout program execution� i�e� no new parallel activities can be spawned�

In contrast to fork�join style execution� the programmer is responsible for mapping the
parallel tasks in the program to the p available processors� Accordingly� the programmer
has the responsibility for load balancing� while it is provided automatically by the dynamic
scheduling in the fork�join style� While this is more cumbersome at program design time
and limits
exibility� it leads to reduced run�time overhead� as dynamic scheduling is no
longer needed� SPMD is used e�g� in the MPI message passing standard and in some parallel
programming languages such as UPC�

Nested parallelism can be achieved with SPMD style as well� namely if a group of p
processors is subdivided into s subgroups of pi processors each� where

P
i
pi � p� Each

subgroup takes care of one subtask in parallel� After all subgroups are �nished with their
subtask� they are discarded and the parent group resumes execution� As group splitting can
be nested� the group hierarchy forms a tree at any time during program execution� with the
leaf groups being the currently active ones�

This schema is analogous to exploiting nested parallelism in fork�join style if one regards
the original group G of p processors as one p�threaded process� which may spawn s new
pi�threaded processes Gi� � � i � s� such that the total number of active threads is not
increased� The parent process waits until all child processes �subgroups� have terminated�
and reclaims their threads�

��� Parallel Random Access Machine

The Parallel Random Access Machine �PRAM� model was proposed by Fortune and Wyllie
���� as a simple extension of the Random Access Machine �RAM� model used in the design
and analysis of sequential algorithms� The PRAM assumes a set of processors connected
to a shared memory� There is a global clock that feeds both processors and memory� and
execution of any instruction �including memory accesses� takes exactly one unit of time�
independent of the executing processor and the possibly accessed memory address� Also�
there is no limit on the number of processors accessing shared memory simultaneously�

The memory model of the PRAM is strict consistency� the strongest consistency model
known ���� which says that a write in clock cycle t becomes globally visible to all processors
in the beginning of clock cycle t� �� not earlier and not later�

The PRAM model also determines the e�ect of multiple processors writing or reading the
same memory location in the same clock cycle� An EREW PRAM allows a memory location
to be exclusively read or written by at most one processor at a time� the CREW PRAM
allows concurrent reading but exclusive writing� and CRCW even allows simultaneous write
accesses by several processors to the same memory location in the same clock cycle� The
CRCW model speci�es in several submodels how such multiple accesses are to be resolved�
e�g� by requiring that the same value be written by all �Common CRCW PRAM�� by the
priority of the writing processors �Priority CRCW PRAM�� or by combining all writ�
ten values according to some global reduction or pre�x computation �Combining CRCW
PRAM�� A somewhat restricted form is the CROW PRAM� where each memory cell may
only be written by one processor at all� which is called the cell�s owner� In practice� many
CREW algorithms really are CROW�

Practical Relevance� The PRAM model is unique in that it supports deterministic par�
allel computation� and it can be regarded as one of the most programmer�friendly models
available� Numerous algorithms have been developed for the PRAM model� see e�g� the book
by JaJa ����� Also� it can be used as a �rst model for teaching parallel algorithms ���� as it
allows students to focus on pure parallelism only� rather than having to worry about data
locality and communication e�ciency already from the beginning�

The PRAMmodel� especially its cost model for shared memory access� have however been
strongly criticized for being unrealistic� In the shadow of this criticism� several architectural
approaches demonstrated that a cost�e�ective realization of PRAMs is nevertheless possible
using hardware techniques such as multithreading and smart combining networks� such as
the NYU Ultracomputer ���� SBPRAM by Wolfgang Paul�s group in Saarbr�cken �� �� ����
XMT by Vishkin ����� and ECLIPSE by Forsell ����� A fair comparison of such approaches
with current clusters and cache�based multiprocessors should take into consideration that
the latter are good for special�purpose� regular problems with high data locality while they
perform poorly on irregular computations� In contrast� the PRAM is a general�purpose
model that is completely insensitive to data locality�

Partly as a reaction to the criticism about practicality� variants of the PRAM model have
been proposed within the parallel algorithms theory community� Such models relax one or
several of the PRAM�s properties� These include asynchronous PRAM variants ���� ���� the
hierarchical PRAM �H�PRAM� ����� the block PRAM ���� the queuing PRAM �Q�PRAM��
and the distributed PRAM �DRAM�� to name only a few� Even the BSP model� which we
will discuss in Section ���� can be regarded a relaxed PRAM� and actually was introduced to
bridge the gap between idealistic models and actual parallel machines� On the other hand�
also an even more powerful extension of the PRAM was proposed in the literature� the BSR
�Broadcast with selective reduction� �����

Implementations� Several PRAM programming languages have been proposed in the lit�
erature� such as Fork ��� ���� For most of them there is �beyond a compiler� a PRAM
simulator available� sometimes additional tools such as trace �le visualizers or libraries for
central PRAM data structures and algorithms ���� Also� methods for translating PRAM al�
gorithms automatically for other models such as BSP or message passing have been proposed
in the literature�

��� Unrestricted Message Passing

A distributed memory machine� sometimes called message�passing multicomputer� consists
of a number of RAMs that run asynchronously and communicate via messages sent over a
communication network� Normally it is assumed that the network performs message rout�
ing� so that a processor can send a message to any other processor without consideration of
the particular network structure� In the simplest form� a message is assumed to be sent by
one processor executing an explicit send command and received by another processor with
an explicit receive command �point�to�point communication�� Send and receive commands
can be either blocking� i�e� the processors get synchronized� or non�blocking� i�e� the sending
processor puts the message in a bu�er and proceeds with its program� while the message�
passing subsystem forwards the message to the receiving processor and bu�ers it there until
the receiving processor executes the receive command� There are also more complex forms
of communication that involve a group of processors� so�called collective communication
operations such as broadcast� multicast� or reduction operations� Also� one�sided communi�
cations allow a processor to perform a communication operation �send or receive� without
the processor addressed being actively involved�

The cost model of a message�passing multicomputer consists of two parts� The operations
performed locally are treated as in a RAM� Point�to�point non�blocking communications are
modelled by the LogP model ����� named after its four parameters� The latency L speci�es
the time that a message of one word needs to be transmitted from sender to receiver� The
overhead o speci�es the time that the sending processor is occupied in executing the send
command� The gap g gives the time that must pass between two successive send operations of

a processor� and thus models the processor�s bandwidth to the communication network� The
processor count P gives the number of processors in the machine� Note that by distinguishing
between L and o it is possible to model programs where communication and computation
overlap� The LogP model has been extended to the LogGP model ��� by introducing another
parameter G that models the bandwidth for longer messages�

Practical Relevance� Message passing models such as CSP �communicating sequential
processes� have been used in the theory of concurrent and distributed systems for many
years� As a model for parallel computing it became popular with the arrival of the �rst
distributed memory parallel computers in the late ���s� With the de�nition of vendor�
independent message�passing libraries� message passing became the dominant programming
style on large parallel computers�

Message passing is the least common denominator of portable parallel programming�
Message passing programs can quite easily be executed even on shared memory computers
�while the opposite is much harder to perform e�ciently�� As a low�level programming
model� unrestricted message passing gives the programmer the largest degree of control
over the machine resources� including scheduling� bu�ering of message data� overlapping
communication with computation� etc� This comes at the cost of code being more error�
prone and harder to understand and maintain� Nevertheless� message passing is as of today
the most successful parallel programming model in practice� As a consequence� numerous
tools e�g� for performance analysis and visualization have been developed for this model�

Implementations� Early vendor�speci�c libraries were replaced in the early ���s by
portable message passing libraries such as PVM and MPI� MPI was later extended in the
MPI ��� standard ����� by one�sided communication and fork�join style� MPI interfaces
have been de�ned for Fortran� C and C��� Today� there exist several widely used imple�
mentations of MPI� including open�source implementations such as OpenMPI�

A certain degree of structuring in MPI programs is provided by the hierarchical group
concept for nested parallelism and the communicator concept that allows to create separate
communication contexts for parallel software components� A library for managing nested
parallel multiprocessor tasks on top of this functionality has been provided by Rauber and
R�nger ����� Furthermore� MPI libraries for speci�c distributed data structures such as
vectors and matrices have been proposed in the literature�

��� Bulk Synchronous Parallelism

The bulk�synchronous parallel �BSP� model� proposed by Valiant in ��� ���� and slightly
modi�ed by McColl ����� enforces a structuring of message passing computations as a �dy�
namic� sequence of barrier�separated supersteps� where each superstep consists of a com�
putation phase operating on local variables only� followed by a global interprocessor com�
munication phase� The cost model involves only three parameters �number of processors p�
point�to�point network bandwidth g� and message latency resp� barrier overhead L�� such
that the worst�case �asymptotic� cost for a single superstep can be estimated as w� hg�L

if the maximum local work w per processor and the maximum communication volume h per
processor are known� The cost for a program is then simply determined by summing up the
costs of all executed supersteps�

An extension of the BSP model for nested parallelism by nestable supersteps was pro�
posed by Skillicorn �����

A variant of BSP is the CGM �coarse grained multicomputer� model proposed by Dehne
����� which has the same programming model as BSP but an extended cost model that also
accounts for aggregated messages in coarse�grained parallel environments�

Practical Relevance� Many algorithms for the BSP model have been developed in the
���s in the parallel algorithms community� Implementations of BSP on actual parallel
machines have been studied extensively� In short� the BSP model� while still simplifying
considerably� allows to derive realistic predictions of execution time and can thereby guide
algorithmic design decisions and balance trade�o�s� Up to now� the existing BSP implemen�
tations have been used mainly in academic contexts� see e�g� Bisseling ���

Implementations� The BSP model is mainly realized in the form of libraries such as
BSPlib ���� or PUB ��� for an SPMD execution style�

NestStep ���� ��� is a parallel programming language providing a partitioned global ad�
dress space and SPMD execution with hierarchical processor groups� It provides deter�
ministic parallel program execution with a PRAM�similar programming interface� where
BSP�compliant memory consistency and synchronicity are controlled by the step statement
that represents supersteps� NestStep also provides nested supersteps�

��� Asynchronous Shared Memory and Partitioned Global Address Space

In the shared memory model� several threads of execution have access to a common memory�
So far� it resembles the PRAMmodel� However� the threads of execution run asynchronously�
i�e� all potentially con
icting accesses to the shared memory must be resolved by the pro�
grammer� possibly with the help of the system underneath� Another notable di�erence to
the PRAM model is the visibility of writes� In the PRAM model� each write to the shared
memory was visible to all threads in the next step �strict consistency�� In order to simplify
e�cient implementation� a large number of weaker consistency models have been developed�
which however shift the responsibility to guarantee correct execution to the programmer�
We will not go into details but refer to ����

The cost model of shared memory implementations depends on the realization� If several
processors share a physical memory via a bus� the cost model resembles that of a RAM� with
the obvious practical modi�cations due to caching� and consideration of synchronization cost�
This is called symmetric multiprocessing �SMP�� because both the access mechanism and
the access time are the same independently of address and accessing processor� Yet� if there
is only a shared address space that is realized by a distributed memory architecture� then
the cost of the shared memory access strongly depends on how far the accessed memory
location is positioned from the requesting processor� This is called non�uniform memory
access �NUMA�� The di�erences in access time between placements in local cache� local
memory� or remote memory� may well be an order of magnitude for each level� In order
to avoid remote memory accesses� caching of remote pages in the local memory has been
employed� and been called cache coherent NUMA �CC�NUMA�� A variant where pages are
dynamically placed according to access has been called cache only memory access �COMA��
While NUMA architectures create the illusion of a shared memory� their performance tends
to be sensitive to access patterns and artefacts like thrashing� much in the same manner as
uniprocessor caches require consideration in performance tuning�

In order to give the programmer more control over the placement of data structures
and the locality of accesses� partitioned global address space �PGAS� languages provide a
programming model that exposes the underlying distributed memory organization to the
programmer� The languages provide constructs for laying out the program�s data structures
in memory� and to access them�

A recent development is transactional memory ������ see e�g� ��� for a recent survey��
which adopts the transaction concept known from database programming as a primitive for
parallel programming of shared memory systems� A transaction is a sequential code sec�
tion enclosed in a statement such as atomic � ��� � that should either fail completely or

commit completely to shared memory as an atomic operation� i�e� intermediate state of an
atomic computation is not visible to other processors in the system� Hence� instead of having
to hard�code explicit synchronization code into the program� e�g� by using mutex locks or
semaphores� transactions provide a declarative solution that leaves the implementation of
atomicity to the language run�time system or to the hardware� For instance� an implemen�
tation could use speculative parallel execution� It is also possible to nest transactions�

If implemented by a speculative parallel execution approach� atomic transactions can
avoid the sequentialization e�ect of mutual exclusion with resulting idle times� as long as
con
icts occur only seldom�

A related approach is the design of lock�free parallel data structures such as shared hash
tables� FIFO queues and skip lists� The realization on shared memory platforms typically
combines speculative parallel execution of critical sections in update operations on such data
structures with hardware�supported atomic instructions such as fetch�add� compare�swap�
or load�linked�store�conditional�

Practical Relevance� Shared memory programming has become the dominant form of pro�
gramming for small scale parallel computers� notably SMP systems� As large�scale parallel
computers have started to consist of clusters of SMP nodes� shared memory programming
on the SMPs also has been combined with message passing concepts� CC�NUMA systems
seem like a double�edged sword because on the one hand� they allow to port shared memory
applications to larger installations� However� to get su�cient performance� the data layout
in memory has to be considered in detail� so that programming still resembles distributed
memory programming� only that control over placement is not explicit� PGAS languages
that try to combine both worlds currently gain some attraction�

Implementations� POSIX threads �pthreads� were� up to now� the most widely used par�
allel programming environment for shared memory systems� However� pthreads are usually
realized as libraries extending sequential programming languages such as C and Fortran
�whose compiler only knows about a single target processor� and thus lack a well�de�ned
memory model ���� Instead� pthreads programs inherit memory consistency from the un�
derlying hardware and thus must account for worst�case scenarios e�g� by inserting
ush
�memory fence� operations at certain places in the code�

Cilk ��� is a shared�memory parallel language for algorithmic multithreading� By the
spawn construct� the programmer speci�es independence of dynamically created tasks which
can be executed either locally on the same processor or on another one� Newly created tasks
are put on a local task queue� A processor will execute tasks from its own local task queue
as long as it is nonempty� Processors becoming idle steal a task from a randomly selected
victim processor�s local task queue� As tasks are typically light�weight� load balancing is
completely taken care of by the underlying run�time system� The overhead of queue access
is very low unless task stealing is necessary�

OpenMP is gaining popularity with the arrival of multicore processors and may eventu�
ally replace Pthreads completely� OpenMP provides structured parallelism in a combination
of SPMD and fork�join styles� Its strengths are in the work sharing constructs that allow to
distribute loop iterations according to one of several prede�ned scheduling policies� OpenMP
has a weak memory consistency model� that is�
ush operations may be required to guar�
antee that stale copies of a shared variable will no longer be used after a certain point in
the program� The forthcoming OpenMP ��� standard supports a task�based programming
model� which makes it more appropriate for �ne�grained nested parallelism than its ear�
lier versions� A drawback of OpenMP is that it has no good programming support yet for
controlling data layout in memory�

In PGAS languages� accesses to remote shared data are either handled by separate access
primitives� as in NestStep ����� while in other cases the syntax is the same and the language
run�time system automatically traps to remote memory access if nonlocal data have been
accessed� as in UPC �Universal Parallel C� ���� Loops generally take data a�nity into
account� such that iterations should preferably be scheduled to processors that have most
of the required data stored locally� to reduce communication�

The Linda system ��� provides a shared memory via the concept of tuple spaces� which
is much more abstract than linear addressing� and partly resembles access to a relational
database�

A programming language for transactional programming� called ATOMOS� has been
proposed by Carlstrom et al� ���� As an example of a library of lock�free parallel data
structures� we refer to NOBLE �����

In parallel language design� there is some consensus that extending sequential program�
ming languages by a few new constructs is not the cleanest way to build a sound parallel
programming language� even if this promises the straightforward reuse of major parts of
available sequential legacy code� Currently� three major new parallel languages are under
development for the high�performance computing domain� Chapel ���� promoted by Cray�
X� ��� promoted by IBM� and Fortress ��� promoted by Sun� It remains to be seen how
these will be adopted by programmers and whether any of these will be strong enough to
become the dominant parallel programming language in a long range perspective� At the
moment� it rather appears that OpenMP and perhaps UPC are ready to enter mainstream
computing platforms�

��� Data Parallel Models

Data parallel models include SIMD �Single Instruction� Multiple Data� and vector comput�
ing� data parallel computing� systolic computing� cellular automata� VLIW computing� and
stream data processing�

Data parallel computing involves the elementwise application of the same scalar com�
putation to several elements of one or several operand vectors �which usually are arrays or
parts thereof�� creating a result vector� All element computations must be independent of
each other and may therefore be executed in any order� in parallel� or in a pipelined way� The
equivalent of a data parallel operation in a sequential programming language is a loop over
the elementwise operation� scanning the operand and result vector�s�� Most data parallel
languages accordingly provide a data parallel loop construct such as forall� Nested forall

loops scan a multidimensional iteration space� which maps array accesses in its body to
possibly multidimensional slices of involved operand and result arrays� The strength of data
parallel computing is the single state of the program�s control� making it easier to analyze
and to debug than task�parallel programs where each thread may follow its own control

ow path through the program� On the other hand� data parallel computing alone is quite
restrictive� it �ts well for most numerical computations� but in many other cases it is too
un
exible�

A special case of data parallel computing is SIMD computing or vector computing�
Here� the data parallel operations are limited to prede�ned SIMD�vector operations such
as element�wise addition� While any SIMD�vector operation could be rewritten by a data
parallel loop construct� the converse is not true� the elementwise operation to be applied
in a data parallel computation may be much more complex �e�g�� contain several scalar
operations and even nontrivial control
ow� than what can be expressed by available vec�
tor�SIMD instructions� In SIMD�vector programming languages� SIMD�vector operations
are usually represented using array notation such as a���n��� 	 b�
�n� � c���
�n�
��

Systolic computing is a pipelining�based parallel computing model involving a syn�
chronously operating processor array �a so�called systolic processor array� where processors
have local memory and are connected by a �xed� channel�based interconnection network�
Systolic algorithms have been developed mainly in the ���s� mostly for speci�c network
topologies such as meshes� trees� pyramids� or hypercubes� see e�g� Kung and Leiserson �����
The main motivation of systolic computation is that the movement of data between pro�
cessors is typically on a nearest�neighbor basis �so�called shift communications�� which has
shorter latency and higher bandwidth than arbitrary point�to�point communication on some
distributed memory architectures� and that no bu�ering of intermediate results is necessary
as all processing elements operate synchronously�

A cellular automaton �CA� consists of a collection of �nite state automata stepping
synchronously� each automaton having as input the current state of one or several other
automata� This neighbour relationship is often re
ected by physical proximity� such as ar�
ranging the CA as a mesh� The CA model is a model for massively parallel computations
with structured communication� Also� systolic computations can be viewed as a kind of
CA computation� The restriction of nearest�neighbor access is relaxed in the global cellular
automaton �GCA� ����� where the state of each automaton includes an index of the automa�
ton to read from in this step� Thus� the neighbor relationship can be time dependent and
data dependent� The GCA is closely related to the CROW PRAM� and it can be e�ciently
implemented in recon�gurable hardware� i�e� �eld programmable gate arrays �FPGA��

In a very large instruction word �VLIW� processor� an instruction word contains several
assembler instructions� Thus� there is the possibility that the compiler can exploit instruction
level parallelism �ILP� better than a superscalar processor by having knowledge of the
program to be compiled� Also� the hardware to control execution in a VLIW processor is
simpler than in a superscalar processor� thus possibly leading to a more e�cient execution�
The concept of explicitly parallel instruction computing �EPIC� combines VLIW with other
architectural concepts such as predication to avoid conditional branches� known from SIMD
computing�

In stream processing� a continuous stream of data is processed� each element undergoing
the same operations� In order to save memory bandwidth� several operations are interleaved
in a pipelined fashion� As such� stream processing inherits concepts from vector and systolic
computing�

Practical Relevance� Vector computing was the paradigm used by the early vector super�
computers in the ���s and ���s and is still an essential part of modern high�performance
computer architectures� It is a special case of the SIMD computing paradigm� which involves
SIMD instructions as basic operations in addition to scalar computation� Most modern high�
end processors have vector units extending their instruction set by SIMD�vector operations�
Even many other processors nowadays o�er SIMD instructions that can apply the same op�
eration to �� � or � subwords simultaneously if the subword�sized elements of each operand
and result are stored contiguously in the same word�sized register� Systolic computing has
been popular in the ���s in the form of multi�unit co�processors for high�performance com�
putations� CA and GCA have found their niche for implementations in hardware� Also� with
the relation to CROW PRAMs� the GCA could become a bridging model between high�level
parallel models and e�cient con�gurable hardware implementation� VLIW processors be�
came popular in the ���s� were pushed aside by the superscalar processors during the
���s� but have seen a re�birth with Intel�s Itanium processor� VLIW is today also a popu�
lar concept in high�performance processors for the digital signal processing �DSP� domain�
Stream processing has current popularity because of its suitability for real�time processing
of digital media�

Implementations� APL ���� is an early SIMD programming language� Other SIMD lan�
guages include Vector�C ���� and C� ����� Fortran�� supports vector computing and even a
simple form of data parallelism� With the HPF ���� extensions� it became a full�
edged data
parallel language� Other data parallel languages include ZPL ����� NESL ���� Dataparallel
C ���� and Modula��� �����

CA and GCA applications are mostly programmed in hardware description languages�
Besides proposals for own languages� the mapping of existing languages like APL onto those
automata ���� has been discussed� As the GCA is an active new area of research� there are
no complete programming systems yet�

Clustered VLIW DSP processors such as the TI �C��xx family allow parallel execution
of instructions� yet apply additional restrictions on the operands� which is a challenge for
optimizing compilers �����

Early programming support for stream processing was available in the Brook language
��� and the Sh library �Univ� Waterloo�� Based on the latter� RapidMind provides a com�
mercial development kit with a stream extension for C���

��� Task	Parallel Models and Task Graphs

Many applications can be considered as a set of tasks� each task solving part of the problem at
hand� Tasks may communicate with each other during their existence� or may only accept
inputs as a prerequisite to their start� and send results to other tasks only when they
terminate� Tasks may spawn other tasks in a fork�join style� and this may be done even
in a dynamic and data dependent manner� Such collections of tasks may be represented
by a task graph� where nodes represent tasks and arcs represent communication� i�e� data
dependencies� The scheduling of a task graph involves ordering of tasks and mapping of
tasks to processing units� Goals of the scheduling can be minimization of the application�s
runtime or maximization of the application�s e�ciency� i�e� of the machine resources� Task
graphs can occur at several levels of granularity�

While a superscalar processor must detect data and control
ow dependencies from a
linear stream of instructions� data�ow computing provides the execution machine with the
application�s data
ow graph� where nodes represent single instructions or basic instruction
blocks� so that the underlying machine can schedule and dispatch instructions as soon as all
necessary operands are available� thus enabling better exploitation of parallelism� Data
ow
computing is also used in hardware�software co�design� where computationally intensive
parts of an application are mapped onto recon�gurable custom hardware� while other parts
are executed in software on a standard microprocessor� The mapping is done such that the
workloads of both parts are about equal� and that the complexity of the communication
overhead between the two parts is minimized�

Task graphs also occur in grid computing ����� where each node may already represent
an executable with a runtime of hours or days� The execution units are geographically dis�
tributed collections of computers� In order to run a grid application on the grid resources�
the task graph is scheduled onto the execution units� This may occur prior to or during ex�
ecution �static vs� dynamic scheduling�� Because of the wide distances between nodes with
corresponding restricted communication bandwidths� scheduling typically involves cluster�
ing� i�e� mapping tasks to nodes such that the communication bandwidth between nodes
is minimized� As a grid node more and more often is a parallel machine itself� also tasks
can carry parallelism� so�called malleable tasks� Scheduling a malleable task graph involves
the additional di�culty of determining the amount of execution units allocated to parallel
tasks�

Practical Relevance� While data
ow computing in itself has not become a mainstream in
programming� it has seriously in
uenced parallel computing� and its techniques have found
their way into many products� Hardware software co�design has gained some interest by
the integration of recon�gurable hardware with microprocessors on single chips� Grid com�
puting has gained considerable attraction in the last years� mainly driven by the enormous
computing power needed to solve grand challenge problems in natural and life sciences�

Implementations� A prominent example for parallel data
ow computation was the MIT
Alewife machine with the ID functional programming language ����

Hardware�software codesign is frequently applied in digital signal processing� where there
exist a number of multiprocessor systems�on�chip �DSP�MPSoC�� see e�g� ����� The Mitrion�
C programming language from Mitrionics serves to program the SGI RASC appliance that
contains FPGAs and is mostly used in the �eld of bio informatics�

There are several grid middlewares� most prominently Globus ���� and Unicore ����� for
which a multitude of schedulers exists�

� General Parallel Programming Methodologies

In this section� we brie
y review the features� advantages and drawbacks of several widely
used approaches to the design of parallel software�

Many of these actually start from an existing sequential program for the same problem�
which is more restricted but of very high signi�cance for software industry that has to port
a host of legacy code to parallel platforms in these days� while other approaches encourage
a radically di�erent parallel program design from scratch�

��� Foster
s PCAM Method

Foster ���� suggests that the design of a parallel program should start from an existing �pos�
sibly sequential� algorithmic solution to a computational problem by partitioning it into
many small tasks and identifying dependences between these that may result in communi�
cation and synchronization� for which suitable structures should be selected� These �rst two
design phases� partitioning and communication� are for a model that puts no restriction on
the number of processors� The task granularity should be as �ne as possible in order to not
constrain the later design phases arti�cially� The result is a �more or less� scalable parallel
algorithm in an abstract programming model that is largely independent from a particular
parallel target computer� Next� the tasks are agglomerated to macrotasks �processes� to
reduce internal communication and synchronization relations within a macrotask to local
memory accesses� Finally� the macrotasks are scheduled to physical processors to balance
load and further reduce communication� These latter two steps� agglomeration and mapping�
are more machine dependent because they use information about the number of processors
available� the network topology� the cost of communication etc� to optimize performance�

��� Incremental Parallelization

For many scienti�c programs� almost all of their execution time is spent in a fairly small part
of the code� Directive�based parallel programming languages such as HPF and OpenMP�
which are designed as a semantically consistent extension to a sequential base language
such as Fortran and C� allow to start from sequential source code that can be parallelized
incrementally� Usually� the most computationally intensive inner loops are identi�ed �e�g��
by pro�ling� and parallelized �rst by inserting some directives� e�g� for loop parallelization�
If performance is not yet su�cient� more directives need to be inserted� and even rewriting
of some of the original code may be necessary to achieve reasonable performance�

��� Automatic Parallelization

Automatic parallelization of sequential legacy code is of high importance to industry but
notoriously di�cult� It occurs in two forms� static parallelization by a smart compiler� and
run�time parallelization with support by the language�s run�time system or the hardware�

Static parallelization of sequential code is� in principle� an undecidable problem� because
the dynamic behavior of the program �and thereby the exact data dependences between
statement executions� is usually not known at compile time� but solutions for restricted
programs and speci�c domains exist� Parallelizing compilers usually focus on loop paral�
lelization because loops account for most of the computation time in programs and their
dynamic control structure is relatively easy to analyze� Methods for data dependence testing
of sequential loops and loop nests often require index expressions that are linear in the loop
variables� In cases of doubt� the compiler will conservatively assume dependence� i�e� non�
parallelizability� of �all� loop iterations� Domain�speci�c methods may look for special code
patterns that represent typical computation kernels in a certain domain� such as reductions�
pre�x computations� dataparallel operations etc�� and replace these by equivalent parallel
code� see e�g� ����� These methods are� in general� less limited by the given control structure
of the sequential source program than loop parallelization� but still rely on careful program
analysis�

Run�time parallelization techniques defer the analysis of data dependences and deter�
mining the �parallel� schedule of computation to run�time� when more information about
the program �e�g�� values of input�dependent variables� is known� The necessary computa�
tions� prepared by the compiler� will cause run�time overhead� which is often prohibitively
high if it cannot be amortized over several iterations of an outer loop where the dependence
structure does not change between its iterations� Methods for run�time parallelization of
irregular loops include doacross parallelization� the inspector�executor method for shared
and for distributed memory systems� the privatizing DOALL test ��� and the LRPD test
����� The latter is a software implementation of speculative loop parallelization�

In speculative parallelization of loops� several iterations are started in parallel� and the
memory accesses are monitored such that potential misspeculation can be discovered� If
the speculation was wrong� the iterations that were erroneously executed in parallel must
be rolled back and re�executed sequentially� Otherwise their results will be committed to
memory�

Thread�level parallel architectures can implement general thread�level speculation� e�g�
as an extension to the cache coherence protocol� Potentially parallel tasks can be identi�ed
by the compiler or on�the�
y during program execution� Promising candidates for specu�
lation on data or control independence are the parallel execution of loop iterations or the
parallel execution of a function call together with its continuation �code following the call��
Simulations have shown that thread�level speculation works best for a small number of
processors ����

��� Skeleton	Based and Library	Based Parallel Programming

Structured parallel programming� also known as skeleton programming ���� ��� restricts the
many ways of expressing parallelism to compositions of only a few� prede�ned patterns� so�
called skeletons� Skeletons ���� ��� are generic� portable� and reusable basic program build�
ing blocks for which parallel implementations may be available� They are typically derived
from higher�order functions as known from functional programming languages� A skeleton�
based parallel programming system� like P�L ��� ���� SCL ���� ���� eSkel ���� MuesLi �����
or QUAFF ����� usually provides a relatively small� �xed set of skeletons� Each skeleton

represents a unique way of exploiting parallelism in a speci�cally organized type of compu�
tation� such as data parallelism� task farming� parallel divide�and�conquer� or pipelining� By
composing these� the programmer can build a structured high�level speci�cation of parallel
programs� The system can exploit this knowledge about the structure of the parallel com�
putation for automatic program transformation ����� resource scheduling ���� and mapping�
Performance prediction is also enhanced by composing the known performance prediction
functions of the skeletons accordingly� The appropriate set of skeletons� their degree of com�
posability� generality� and architecture independence� and the best ways to support them in
programming languages have been intensively researched in the ���s and are still issues of
current research�

Composition of skeletons may be either non�hierarchical� by sequencing using temporary
variables to transport intermediate results� or hierarchical by �conceptually� nesting skeleton
functions� that is� by building a new� hierarchically composed function by �virtually� insert�
ing the code of one skeleton as a parameter into that of another one� This enables the elegant
compositional speci�cation of multiple levels of parallelism� In a declarative programming
environment� such as in functional languages or separate skeleton languages� hierarchical
composition gives the code generator more freedom of choice for automatic transformations
and for e�cient resource utilization� such as the decision of how many parallel processors
to spend at which level of the compositional hierarchy� Ideally� the cost estimations of the
composed function could be composed correspondingly from the cost estimation functions
of the basic skeletons� While non�nestable skeletons can be implemented by generic library
routines� nestable skeletons require� in principle� a static preprocessing that unfolds the
skeleton hierarchy� e�g� by using C�� templates or C preprocessor macros�

The exploitation of nested parallelism speci�ed by such a hierarchical composition is
quite straightforward if a fork�join mechanism for recursive spawning of parallel activities
is applicable� In that case� each thread executing the outer skeleton spawns a set of new
threads that execute also the inner skeleton in parallel� This may result in very �ne�grained
parallel execution and shifts the burden of load balancing and scheduling to the run�time
system� which may incur tremendous space and time overhead� In a SPMD environment
like MPI� UPC or Fork� nested parallelism can be exploited by suitable group splitting�

Parallel programming with skeletons may be seen in contrast to parallel programming us�
ing parallel library routines� Domain�speci�c parallel subroutine libraries e�g� for numerical
computations on large vectors and matrices are available for almost any parallel computer
platform� Both for skeletons and for library routines� reuse is an important purpose� Nev�
ertheless� the usage of library routines is more restrictive because they exploit parallelism
only at the bottom level of the program�s hierarchical structure� that is� they are not com�
positional� and their computational structure is not transparent for the programmer�

� Conclusion

At the end of this review of parallel programming models� we may observe some current
trends and speculate a bit about the future of parallel programming models�

As far as we can foresee today� the future of computing is parallel computing� dictated
by physical and technical necessity� Parallel computer architectures will be more and more
hybrid� combining hardware multithreading� many cores� SIMD units� accelerators and on�
chip communication systems� which requires the programmer and the compiler to solicit
parallelism� orchestrate computations and manage data locality at several levels in order
to achieve reasonable performance� A �perhaps extreme� example for this is the Cell BE
processor�

Because of their relative simplicity� purely sequential languages will remain for certain
applications that are not performance critical� such as word processors� Some will have
standardized parallel extensions and be slightly revised to provide a well�de�ned memory
model for use in parallel systems� or disappear in favor of new� true parallel languages� As
parallel programming leaves the HPC market niche and goes mainstream� simplicity will
be pivotal especially for novice programmers� We foresee a multi�layer model with a simple
deterministic high�level model that focuses on parallelism and portability� while it includes
transparent access to an underlying lower�level model layer with more performance tuning
possibilities for experts� New software engineering techniques such as aspect�oriented and
view�based programming and model�driven development may help in managing complexity�

Given that programmers were mostly trained in a sequential way of algorithmic thinking
for the last ��� years� migration paths from sequential programming to parallel program�
ming need to be opened� To prepare coming generations of students better� undergraduate
teaching should encourage a massively parallel access to computing �e�g� by taking up par�
allel time� work and cost metrics in the design and analysis of algorithms� early in the
curriculum �����

�From an industry perspective� tools that allow to more or less automatically port
sequential legacy software are of very high signi�cance� Deterministic and time�predictable
parallel models are useful e�g� in the real�time domain� Compilers and tools technology must
keep pace with the introduction of new parallel language features� Even the most advanced
parallel programming language is doomed to failure if its compilers are premature at its
market introduction and produce poor code� as we could observe in the ���s for HPF in
the high�performance computing domain ����� where HPC programmers instead switched to
the lower�level MPI as their main programming model�

Acknowledgments� Christoph Kessler acknowledges funding by Ceniit ���� at Link�pings
universitet� by Vetenskapsr det �VR�� by SSF RISE� by Vinnova SafeModSim� and by the
CUGS graduate school�

References

�� Ferri Abolhassan� Reinhard Drefenstedt� J�rg Keller� Wolfgang J� Paul� and Dieter Scheerer� On the physical
design of PRAMs� Computer J�� �����	
���
�� December �����

� Ali�Reza Adl�Tabatabai� Christos Kozyrakis� and Bratin Saha� Unlocking concurrency	 multicore programming
with transactional memory� ACM Queue� �Dec� ����Jan� ��
�� ����

�� Sarita V� Adve and Kourosh Gharachorloo� Shared Memory Consistency Models	 a Tutorial� IEEE Comput��
����	���
�� �����

�� Anant Agarwal� Ricardo Bianchini� David Chaiken� Kirk L� Johnson� David Kranz� John Kubiatowicz� Beng�
Hong Lim� David Mackenzie� and Donald Yeung� The MIT Alewife machine	 Architecture and performance� In
Proc� ��nd Int� Symp� Computer Architecture� pages ���� �����

�� A� Aggarwal� A�K� Chandra� and M� Snir� Communication complexity of PRAMs� Theoretical Computer Science�

�	���� �����

�� Albert Alexandrov� Mihai F� Ionescu� Klaus E� Schauser� and Chris Scheiman� LogGP	 Incorporating long
messages into the LogP model for parallel computation� Journal of Parallel and Distributed Computing� �����	
��

�� ���
�

� Eric Allen� David Chase� Joe Hallett� Victor Luchangco� Jan�Willem Maessen� Sukyoung Ryu� Guy L�
Steele Jr�� and Sam Tobin�Hochstadt� The fortress language speci�cation version ��� �� March ��
�
http	��research�sun�com�projects�plrg�Publications�fortress���beta�pdf�

�� Bruno Bacci� Marco Danelutto� Salvatore Orlando� Susanna Pelagatti� and Marco Vanneschi� P�L	 A structured
high level programming language and its structured support� Concurrency � Pract� Exp��
���	����� �����

�� Bruno Bacci� Marco Danelutto� and Susanna Pelagatti� Resource Optimisation via Structured Parallel Program�
ming� In �
�� pages ���� April �����

��� Henri E� Bal� Jennifer G� Steiner� and Andrew S� Tanenbaum� Programming Languages for Distributed Com�
puting Systems� ACM Computing Surveys� ����	����� September �����

��� R� Bisseling� Parallel Scienti�c Computation � A Structured Approach using BSP and MPI� Oxford University
Press� ����

�� Guy Blelloch� Programming Parallel Algorithms� Comm� ACM� �����	����
� March �����
��� Robert D� Blumofe� Christopher F� Joerg� Bradley C� Kuszmaul� Charles E� Leiserson� Keith H� Randall� and

Yuli Zhou� Cilk	 an e�cient multi�threaded run�time system� In Proc� �th ACM SIGPLAN Symp� Principles
and Practice of Parallel Programming� pages �
���� �����

��� Hans�J� Boehm� Threads cannot be implemented as a library� In Proc� ACM SIGPLAN Conf� Programming
Language Design and Implementation� pages ������ ����

��� Olaf Bonorden� Ben Juurlink� Ingo von Otte� and Ingo Rieping� The Paderborn University BSP �PUB� Library�
Parallel Computing� �	��
��
� ����

��� Ian Buck� Tim Foley� Daniel Horn� Jeremy Sugerman� Kayvon Fatahalian� Mike Houston� and Pat Hanrahan�
Brook for GPUs	 stream computing on graphics hardware� In SIGGRAPH ���	 ACM SIGGRAPH ���� Papers�
pages

�
��� New York� NY� USA� ���� ACM Press�

�
� William W� Carlson� Jesse M� Draper� David E� Culler� Kathy Yelick� Eugene Brooks� and Karen Warren�
Introduction to UPC and language speci�cation� Technical Report CCS�TR������
� second printing� IDA Center
for Computing Sciences� May �����

��� Brian D� Carlstrom� Austen McDonald� Hassan Cha�� JaeWoong Chung� Chi Cao Minh� Christoforos E�
Kozyrakis� and Kunle Olukotun� The atomos transactional programming language� In Proc� Conf� Prog� Lang�
Design and Impl�
PLDI�� pages ����� ACM� June ����

��� Nicholas Carriero and David Gelernter� Linda in context� Commun� ACM� ����	�������� �����
�� Bradford L� Chamberlain� David Callahan� and Hans P� Zima� Parallel programmability and the chapel language�

submitted� ��
�
�� Murray Cole� Bringing skeletons out of the closet	 A pragmatic manifesto for skeletal parallel programming�

Parallel Computing� �����	�������� ����
� Murray I� Cole� Algorithmic Skeletons	 Structured Management of Parallel Computation� Pitman and MIT

Press� �����
�� Richard Cole and Ofer Zajicek� The APRAM	 Incorporating Asynchrony into the PRAM model� In Proc� �st

Annual ACM Symp� Parallel Algorithms and Architectures� pages �����
�� �����
�� David E� Culler� Richard M� Karp� David A� Patterson� Abhijit Sahay� Klaus E� Schauser� Eunice Santos�

Ramesh Subramonian� and Thorsten von Eicken� LogP	 Towards a realistic model of parallel computation� In
Principles Practice of Parallel Programming� pages ���� �����

�� J� Darlington� A� J� Field� P� G� Harrison� P� H� B� Kelly� D� W� N� Sharp� and Q� Wu� Parallel Programming
Using Skeleton Functions� In Proc� Conf� Parallel Architectures and Languages Europe� pages �������� Springer
LNCS ���� �����

�� J� Darlington� Y� Guo� H� W� To� and J� Yang� Parallel skeletons for structured composition� In Proc� �th ACM
SIGPLAN Symp� Principles and Practice of Parallel Programming� ACM Press� July ����� SIGPLAN Notices
������ pp� �����

� K� M� Decker and R� M� Rehmann� editors� Programming Environments for Massively Parallel Distributed
Systems� Birkh�user� Basel �Switzerland�� ����� Proc� IFIP WG ���� Working Conf� at Monte Verita� Ascona
�Switzerland�� April �����

�� F� Dehne� A� Fabri� and A� Rau�Chaplin� Scalable parallel geometric algorithms for coarse grained multicom�
puters� In Proc� ACM Symp� on Comput� Geometry� pages �����
� �����

�� Beniamino di Martino and Christoph W� Ke�ler� Two program comprehension tools for automatic parallelization�
IEEE Concurr�� ����� Spring ����

��� Dietmar W� Erwin and David F� Snelling� Unicore	 A grid computing environment� In Proc� �th Int�l Conference
on Parallel Processing
Euro�Par�� pages ������� London� UK� ���� Springer�Verlag�

��� Vijaj Saraswat et al� Report on the experimental language X��� draft v� ����� White paper�
http	��www�ibm�research�com� comm�research�projects�nsf�pages�x���index�html� February ����

�� Joel Falcou and Jocelyn Serot� Formal semantics applied to the implementation of a skeleton�based parallel
programming library� In Proc� ParCo������ IOS press� ����

��� Martti Forsell� A scalable high�performance computing solution for networks on chips� IEEE Micro� pages
������ September ���

��� S� Fortune and J� Wyllie� Parallelism in random access machines� In Proc� ��th Annual ACM Symp� Theory of
Computing� pages �������� ��
��

��� Ian Foster� Designing and Building Parallel Programs� Addison Wesley� �����
��� Ian Foster� Globus toolkit version �	 Software for service�oriented systems� In Proc� IFIP Int�l Conf� Network

and Parallel Computing� LNCS �

�� pages ���� Springer� ����
�
� Ian Foster� Carl Kesselman� and Steven Tuecke� The anatomy of the grid	 Enabling scalable virtual organizations�

Int�l J� Supercomputer Applications� �����	���� ����
��� Phillip B� Gibbons� A More Practical PRAM Model� In Proc� �st Annual ACM Symp� Parallel Algorithms and

Architectures� pages �������� �����
��� W� K� Giloi� Parallel Programming Models and Their Interdependence with Parallel Architectures� In Proc� �st

Int� Conf� Massively Parallel Programming Models� IEEE Computer Society Press� �����
��� Sergei Gorlatch and Susanna Pelagatti� A transformational framework for skeletal programs	 Overview and

case study� In Jose Rohlim et al�� editor� IPPS�SPDP��� Workshops Proceedings� IEEE Int� Parallel Processing
Symp� and Symp� Parallel and Distributed Processing� pages �����
� Springer LNCS ����� �����

��� Allan Gottlieb� An overview of the NYU ultracomputer project� In J�J� Dongarra� editor� Experimental Parallel
Computing Architectures� pages ����� Elsevier Science Publishers� ���
�

�� Susanne E� Hambrusch� Models for Parallel Computation� In Proc� Int� Conf� Parallel Processing� Workshop
on Challenges for Parallel Processing� �����

��� Philip J� Hatcher and Michael J� Quinn� Data�Parallel Programming on MIMD Computers� MIT Press� �����
��� Maurice Herlihy and J� Eliot B� Moss� Transactional memory	 Architectural support for lock�free data structures�

In Proc� Int� Symp� Computer Architecture� �����
��� Heywood and Leopold� Dynamic randomized simulation of hierarchical PRAMs on meshes� In AIZU	 Aizu

International Symposium on Parallel Algorithms�Architecture Synthesis� IEEE Computer Society Press� �����
��� Jonathan M� D� Hill� Bill McColl� Dan C� Stefanescu� Mark W� Goudreau� Kevin Lang� Satish B� Rao� Torsten

Suel� Thanasis Tsantilas� and Rob Bisseling� BSPlib	 the BSP Programming Library� Parallel Computing�
�����	���
������ �����

�
� Rolf Ho�mann� Klaus�Peter V�lkmann� Stefan Waldschmidt� and Wolfgang Heenes� GCA	 Global Cellular
Automata� A Flexible Parallel Model� In PaCT ���	 Proceedings of the �th International Conference on Parallel
Computing Technologies� pages ���
�� London� UK� ���� Springer�Verlag�

��� Kenneth E� Iverson� A Programming Language� Wiley� New York� ����
��� Joseph J�J�� An Introduction to Parallel Algorithms� Addison�Wesley� ����
��� Johannes Jendrsczok� Rolf Ho�mann� Patrick Ediger� and J�rg Keller� Implementing APL�like data parallel

functions on a GCA machine� In Proc� ��st Workshop Parallel Algorithms and Computing Systems
PARS��
��
�

��� J�rg Keller� Christoph Kessler� and Jesper Tr��� Practical PRAM Programming� Wiley� New York� ����
�� Ken Kennedy� Charles Koelbel� and Hans Zima� The rise and fall of High Performance Fortran	 an historical

object lesson� In Proc� Int� Symposium on the History of Programming Languages
HOPL III�� June ��
�
��� Christoph Kessler� Managing distributed shared arrays in a bulk�synchronous parallel environment� Concurrency

� Pract� Exp�� ��	�������� ����
��� Christoph Kessler� Teaching parallel programming early� In Proc� Workshop on Developing Computer Science

Education � How Can It Be Done�� Link�pings universitet� Sweden� March ����
��� Christoph Kessler and Andrzej Bednarski� Optimal integrated code generation for VLIW architectures� Con�

currency and Computation	 Practice and Experience� ��	���������� ����
��� Christoph W� Ke�ler� NestStep	 Nested Parallelism and Virtual Shared Memory for the BSP model� The J� of

Supercomputing� �
	����� ����
�
� Christoph W� Kessler� A practical access to the theory of parallel algorithms� In Proc� ACM SIGCSE���

Symposium on Computer Science Education� March ����
��� Christoph W� Ke�ler and Helmut Seidl� The Fork�� Parallel Programming Language	 Design� Implementation�

Application� Int� J� Parallel Programming� ����	�
���� February ���
�
��� Herbert Kuchen� A skeleton library� In Proc� Euro�Par���� pages ������ ���
��� H� T� Kung and C� E� Leiserson� Algorithms for VLSI processor arrays� In C� Mead and L� Conway� editors�

Introduction to VLSI systems� pages
����� Addison�Wesley� �����
��� Christian Lengauer� A personal� historical perspective of parallel programming for high performance� In G�nter

Hommel� editor� Communication�Based Systems
CBS ������ pages �������� Kluwer� ����
�� Claudia Leopold� Parallel and Distributed Computing� A survey of models� paradigms and approaches� Wiley�

New York� ����
��� K��C Li and H� Schwetman� Vector C	 A Vector Processing Language� J� Parallel and Distrib� Comput��

	������� �����
��� L� Fava Lindon and S� G� Akl� An optimal implementation of broadcasting with selective reduction� IEEE

Trans� Parallel Distrib� Syst�� ����	������ �����
��� B� M� Maggs� L� R� Matheson� and R� E� Tarjan� Models of Parallel Computation	 a Survey and Synthesis� In

Proc� ��th Annual Hawaii Int� Conf� System Sciences� volume � pages ���
�� January �����
��� W� F� McColl� General Purpose Parallel Computing� In A� M� Gibbons and P� Spirakis� editors� Lectures on

Parallel Computation� Proc� ���� ALCOM Spring School on Parallel Computation� pages ��
����� Cambridge
University Press� �����

�
� Wolfgang J� Paul� Peter Bach� Michael Bosch� J�rg Fischer� C�dric Lichtenau� and Jochen R�hrig� Real PRAM
programming� In Proc� Int� Euro�Par Conf����� August ���

��� Susanna Pelagatti� Structured Development of Parallel Programs� Taylor�Francis� �����
��� Michael Philippsen and Walter F� Tichy� Modula�� and its Compilation� In Proc� �st Int� Conf� of the Austrian

Center for Parallel Computation� pages �������� Springer LNCS ���� �����

�� Thomas Rauber and Gudula R�nger� Tlib	 a library to support programming with hierarchical multi�processor

tasks� J� Parallel and Distrib� Comput�� ��	��
����� March ����

�� Lawrence Rauchwerger and David Padua� The Privatizing DOALL Test	 A Run�Time Technique for DOALL

Loop Identi�cation and Array Privatization� In Proc� �th ACM Int� Conf� Supercomputing� pages ������ ACM
Press� July �����

� Lawrence Rauchwerger and David Padua� The LRPD Test	 Speculative Run�Time Parallelization of Loops with
Privatization and Reduction Parallelization� In Proc� ACM SIGPLAN Conf� Programming Language Design
and Implementation� pages ����� ACM Press� June �����

�� J� Rose and G� Steele� C�	 an Extended C Language for Data Parallel Programming� Technical Report PL�
���
Thinking Machines Inc�� Cambridge� MA� ���
�

�� D� B� Skillicorn� Models for Practical Parallel Computation� Int� J� Parallel Programming� ���	�������� �����

�� D� B� Skillicorn� miniBSP	 a BSP Language and Transformation System� Technical report�
Dept� of Computing and Information Sciences� Queens s University� Kingston� Canada� Oct� �����
http	��www�qucis�queensu�ca�home�skill�mini�ps�

�� David B� Skillicorn and Domenico Talia� editors� Programming Languages for Parallel Processing� IEEE Com�
puter Society Press� �����

� David B� Skillicorn and Domenico Talia� Models and Languages for Parallel Computation� ACM Computing
Surveys� June �����

�� Lawrence Snyder� The design and development of ZPL� In Proc� ACM SIGPLAN Third symposium on history
of programming languages
HOPL�III�� ACM Press� June ��
�

�� H!kan Sundell and Philippas Tsigas� NOBLE	 A non�blocking inter�process communication library� Technical
Report ����� Dept� of Computer Science� Chalmers University of Technology and G�teborg University� SE�
���� G�teborg� Sweden� ���

��� Leslie G� Valiant� A Bridging Model for Parallel Computation� Comm� ACM� �����	�������� August �����
��� Fredrik Warg� Techniques to reduce thread�level speculation overhead� PhD thesis� Dept� of Computer Science

and Engineering� Chalmers university of technology� Gothenburg �Sweden�� ����
�� Xingzhi Wen and Uzi Vishkin� Pram�on�chip	 �rst commitment to silicon� In SPAA ���	 Proceedings of the

nineteenth annual ACM symposium on Parallel algorithms and architectures� pages ������� New York� NY�
USA� ��
� ACM�

��� Wayne Wolf� Guest editor s introduction	 The embedded systems landscape� Computer� ������	����� ��
�

