
Integrated Code Generation for Loops

This is the authors’ final manuscript, accepted 2010. The final version appeared in ACM

Transactions in Embedded Computing Systems, vol. 11S, number 1, Article 19, June 2012, 24

pages. DOI=10.1145/2180887.2180896 http://doi.acm.org/10.1145/2180887.2180896 c©ACM.

MATTIAS ERIKSSON and CHRISTOPH KESSLER

Linköping university

Code generation in a compiler is commonly divided into several phases: instruction selection,
scheduling, register allocation, spill code generation, and, in the case of clustered architectures,
cluster assignment. These phases are interdependent; for instance, a decision in the instruction
selection phase affects how an operation can be scheduled. We examine the effect of this separation
of phases on the quality of the generated code. To study this we have formulated optimal methods
for code generation with integer linear programming; first for acyclic code and then we extend
this method to modulo scheduling of loops. In our experiments we compare optimal modulo
scheduling, where all phases are integrated, to modulo scheduling, where instruction selection and
cluster assignment are done in a separate phase. The results show that, for an architecture with
two clusters, the integrated method finds a better solution than the non-integrated method for
27% of the instances.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code Gen-
eration,Optimization

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: Code generation, clustered VLIW architectures, modulo
scheduling

1. INTRODUCTION

A processor in an embedded device often spends the major part of its life executing
a few lines of code over and over again. Finding ways to optimize these lines of
code before the device is brought to the market could make it possible to run
the application on cheaper or more energy efficient hardware. This fact motivates
spending large amounts of time on aggressive code optimization. In this paper
we aim at improving current methods for code optimization by exploring ways to
generate provably optimal code (in terms of throughput).

Code generation is performed in the back end of a compiler; in essence, it is
the process of creating executable code from the previously generated intermediate

Author’s addresses: Dept. of Computer and Information Science, Linköpings universitet, SE-
581 83 Linköping, Sweden. Email: {mater,chrke}@ida.liu.se.
This work has been supported by The Swedish national graduate school in computer science
(CUGS), Vetenskapsr̊adet (VR) and Stiftelsen för strategisk forskning (SSF).
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 2012 ACM 1539-9087/2012/06-ART19$10.00

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012, Pages 1–25.



2 · M. Eriksson and C. Kessler

representation (IR). One way to do this is to perform three phases in some sequence:

—Instruction selection phase — Select target instructions matching the IR. This
phase includes resource allocation.

—Instruction scheduling phase — Map the selected instructions to time slots on
which to execute them.

—Register allocation phase — Select registers in which intermediate values are to
be stored.

While doing the phases in sequence is simpler and less computationally heavy,
the phases are interdependent. Hence, integrating the phases of the code generator
gives more opportunities for optimization. The cost of integrating the phases is that
the size of the solution space increases: there is a combinatorial explosion when de-
cisions in all phases are considered simultaneously. This is especially the case when
we consider complicated processors with clustered register files and functional units
where many different target instructions may be applied to a single IR operation,
and with both explicit and implicit transfers between the register clusters.

In this paper we are interested in code generation for very long instruction word
(VLIW) architectures [Fisher 1983]. For VLIW processors the issued long instruc-
tion words contain multiple operations that are executed in parallel. This means
that all instruction level parallelism is static, i.e. the compiler (or assembler level
programmer) decides which operations are to be executed at the same point in time.
Our focus is particularly on clustered VLIW architectures in which the functional
units of the processor are limited to using a subset of the available registers [Fernan-
des 1998]. The motivation behind clustered architectures is to reduce the number
of register ports and thereby making the processor use less silicon and be more scal-
able. This clustering makes the job of the compiler even more difficult since there
are now even stronger interdependencies between the phases of the code generation.
For instance, which instruction (and thereby also functional unit) is selected for an
operation influences to which register the computed value may be written.

For ease of presentation, we begin with an integer linear programming model
for acyclic code generation, i.e. for basic blocks1, in Section 2. This section also
contains an experimental comparison of the integer linear programming model to
a heuristic based on genetic algorithms. In Section 3 we extend the integer linear
programming model to modulo scheduling. Additionally we show some theoretical
properties of the algorithm and its search space and show results of an extensive
experimental evaluation where we compare the fully integrated method to a method
where instruction selection and cluster assignment is done in a separate phase.
Section 4 lists related work in acyclic and cyclic integrated code generation and
Section 5 concludes the paper.

2. INTEGRATED CODE GENERATION WITH INTEGER LINEAR PROGRAMMING

For optimal code generation for basic blocks we use an integer linear programming
formulation. In this section we will introduce all parameters, variables and con-

1A basic block is a block of code that contains no jump instructions and no jump target other
than the beginning of the block. I.e., when the flow of control enters the basic block all of the
operations in the block are executed exactly once.

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 3

straints which are used by the CPLEX solver to generate a schedule with minimal
execution time. This model integrates instruction selection (including cluster as-
signment), instruction scheduling and register allocation. An advantage of using
integer linear programming is that a mathematically precise description is generated
as a side effect. Also, the integer linear programming model is natural to extend to
modulo scheduling, as we show in Section 3. The integer linear programming model
presented here is based on a series of models previously published in [Bednarski and
Kessler 2006; Eriksson et al. 2008; Eriksson and Kessler 2009].

2.1 Data flow graph

A basic block is modeled as a directed acyclic graph (DAG) G = (V,E), where
E = E1 ∪ E2 ∪ Em. The set V contains intermediate representation (IR) nodes,
the sets E1, E2 ⊂ V × V represent edges between operations and their first and
second operand respectively. Dependences that are not true data dependences are
modeled with the set Em ⊂ V ×V . The integer parameter Opi describes operators
of the IR-nodes i ∈ V .

2.2 Instruction set

The instructions of the target machine are modeled by the set P = P1 ∪ P2+ ∪ P0

of patterns. P1 is the set of singletons, which only cover one IR node. The set P2+

contain composites, which cover multiple IR nodes (used e.g. for multiply-and-add
which covers a multiplication immediately followed by an addition). And the set
P0 consists of patterns for non-issue instructions which are needed when there are
IR nodes in V that do not have to be covered by an instruction, e.g. an IR node
representing a constant value that needs not be loaded into a register. The IR
is low level enough so that all patterns model exactly one (or zero in the case of
P0) instructions of the target machine. When we use the term pattern we mean
a pair consisting of one instruction and a set of IR-nodes that the instruction can
implement. I.e., an instruction can be paired with different sets of IR-nodes and a
set of IR-nodes can be paired with more than one instruction. For instance, on the
TI-C62x DSP processor (see Figure 1) an addition can be done with any of twelve
different instructions (not counting the multiply-and-add instructions): ADD.L1,
ADD.L2, ADD.S1, ADD.S2, ADD.D1, ADD.D2, ADD.L1X, ADD.L2X, ADD.S1X, ADD.S2X,
ADD.D1X or ADD.D2X.

For each pattern p ∈ P2+ ∪ P1 we have a set Bp = {1, . . . , np} of generic nodes
for the pattern. For composites we have np > 1 and for singletons np = 1. For
composite patterns p ∈ P2+ we also have EPp ⊂ Bp×Bp, the set of edges between
the generic pattern nodes. Each node k ∈ Bp of the pattern p ∈ P2+ ∪ P1 has an
associated operator number OPp,k which relates to operators of IR nodes. Also,
each p ∈ P has a latency Lp, meaning that if p is scheduled at time slot t the result
of p is available at time slot t + Lp.

2.3 Resources and register sets

We model the resources of the target machine with the set F and the register banks
with the set RS. The binary parameter Up,f,o is 1 iff the instruction with pattern
p ∈ P uses the resource f ∈ F at time step o relative to the issue time. Note that
this allows for multiblock [Kessler et al. 2007] and irregular reservation tables [Rau

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



4 · M. Eriksson and C. Kessler

.L2.S2.M2.D2.L1 .S1 .D1

Register file B (B0−B15)

.M1

Register file A (A0−A15)

X2X1

1: The Texas Instruments TI-C62x processor has two register banks and 8 functional units [Texas
Instruments Incorporated 2000]. The crosspaths X1 and X2 are modeled as resources, too.

1994]. Rr is a parameter describing the number of registers in the register bank
r ∈ RS. The issue width is modeled by ω, i.e. the maximum number of instructions
that may be issued at any time slot.

For modeling transfers between register banks we do not use regular instructions
(note that transfers, like spill instructions, do not cover nodes in the DAG). Instead
we let the integer parameter LX r,s denote the latency of a transfer from r ∈ RS to
s ∈ RS. If no such transfer instruction exists we set LX r,s = ∞. And for resource
usage, the binary parameter UX r,s,f is 1 iff a transfer from r ∈ RS to s ∈ RS uses
resource f ∈ F . Note that we can also integrate spilling into the formulation by
adding a virtual register file to RS corresponding to the memory, and then have
transfer instructions to and from this register file corresponding to stores and loads.
See Figure 1 for an illustration of a clustered architecture.

Lastly, we have the sets PDr,PS1 r,PS2 r ⊂ P which, for all r ∈ RS, contain the
pattern p ∈ P iff p stores its result in r, takes its first operand from r or takes its
second operand from r, respectively.

2.4 Solution variables

The parameter tmax gives the last time slot on which an instruction may be sched-
uled. We also define the set T = {0, 1, 2, . . . , tmax}, i.e. the set of time slots on
which an instruction may be scheduled. For the acyclic case tmax is incremented
until a solution is found.

We have the following binary solution variables:

—ci,p,k,t, which is 1 iff IR node i ∈ V is covered by k ∈ Bp, where p ∈ P , issued at
time t ∈ T .

—wi,j,p,t,k,l, which is 1 iff the DAG edge (i, j) ∈ E1 ∪ E2 is covered at time t ∈ T
by the pattern edge (k, l) ∈ EPp where p ∈ P2+ is a composite pattern.

—sp,t, which is 1 iff the instruction with pattern p ∈ P2+ is issued at time t ∈ T .

—xi,r,s,t, which is 1 iff the result from IR node i ∈ V is transfered from r ∈ RS to
s ∈ RS at time t ∈ T .

—rrr ,i,t, which is 1 iff the value corresponding to the IR node i ∈ V is available in
register bank rr ∈ RS at time slot t ∈ T .

We also have the following integer solution variable:

—τ is the first clock cycle on which all latencies of executed instructions have
expired.

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 5

b

c

a

pc

b a

(i) (ii)

Fig. 2. (i) Pattern p can not cover the set
of nodes since there is another outgoing
edge from b, (ii) p covers nodes a, b, c.

2.5 Removing impossible schedule slots

We can significantly reduce the number of variables in the model by performing
soonest-latest analysis on the nodes of the graph. Let Lmin(i) be 0 if the node i ∈ V
may be covered by a composite pattern, and the lowest latency of any instruction
p ∈ P1 that may cover the node i ∈ V otherwise. Let pre(i) = {j : (j, i) ∈ E} and
succ(i) = {j : (i, j) ∈ E}. We can recursively calculate the soonest and latest time
slot on which node i may be scheduled:

soonest ′(i) =
{

0 , if |pre(i)| = 0
maxj∈pre(i){soonest ′(j) + Lmin(j)} , otherwise (1)

latest ′(i) =
{

tmax , if |succ(i)| = 0
maxj∈succ(i){latest ′(j)− Lmin(i)} , otherwise (2)

Ti = {soonest ′(i), . . . , latest ′(i)} (3)

We can also remove all the variables in c where no node in the pattern p ∈ P has
an operator number matching i. We can view the matrix c of variables as a sparse
matrix; the constraints dealing with c must be written to take this into account.
In the following mathematical presentation ci,p,k,t is taken to be 0 if t /∈ Ti for
simplicity of presentation.

2.6 Optimization constraints

2.6.1 Optimization objective. The objective of the integer linear program is to
minimize the execution time:

min τ (4)

The execution time is the latest time slot where any instruction terminates. For
efficiency we only need to check for execution times for instructions covering an IR
node with out-degree 0, let Vroot = {i ∈ V : @j ∈ V, (i, j) ∈ E}:

∀i ∈ Vroot, ∀p ∈ P, ∀k ∈ Bp, ∀t ∈ T, ci,p,k,t(t + Lp) ≤ τ (5)

2.6.2 Node and edge covering. Exactly one instruction must cover each IR node:

∀i ∈ V,
∑

p∈P
k∈Bp

t∈T

ci,p,k,t = 1 (6)

Equation 7 sets sp,t = 1 iff the composite pattern p ∈ P2+ is used at time t ∈ T .
This equation also guarantees that either all or none of the generic nodes k ∈ Bp

are used at a time slot:

∀p ∈ P2+ , ∀t ∈ T, ∀k ∈ Bp,
∑

i∈V

ci,p,k,t = sp,t (7)

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



6 · M. Eriksson and C. Kessler

Fig. 3. A value may be live in a register bank A
if: (i) it was put there by an instruction, (ii) it
was live in register bank A at the previous time
step, and (iii) the value was transferred there by
an explicit transfer instruction.

i it−1

t

time

i

A0=...

Reg. bank A Reg. bank B

(ii)
(i) (iii)

An edge within a composite pattern may only be active if there is a corresponding
edge (i, j) in the DAG and both i and j are covered by the pattern, see Figure 2:

∀(i, j) ∈ E1 ∪ E2, ∀p ∈ P2+ , ∀t ∈ T, ∀(k, l) ∈ EPp,

2wi,j,p,t,k,l ≤ ci,p,k,t + cj,p,l,t (8)

If a generic pattern node covers an IR node, the generic pattern node and the IR
node must have the same operator number:

∀i ∈ V, ∀p ∈ P, ∀k ∈ Bp, ∀t ∈ T, ci,p,k,t(Opi −OPp,k) = 0 (9)

2.6.3 Register values. A value may only be present in a register bank if: it was
just put there by an instruction, it was available there in the previous time step, or
just transfered to there from another register bank (see visualization in Figure 3):

∀rr ∈ RS, ∀i ∈ V, ∀t ∈ T,

rrr ,i,t ≤
∑

p∈PDrr∩P
k∈Bp

ci,p,k,t−Lp + rrr ,i,t−1 +
∑

rs∈RS
(xi,rs,rr ,t−LX rs,rr ) (10)

The operand to an instruction must be available in the correct register bank when
we use it. A limitation of this formulation is that composite patterns must have all
operands and results in the same register bank:

∀(i, j) ∈ E1 ∪ E2, ∀t ∈ T, ∀rr ∈ RS,

rrr ,i,t ≥
∑

p∈PDrr∩P2+
k∈Bp


cj,p,k,t −

∑

(k,l)∈EPp

wi,j,p,t,k,l


 (11)

Internal values in a composite pattern must not be put into a register (e.g. the
multiply value in a multiply-and-accumulate instruction):

∀rr ∈ RS, tp ∈ T, tr ∈ T, p ∈ P2+ , ∀(k, l) ∈ EPp, ∀(i, j) ∈ E1 ∪ E2,

rrr ,i,tr ≤ 1− wi,j,p,tp,k,l (12)

If they exist, the first operand (Equation 13) and the second operand (Equation 14)
must be available when they are used2:

∀(i, j) ∈ E1, ∀t ∈ T, ∀rr ∈ RS, rrr ,i,t ≥
∑

p∈PS1 rr∩P1
k∈Bp

cj,p,k,t (13)

2Constraints 11–14 have been improved compared to [Eriksson et al. 2008; Eriksson and Kessler
2009].

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 7

∀(i, j) ∈ E2, ∀t ∈ T, ∀rr ∈ RS, rrr ,i,t ≥
∑

p∈PS2 rr∩P1
k∈Bp

cj,p,k,t (14)

Transfers may only occur if the source value is available:

∀i ∈ V, ∀t ∈ T, ∀rr ∈ RS, rrr ,i,t ≥
∑

rq∈RS
xi,rr ,rq,t (15)

2.6.4 Non-dataflow dependences. Equation 16 ensures that non-dataflow depen-
dences are not violated, adapted from [Gebotys and Elmasry 1993]:

∀(i, j) ∈ Em, ∀t ∈ T
∑

p∈P

t∑
tj=0

cj,p,1,tj
+

∑

p∈P

tmax∑

ti=t−Lp+1

ci,p,1,ti
≤ 1 (16)

2.6.5 Resources. We must not exceed the number of available registers in a
register bank at any time:

∀t ∈ T, ∀rr ∈ RS,
∑

i∈V

rrr ,i,t ≤ Rrr (17)

Condition 18 ensures that no resource is used more than once at each time slot:

∀t ∈ T, ∀f ∈ F ,
∑

p∈P2+
o∈N

Up,f,osp,t−o +
∑

p∈P1
i∈V

k∈Bp

Up,f,oci,p,k,t−o +
∑

i∈V
(rr ,rq)∈(RS×RS)

UX rr ,rq,fxi,rr ,rq,t ≤ 1 (18)

And, lastly, Condition 19 guarantees that we never exceed the issue width:

∀t ∈ T,
∑

p∈P2+

sp,t +
∑

p∈P1
i∈V

k∈Bp

ci,p,k,t +
∑

i∈V
(rr ,rq)∈(RS×RS)

xi,rr ,rq,t ≤ ω (19)

2.7 Experimental evaluation

We have compared our integer linear programming method to a genetic algorithm
based heuristic ([Eriksson et al. 2008]). As input we used 80 basic blocks from the
Mediabench benchmark suite [Lee et al. 1997]. The basic blocks were selected by
taking all blocks with 25 or more IR nodes from the mpeg2 and jpeg encoding and
decoding programs. The size of the largest basic block is 191 IR nodes. The target
architecture is the two-clustered TI-C62x with small modifications.

The time limit for the algorithms was approximately 900 seconds per basic block.
The solver is CPLEX 10.2 and the host machine is an Athlon X2 6000+ with 4 GB
RAM. A summary of the results is shown in Figure 4; all DAGs solved by the
integer linear programming method are optimal. The largest basic block that is
solved by the integer linear programming method contains 142 IR nodes. After
presolve 35302 variables and 21808 constraints remains, and the solution time is
672 seconds. We also saw basic blocks that are smaller in size (e.g. 76 IR nodes)
and are not solved to optimality. Hence the time to optimally solve an instance
does not only depend on the size of the DAG, but also on other characteristics of
the problem, such as the amount of instruction level parallelism that is possible.
For details on the genetic algorithm setup and results see [Eriksson et al. 2008].

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



8 · M. Eriksson and C. Kessler

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

25-30
(18)

31-35
(15)

36-50
(19)

51-100
(18)

101-191
(10)

%
 o

f t
ot

al

Number of nodes
(Number of basic blocks)

ILP better Equal Only GA

4: Stacked bar chart showing a summary of the comparison between the integer linear program-
ming and the genetic algorithm for basic blocks: ILP better means that ILP produces a schedule
that is shorter than the one that GA produces, Equal means the schedules by ILP and GA have
the same length, and Only GA means that GA finds a solution but ILP fails to do so. The integer
linear programming method always produces an optimal result if it terminates.

3. INTEGRATED MODULO SCHEDULING

In this section we extend the integer linear programming model in Section 2 to
modulo scheduling. We also show theoretical results on an upper bound for the
number of schedule slots, and the results of an extensive evaluation.

3.1 Extending the model to modulo scheduling

Software pipelining [Charlesworth 1981] is an optimization for loops where the it-
erations of the loop are pipelined, i.e. consequtive iterations begin executing before
the current one has finished. One well known kind of software pipelining is modulo
scheduling [Rau and Glaeser 1981] where new iterations of the loop are issued at
a fixed rate determined by the initiation interval (II ). For every loop the initia-
tion interval has a lower bound MinII = max (ResMII ,RecMII ), where ResMII is
the bound determined by the available resources of the processor, and RecMII is
the bound determined by the critical dependence cycle in the dependence graph
describing the loop body. Methods for calculating RecMII and ResMII are well
documented in e.g. [Lam 1988].

We note that a kernel can be formed from the schedule of a basic block by schedul-
ing each operation modulo the initiation interval, see (i) and (ii) in Figure 5. The
modulo schedules that we create have a corresponding iteration schedule, and by
the length of a modulo schedule we mean the number of schedule slots (tmax) of the
iteration schedule. We also note that, since an iteration schedule is a potential basic
block schedule, creating a valid modulo schedule only adds constraints compared
to the basic block case.

First we need to model loop carried dependences by adding a distance to edges:
E1, E2, Em ⊂ V × V × N. The element (i, j, d) ∈ E represents a dependence from
i to j which spans over d loop iterations. Obviously the graph is no longer a DAG
since it may contain cycles. The only thing we need to do to include loop distances
in the model is to change rrr ,i,t to: rrr ,i,t+d·II in Equations 11, 13 and 14, and
ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 9

A B

C

(i) (ii) K

I

L

J

G

E

H

F A B

C D (iii)

A B

C

K

I

G

E

L

J

H

F

D

A B

C

K

I

G

E

L

J

H

F

D

Iteration 0

Iteration 1

K

I

G

E

L

J

H

F

D

Time

Text

II

tmax

Text

II

II

5: An example showing how an acyclic schedule (i) can be rearranged into a modulo schedule
(ii), A-L are target instructions in this example. (iii) An example showing why Text has enough
time slots to model the extended live ranges. Here dmax = 1 and II = 2 so any live value from
Iteration 0 can not live after time slot tmax + II · dmax in the iteraton schedule.

modify Equation 16 to:

∀(i, j, d) ∈ Em, ∀t ∈ Text

∑

p∈P

t−II ·d∑
tj=0

cj,p,1,tj +
∑

p∈P

tmax+II ·dmax∑

ti=t−Lp+1

ci,p,1,ti ≤ 1 (20)

The initiation interval II must be a parameter to the integer linear programming
solver. To find the best (smallest) initiation interval we must run the solver several
times with different values of the parameter. A problem with this approach is that
it is difficult to know when an optimal II is reached if the optimal II is not RecMII
or ResMII ; we will get back to this problem in Section 3.2.

The slots on which instructions may be scheduled are defined by tmax, and we
do not need to change this for the modulo scheduling extension to work. But
when we model dependences spanning over loop iterations we need to add extra
time slots to model that variables may be alive after the last instruction of an
iteration is scheduled. This extended set of time slots is modeled by the set Text =
{0, . . . , tmax + II ·dmax} where dmax is the largest distance in any of E1 and E2. We
extend the variables in xi,r,s,t and rrr ,i,t so that they have t ∈ Text instead of t ∈ T ,
this is enough since a value created by an instruction scheduled at any t ≤ tmax

will be read, at latest, by an instruction dmax iterations later, see Figure 5(iii) for
an illustration.

3.1.1 Resource constraints. The constraints in the previous section now only
need a few further modifications to also do modulo scheduling. The resource con-
straints of the kind ∀t ∈ T, expr ≤ bound (Constraints 17–19) is modified to:

∀to ∈ {0, 1, . . . , II − 1},
∑

t∈Text:
t≡to(mod II )

expr ≤ bound

For instance, Constraint 17 becomes:

∀to ∈ {0, 1, . . . , II − 1}, ∀rr ∈ RS,
∑

i∈V

∑

t∈Text:
t≡to(mod II )

rrr ,i,t ≤ Rrr (21)

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



10 · M. Eriksson and C. Kessler

Input: A graph of IR nodes G = (V, E), the lowest possible initiation interval MinII , and the
architecture parameters.
Output: Modulo schedule.
MaxII = tupper = ∞;
tmax = MinII ;
while tmax ≤ tupper do

Compute soonest ′ and latest ′ with the current tmax;
II = MinII ;
while II < min(tmax,MaxII ) do

solve integer linear program instance;
if solution found then

if II == MinII then
return solution; //This solution is optimal

fi
MaxII = II − 1 ; //Only search for better solutions.

fi
II = II + 1

od
tmax = tmax + 1

od

6: Pseudocode for the integrated modulo scheduling algorithm.

Inequality 21 guarantees that the number of live values in each register bank does
not exceed the number of available registers. If there are overlapping live ranges,
i.e. when a value i is saved at td and used at tu > td + II ·ki for some integer ki > 1
the values in consecutive iterations can not use the same register for this value. We
may solve this e.g. by doing variable modulo expansion [Lam 1988].

3.1.2 Removing more variables. As we saw in Section 2.5 it is possible to im-
prove the solution time for the integer linear programming model by removing
variables whose values can be inferred. Now we can take loop-carried dependences
into account and find improved bounds:

soonest(i) = max

{
soonest ′(i),
max(j,i,d)∈E

d6=0

(soonest ′(j) + Lmin(j)− II · d)}
}

(22)

latest(i) = max

{
latest ′(i),
max(i,j,d)∈E

d6=0

(
latest ′(j)− Lmin(i) + II · d)}

}
(23)

With these new derived parameters we create

Ti = {soonest(i), . . . , latest(i)} (24)

that we can use instead of the set T for the t-index of variable ci,p,k,t. Equations 22
and 23 differ from Equations 1 and 2 in two ways: they are not recursive and they
need information about the initiation interval. Hence, soonest ′ and latest ′ can be
calculated when tmax is known, before the integer linear program is run, and soonest
and latest can be calculated parameters at solution time.
ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 11

Not feasible
Feasible

BestII
MaxII

tmax

II

MinII

II = tmax

tupper

7: This figure shows the solution space of the algorithm. BestII is the best initiation interval
found so far. For some architectures we can derive a bound, tupper , on the number of schedule
slots, tmax, such that any solution to the right of tupper can be moved to the left by a simple
transformation.

3.2 The algorithm

Figure 6 shows the algorithm for finding a modulo schedule; this algorithm explores
a two-dimensional solution space as depicted in Figure 7. The dimensions in this
solution space are number of schedule slots (tmax) and kernel size (II ). Note that if
there is no solution with initiation interval MinII this algorithm never terminates
(we do not consider cases where II > tmax). Later we will show how to make the
algorithm terminate with the optimal result also in this case.

A valid alternative to this algorithm would be to set tmax to a fixed sufficiently
large value and then solve for the minimal II . A problem with this approach is
that the solution time of the integer linear program increases superlinearly with
tmax. Therefore we find that beginning with a low value of tmax and increasing it
iteratively works best.

Our goal is to find solutions that are optimal in terms of throughput, i.e. to find
the minimal initiation interval. An alternative goal is to also minimize code size,
i.e. tmax, since large tmax leads to long prologs and epilogs to the modulo scheduled
loop. In other words: the solutions found by our algorithm can be seen as pareto
optimal solutions with regards to throughput and code size where solutions with
smaller code size but larger initiation intervals are found first.

3.2.1 Theoretical properties. In this section we will have a look at the theoret-
ical properties of the algorithm in Figure 6 and show how the algorithm can be
modified so that it finds optimal modulo schedules in finite time for a certain class
of architectures.

Definition 3.1. We say that a schedule s is dawdling if there is a time slot t ∈ T
such that (a) no instruction in s is issued at time t, and (b) no instruction in s
is running at time t, i.e. has been issued earlier than t, occupies some resource at

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



12 · M. Eriksson and C. Kessler

time t, and delivers its result at the end of t or later [Kessler et al. 2007].

Definition 3.2. The slack window of an instruction i in a schedule s is a sequence
of time slots on which i may be scheduled without interfering with another instruc-
tion in s. And we say that a schedule is n-dawdling if each instruction has a slack
window of at most n positions.

Definition 3.3. We say that an architecture is transfer free if all instructions
except NOP must cover a node in the IR graph. I.e., no extra instructions such
as transfers between clusters may be issued unless they cover IR nodes. We also
require that the register file sizes of the architecture are unbounded.

Lemma 3.4. For a transfer free architecture every non-dawdling schedule for the
data flow graph (V,E) has length

tmax ≤
∑

i∈V

L̂(i)

where L̂(i) is the maximal latency of any instruction covering IR node i (composite
patterns need to replicate L̂(i) over all covered nodes).

Proof. Since the architecture is transfer free only instructions covering IR nodes
exist in the schedule, and each of these instructions is active at most L̂(i) time units.
Furthermore we never need to insert dawdling NOPs to satisfy dependences of the
kind (i, j, d) ∈ E; consider the two cases:

(a) ti ≤ tj : Let L(i) be the latency of the instruction covering i. If there is a time
slot t between the point where i is finished and j begins which is not used for
another instruction then t is a dawdling time slot and may be removed without
violating the lower bound of j: tj ≥ ti + L(i)− d · II , since d · II ≥ 0.

(b) ti > tj : Let L(i) be the latency of the instruction covering i. If there is a time
slot t between the point where j ends and the point where i begins which is not
used for another instruction this may be removed without violating the upper
bound of i: ti ≤ tj + d · II − L(i). (ti is decreased when removing the dawdling
time slot.) This is where we need the assumption of unlimited register files, since
decreasing ti increases the live range of i, possibly increasing the register need of
the modulo schedule (see Figure 8 for such a case).

Corollary 3.5. An n-dawdling schedule for the data flow graph (V,E) has
length

tmax ≤
∑

i∈V

(L̂(i) + n− 1) .

Figure 8 shows an example that consists of a graph with two instructions, a and
b, both with latency 1. The value produced by b is consumed by a two iterations
later. Then, if the initiation interval is 4 the schedule shown in Figure 8 can not
be shortened by 4 cycles, since this would increase the live range of b and hence
increase the register pressure of the resulting modulo schedule.

Lemma 3.6. If a modulo schedule s with initiation interval II has an instruction
i with a slack window of size at least 2II time units, then s can be shortened by II
time units and still be a modulo schedule with initiation interval II .
ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 13

6
7
8

5
4

1
2
3

a

b

a

a

b

a

b

d=2

4

1
2
3

4

1
2
3

a

b

a

b

9

It 2

10
11

(i) (ii)

It 1 It 3

(iii) (iv)

Reg. Reg.

8: The graph in (i) can be modulo scheduled with initiation interval 4 as shown in (ii). If the
schedule of an iteration is shortened by 4 cycles the register pressure of the corresponding modulo
schedule kernel increases, see (iii) to (iv).

Proof. If i is scheduled in the first half of its slack window the last II time slots
in the window may be removed and all instructions will keep their position in the
modulo reservation table. Likewise, if i is scheduled in the last half of the slack
window the first II time slots may be removed.

Theorem 3.7. For a transfer free architecture, if there does not exist a modulo
schedule with initiation interval ĨI and tmax ≤

∑
i∈V (L̂(i) + 2ĨI − 1) there exists

no modulo schedule with initiation interval ĨI .

Proof. Assume that there exists a modulo schedule s with initiation interval
ĨI and tmax >

∑
i∈V (L̂(i) + 2ĨI − 1). Also assume that there exists no modulo

schedule with the same initiation interval and tmax ≤
∑

i∈V (L̂(i) + 2ĨI − 1). Then,
by Lemma 3.4, there exists an instruction i in s with a slack window larger than
2ĨI − 1 and hence, by Lemma 3.6, s may be shortened by ĨI time units and still be
a modulo schedule with the same initiation interval. If the shortened schedule still
has tmax >

∑
i∈V (L̂(i) + 2ĨI − 1) it may be shortened again, and again, until the

resulting schedule has tmax ≤
∑

i∈V (L̂(i) + 2ĨI − 1).

Corollary 3.8. We can guarantee optimality in the algorithm in Section 3.2
for transfer free architectures if, every time we find an improved II , we set tupper

=
∑

i∈V (L̂(i) + 2(II − 1)− 1).

Until now we have assumed that the register file sizes are unbounded. Now we
show how to allow bounded register file sizes by adding another assumption. The
new assumption is that all loop carried dependences have distance no larger than 1.

Lemma 3.9. If there is a true data dependence (b, a, d) ∈ E and a precedes b in
the iteration schedule then the number of dawdling time slots between a and b is
bounded by

ωa,b ≤ II · d− Lb

where Lb is the latency of the instruction covering b.

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



14 · M. Eriksson and C. Kessler

Fig. 9. Two cases: (i) b precedes a and
(ii) a precedes b in the iteration schedule.

b

a

b

a

a

b

a

b

It i It i+1 It i It i+1

Time

(ii)(i)

Proof. The precedence constraint dictates

tb + Lb ≤ ta + II · d (25)

If there are ωa,b dawdling time slots between a and b in the iteration schedule then

tb ≥ ta + ωa,b (26)

Hence

ta + ωa,b ≤ tb ≤ ta + II · d− Lb ⇒ ωa,b ≤ II · d− Lb

Corollary 3.10. If dmax ≤ 1 then any transformation that removes a block
of II dawdling time slots from the iteration schedule will not increase the register
pressure of the corresponding modulo schedule with initiation interval II .

Proof. Consider every live range b → a that needs a register. First we note
that the live range is only affected by the transformation if the removed block is
between a and b.

If b precedes a in the iteration schedule (see Figure 9(i)) then removing a block
of II nodes between b and a can only reduce register pressure.

If a precedes b in the iteration schedule (see Figure 9(ii)) then, by Lemma 3.9,
assuming Lb ≥ 1, there does not exist a removable block of size II between a and
b in the iteration schedule.

With these observations we can change the assumption of unbounded register file
sizes in Definition 3.3. The new assumption is that all loop carried dependences
have distances smaller than or equal to 1. Furthermore, we can limit the increase
in register pressure caused by removing a dawdling II -block:

Corollary 3.11. Given an iteration schedule for a data flow graph G = (V, E)
the largest possible increase in register pressure of the modulo schedule with initia-
tion interval II caused by removing dawdling blocks of size II is bounded by

Rincrease ≤
∑

(b,a,d)∈E
d>1

(d− 1)

Proof. Consider a live range b → a with loop carried distance d > 1. By
Lemma 3.9 there are at most ⌊

II · d− Lb

II

⌋
< d− 1

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 15

5 CNSTI44 CNSTI4

2 MULI41 MULI4

3 MULI4

0 MULI4

d=1 d=1

Fig. 10. A loop body with 4 multiplications. The edges
between Node 3 and Node 0 are loop carried dependences
with distance 1.

blocks of size II between a and b in the iteration schedule if a precedes b (if b
precedes a there can be no increase in register pressure with the same reasoning as
above).

3.2.2 A contrived example. Let us consider an example that demonstrates how
Corollary 3.8 can be used. Figure 10 shows a graph of an example program with
four multiplications. Consider the case where we have a non-clustered architecture
with one functional unit which can perform pipelined multiplications with latency 2.
Clearly, for this example we have RecMII = 6 and ResMII = 4, but an initiation
interval of 6 is impossible since IR-nodes 1 and 2 can not be issued at the same clock
cycle. When we run the algorithm we quickly find a modulo schedule with initiation
interval 7, but since this is larger than MinII the algorithm can not determine that
it is an optimal solution. Now we can use Corollary 3.8 to find that an upper bound
of 18 can be set on tmax. If no improved modulo schedule is found where tmax = 18
then the modulo schedule with initiation interval 7 is optimal. This example is
solved to optimality in a few seconds by our algorithm.

3.3 Separating versus integrating instruction selection

In this section we will investigate and quantify the difference in code quality between
our integrated code generation method and a method where instruction selection
and cluster assignment are not integrated with the other phases. One way to
do this is to first use a separate algorithm for cluster assignment and instruction
selection. In this way we could define values for some of the solution variables
in the integrated integer linear programming model and then solve the restricted
instance. This would allow for a comparison of the achieved initiation interval for
the less integrated method to the more integrated one. In this section we describe
the details of how we did this and show the results of an extensive evaluation.

Figure 11 shows the components of the software pipelining method that we have
developed. The integrated software pipelining model (d) takes a set of instructions,
which are to be picked from, for each IR-node. The default set is the one which
contains all instructions that can cover the operation that the IR-node represent.
So making instruction selection separated is just a matter of supplying a set with
only one instruction for each IR-node. Soonest-latest analysis (c) was described
earlier, here it is extended so that the exact latency of each node of the graph can
be given as input. This is useful for the cases where instruction selection has already
been done. If the latencies are not known before the software pipelining phase we
must use conservative values for these latencies. The integer linear programming

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



16 · M. Eriksson and C. Kessler

cycles L[v] ddg

tmax
Instruction selection

instr[v]

Find all cycles

cycles

ddg

(a) (b) (c)

archi ddg

Soonest/latest analysis

soon/late[v]
(d)

archi ddg instr[v]

SWP

soon/late[v]

II

solution

11: The components of the separated method.

model for the instruction selection phase (b) is basically the same model as the
fully integrated one, but with the scheduling and register constraints removed and
with a modified objective function that solves for minimal MinII . The cycle finding
part (a) is used to aid in calculating RecMII .

3.3.1 The instruction selection phase. For instruction selection we use a smaller
version of the integer linear programming model for the modulo scheduling phase.
The constraints regarding scheduling and register allocation were stripped out and
Constraints 6–9 are kept. To ensure that the instruction selection will work we add
a constraint saying that for all edges (a, b, d) ∈ E1∪E2, if a writes to rr and b reads
from rs 6= rr there must be a transfer for this edge. Then we can bound ResMII
by the following constraint (here with a simplified presentation):

∀f ∈ F , ResMII ≥
∑

i∈V

instr. covering i uses f +
∑

y∈transfers

y uses f (27)

When we calculate the lower bound on the initiation interval we need to take
two things into account: the available resources and the cycles of the DDG. We
implemented Tarjan’s algorithm for listing all cycles in a graph [Tarjan 1973]. We
ran this algorithm once on all data dependence graphs to generate all cycles; the
time limit of the algorithm was set to 10 seconds3, and if the limit was exceeded
we stored all cycles found so far. For the cases where the enumeration algorithm
exceeded the time limit, we had already found several thousand cycles. Continuing
beyond this point may lead to finding more critical cycles, which could tighten the
lower bound RecMII .

A cycle is represented by a set of all IR-nodes that are in it. Every cycle has
a distance sum, that is the sum of distances of the edges that make up the cycle.
Let Cyc(V, E) be the set of cycles defined by the graph with nodes V and edges E.
And let dist(C) be the distance sum of cycle C ∈ Cyc(V, E). Let intern[p] =
{a : ∃b, (a, b) ∈ Ep} denote the set of inner nodes in pattern p, then RecMII can be
bounded by

∀C ∈ Cyc(V,E),
∑

n∈C
p∈P

k∈(Bp−intern[p])
t∈T

Lpcn,p,k,t ≤ RecMII · dist(C) (28)

3These 10 seconds are not included in the reported solution times in the evaluation section.

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 17

In the instruction selection phase the most important objective is to minimize
the lower bound on the initiation interval. However, just minimizing the lower
bound is not enough in many cases: when MinII is defined by RecMII and ResMII
is significantly lower than RecMII the instruction selection solution may be very
unbalanced with regards to resource allocation of the functional units. To address
this problem we make the instruction selection phase minimize MinII as a first
objective, and with this minimal MinII also minimize ResMII . Assuming that
MinII < M (we used M = 100 in our experiments) this can be expressed as:

min M ·MinII + ResMII (29)

subject to:

MinII ≥ ResMIIMinII ≥ RecMII (30)

The advantage of adding ResMII to the objective function of the minimization
problem is that resources will be used in a more balanced way for the cases where
the MinII is dominated by RecMII . This better balance makes the scheduling
step easier, but the more complicated objective function in the instruction selection
phase leads to a much increased memory usage. Even though the increased memory
usage of the instruction selection phase makes the machine run out of memory for
some instances the results are on average better than when the simple objective
function is used.

3.3.2 Results. The experiments use data dependence graphs generated by the
st200cc compiler with optimization level -O3. Input to the compiler are programs
from the Spec2000, Spec2006, Mediabench and Ffmpeg benchmark [Touati 2009].
For solving the integer linear programming instances we use CPLEX 10.2 running
on an Intel Core I7 950. The optimization goal is to minimize the initiation interval.
After removing all graphs which include instructions that are too specialized for our
model (e.g. shift-add instructions) and all duplicate graphs we have 1151 graphs
left that have 60 or fewer IR-nodes. We have used two target architectures: a single
cluster and a double cluster variant of TI-C62x. The double clustered variant has
multiply-and-add instructions and includes transfers and spill instructions. The
single cluster variant does not have composites, transfers or spill instructions.

Figure 12 summarizes the comparison between the integrated and the separated
method, both with a time limit of 2 minutes. For the single-cluster architecture (a)
we see that the cases where the integrated method is better than the separated one
are rare; it only happens for 6% of the instances. The reason for this is that it
is relatively easy to find a good instruction selection for this simple architecture,
hence not much is gained by integrating instruction selection. When we look at the
results for the two-cluster architecture (b) we find that the integrated method beats
the separated one in 27% of the instances. It is more common that the integrated
method beats the separated method when the graphs are small. However, as the size
of the graphs become larger the increased complexity makes the integrated method
time out often without finding any solution at all, while the simpler separated
method finds a solution. The few cases where both methods find a solution, and
the separated solution is better, is explained by the fact that the separated method
reaches larger tmax before it times out, so it explores a larger part of the solution
space in terms of iteration schedule length. Table I summarizes the results for

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



18 · M. Eriksson and C. Kessler

Table I. Average values of IntII/SepII for the instances where Int. is better than Sep.

Architecture 1-10 11-20 21-30 31-40 41-50 51-60 all

Single cluster .84 .88 .84 .95 .95 .98 .88
Double cluster .69 .81 .84 .85 .85 .93 .79

the instances where the integrated method finds a solution that is better than
the one found by the separated method. The values shown are average values
of IntII /SepII , where IntII and SepII are the found initiation intervals of the
integrated and the separated methods respectively. These values quantifies how
much better the integrated method is compared to the separated method. For
instance: if the size of the kernel is halved then the throughput of the loop is doubled
assuming that the number of iterations is large enough (so that the prologue and
epilogue of the loop are negligible). The average value of IntII /SepII for the two-
cluster architecture is 0.79, i.e. the average asymptotic speedup for the loops is
1/0.79 = 1.26.

Figure 13 shows the results of an experiment with a variation of the two-cluster
architecture where the two cross paths of the TI-C62x is replaced by a bus, and the
number of registers per cluster is reduced from 16 to 8, for this test we increased
the time limit to 30 minutes and limited the number of instances to 50 per size
range. Now, because of the increased time limit, both methods perform better, but
there are still quite many instances for which both methods fail to find a solution,
these must be solved by a cheaper heuristic.

4. RELATED WORK

In this section we list some of the related work in the area of code generation both
for basic blocks and for loops.

4.1 Integrated code generation for basic blocks

4.1.1 Optimal methods. Kästner [2001] has developed a retargetable phase cou-
pled code generator which can produce optimal schedules by solving a generated
integer linear program in a postpass optimizer. Two integer linear programming
models are given. The first one is time based, like ours, and assigns events to
points in time. The second formulation is order based where the order of events
is optimized, and the assignment to points in time is implicit. The advantage of
the second model is that it can be flow-based such that the resources flow from one
instruction to the next, and this allows for more efficient integer linear program
models in some cases but is less suitable for integrating other tasks than scheduling
and resource allocation.

Wilken et al. [2000] have presented an integer linear programming formulation for
instruction scheduling for basic blocks. They also discuss how DAG transformations
can be used to make the problem easier to solve without affecting the optimality of
the solution. The machine model which they use is rather simple.

Wilson et al. [1994] created an integer linear programming model for the inte-
grated code generation problem with included instruction selection. This formula-
tion is limited to non-pipelined, single issue architectures.

A constraint programming approach to optimal instruction scheduling of su-
ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 19

perblocks4 for realistic architectures was given by Malik et al. [2008]. The method
was shown to be useful also for very large superblocks after a preprocessing phase
which prunes the search space in a safe way.

Another integer linear programming method by Chang et al. [1997] performs inte-
grated scheduling, register allocation and spill code generation. Their model targets
non-pipelined, multi-issue, non-clustered architectures. Spill code is integrated by
preprocessing the DAG in order to insert nodes for spilling where appropriate.

Winkel has presented an optimal method based on integer linear programming
formulation for global scheduling for the IA-64 architecture [2004] and shown that
it can be used in a production compiler [2007]. Much attention is given to how the
optimization constraints should be formulated to make up a tight solution space
that can be solved efficiently.

The integer linear programming model presented here for integrated code genera-
tion is an extension of the model by Bednarski and Kessler [2006]. Several aspects of
our model are improved compared to it: Our model works with clustered architec-
tures which have multiple register banks and data paths between them. Our model
handles transfer instructions, which copy a value from one register bank to another
(transfers do not cover an IR node of the DAG). Another improvement is that we
can handle general dependences. We also remodeled the data flow dependences to
work with the r variable

Within the Optimist project an integrated approach to code generation for clus-
tered VLIW processors has been investigated by Kessler and Bednarski [2006].
Their method is based on dynamic programming and includes safe pruning of the
solution space by removing comparable partial solutions.

4.1.2 Heuristic methods. Hanono and Devadas present an integrated approach
to code generation for clustered VLIW architectures in the AVIV framework [1998].
Their method builds an extended data flow graph representation of a basic block
which explicitly represents all alternatives for implementation, and then uses a
branch-and-bound heuristic for selecting one alternative.

Lorenz et al. [2004] implemented a genetic algorithm for integrated code genera-
tion for low execution time. This genetic algorithm includes instruction selection,
scheduling and register allocation in a single optimization problem. It also takes the
subsequent address code generation, with address generation units, into account. In
a preprocessing step additional IR nodes are inserted in the DAG which represent
possible explicit transfers between register files.

Other notable heuristic methods that integrate several phases of code generation
for clustered VLIW have been proposed by Kailas et al. [2001], Özer et al. [1998],
Leupers [2000] and Nagpal and Srikant [2004].

4.2 Integrated software pipelining

4.2.1 Optimal methods. An enumeration approach to software pipelining, based
on dynamic programming, was given by Vegdahl [1992]. In this algorithm the
dependence graph of the original loop body is replicated by a given factor, with
extra dependences to the new nodes inserted accordingly. The algorithm then

4A superblock is a block of code that has multiple exit points but only one entry point.

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



20 · M. Eriksson and C. Kessler

creates a compacted loop body in which each node is represented once, thus the
unroll factor determines how many iterations a node may be moved. This method
does not include instruction selection and register allocation.

Blachot et al. [2006] have given an integer linear programming formulation for in-
tegrated modulo scheduling and register assignment. Their method, named Scan, is
a heuristic which searches the solution space by solving integer linear programming
instances for varying initiation intervals and numbers of schedule slots in a way
that resembles our algorithm in Section 3.2. Their presentation also includes an
experimental characterization of the search space, e.g. how the number of schedule
slots and initiation intervals affects tractability and feasibility of the integer linear
programming instance.

Yang et al. [2002] presented an integer linear programming formulation for rate-
and energy-optimal modulo scheduling on an Itanium-like architecture, where there
are fast and slow functional units. The idea is that instructions that are not critical
can be assigned to the slow, less energy consuming, functional units thereby opti-
mizing energy use. Hence, this formulation includes a simple kind of instruction
selection.

Ning and Gao [1993] present a method for non clustered architectures where
register allocation is done in two steps, the first step assigns temporary values to
buffers and the second step does the actual register allocation. Our method is
different in that it avoids the intermediate step. This is an advantage when we
want to support clustered register banks and integrate spill code generation.

Altman et al. [1995] presented an optimal method for simultaneous modulo
scheduling and mapping of instructions to functional units. Their method, which
is based on integer linear programming, has been compared to a branch and bound
heuristic by Ruttenberg et al. [1996].

Fimmel and Müller [2002] do optimal modulo scheduling for pipelined non-
clustered architectures by optimizing a rational initiation interval. The initiation
interval is a variable in the integer linear programming formulation, which means
that only a single instance of the problem needs to be solved as opposed to the
common method of solving with increasingly large initiation intervals.

Eichenberger et al. [1996] have formulated an integer linear programming model
for minimizing the register pressure of a modulo schedule where the modulo reser-
vation table is fixed.

Nagarakatte and Govindarajan [2007] formulated an optimal method for inte-
grating register allocation and spill code generation. These formulations work only
for non-clustered architectures and do not include instruction selection.

Eisenbeis and Sawaya [1996] describe an integer linear programming method for
integrating modulo scheduling and register allocation. Their method gives optimal
results when the number of schedule slots is fixed.

Fan et al. [2005] studied the problem of synthesizing loop accelerators with mod-
ulo scheduling. In their problem formulation the initiation interval is given and
the optimization problem is to minimize the hardware cost. They present optimal
methods based on integer linear programming and branch and bound algorithms.
They also show and evaluate several methods for decomposing large problem in-
stances in to separate subproblems to increase tractability at the cost of global
ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 21

optimality.

4.2.2 Heuristic methods. Fernandes [1998] was the one who first described clus-
tered VLIW architectures, and Fernandes et al. [1999] gave a heuristic method for
modulo scheduling for such architectures. The method is called Distributed modulo
scheduling (DMS) and is shown to be effective for up to 8 clusters. DMS integrates
modulo scheduling and cluster partitioning in a single phase. The method first
tries to put instructions that are connected by true data dependences on the same
cluster. If that is not possible transfer instructions are inserted or the algorithm
backtracks by ejecting instructions from the partially constructed schedule.

Huff [1993] was the first to create a heuristic modulo scheduling method that
schedules instructions in a way that minimizes life times of intermediate values. The
instructions are given priorities based on the number of slots on which they may
be scheduled and still respect dependences. The algorithm continues to schedule
instructions with highest priority either early or late, based on heuristic rules. If an
instruction can not be scheduled, backtracking is used, ejecting instructions from
the partial schedule.

Another notable heuristic, which is not specifically targeted for clustered archi-
tectures, is due to Llosa et al. [1995; 1996]. This heuristic, called Swing modulo
scheduling, simultaneously tries to minimize the initiation interval and register
pressure by scheduling instructions either early or late.

The heuristic by Altemose and Norris [2001] does register pressure responsive
modulo scheduling by inserting instructions in such a way that known live ranges
are minimized.

Stotzer and Leiss [1999] presented a backtracking heuristic for modulo scheduling
after instruction selection for Texas Instruments C6x processors.

Nystrom and Eichenberger [1998] presented a heuristic method for cluster assign-
ment as a prepass to modulo scheduling. Their machine model assumes that all
transfer instructions are explicit. The clustering algorithm prioritizes operations in
critical cycles of the graph, and tries to minimize the number of transfer instruc-
tions while still having high throughput. The result of the clustering prepass is a
new graph where operations are assigned to clusters and transfer nodes are inserted.
Their experimental evaluation shows that, for architectures with a reasonable num-
ber of buses and ports, the achieved initiation interval is most of the time equal to
the one achieved with the corresponding fully connected, i.e. non-clustered, archi-
tecture, where more data ports are available.

A heuristic method for integrated modulo scheduling for clustered architectures
was presented by Codina et al. [2001]. The method, which also integrates spill code
generation is shown to be useful for architectures with 4 clusters.

Pister and Kästner [2005] presented a retargetable method for postpass modulo
scheduling implemented in the Propan framework.

4.2.3 Theoretical results. Touati [2007] presented several theoretical results re-
garding the register need in modulo schedules. One of the results shows that, in
the absence of resource conflicts, there exists a finite schedule duration (tmax in our
terminology) that can be used to compute the minimal periodic register sufficiency
of a loop for all its valid modulo schedules. Theorem 3.7 in this paper is related

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



22 · M. Eriksson and C. Kessler

to this result of Touati. We assume unbounded register files and identify an upper
bound on schedule duration, in the presence of resource conflicts.

5. CONCLUSIONS

We have studied the problem of integrated code generation for clustered architec-
tures. The phases that are integrated are: cluster assignment, instruction selection,
scheduling, register allocation and spilling. An algorithm was presented for the ba-
sic block case, and then we showed how it is extended to modulo scheduling.

The work presented in this paper is different from the ones mentioned in Sec-
tion 4 in that it aims to produce provably optimal modulo schedules, also when the
optimal initiation interval is larger than MinII , and in that it also integrates cluster
assignment and instruction selection in the formulation. Our algorithm for modulo
scheduling iteratively considers schedules with increasing number of schedule slots.
A problem with such an iterative method is that, if the initiation interval is not
equal to the lower bound, there is no way to determine whether the found solution
is optimal or not. We have proven that, for a class of architectures that we call
transfer free, we can set an upper bound on the schedule length. I.e. we can prove
when a found modulo schedule with an initiation interval larger than the lower
bound is optimal.

Creating an integer linear programming formulation for clustered architectures is
more difficult than for the non-clustered case since the common method of modeling
live ranges simply as the time between definition and use cannot be applied. Our
formulation handles live ranges by explicitly assigning values to register banks for
each time slot. This increases the size of the solution space, but we believe that this
extra complexity is unavoidable and inherent to the problem of integrating cluster
assignment and instruction selection with the other phases.

We have also shown that optimal spilling is closely related to optimal register
allocation when the register files are clustered. In fact, optimal spilling is as simple
as adding an additional virtual register file representing memory and have transfer
instructions to and from this register file corresponding to stores and loads.

In our experimental evaluation we have shown that for the basic block case we
can optimally generate code for DAGs with up to 142 IR nodes in less than 900
seconds. But we also saw that in some cases with only 76 IR nodes the integer
linear programming model was not successful. For modulo scheduling we compare
the integrated method to one in which instruction selection and cluster assignment is
done in a separate phase. Our experiments show that the integrated method rarely
results in better results than the separated for the single cluster architecture, but
for the double cluster architecture the integrated method beats the separated one
in 27% of the cases and in these cases, assuming a large number of iterations, the
average speedup is 26%. The results of these experiments are important because
we try to find out if the integration can be beneficial: both steps in the separated
method are locally optimal and the integrated method is globally optimal. Showing
how often the integrated method is better than the separated one is interesting also
from a theoretical perspective.
ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 23

ACKNOWLEDGMENTS

We thank Sid-Ahmed-Ali Touati for reading and commenting on an earlier version
of this paper, and for providing the data dependence graphs used in the modulo
scheduling evaluation. Oskar Skoog made the first implementation of the genetic
algorithm used for comparison in this paper. We thank all reviewers of this and
previous papers for constructive comments.

REFERENCES

Altemose, G. and Norris, C. 2001. Register pressure responsive software pipelining. In Proc. of
the ACM Symp. on Applied Computing (SAC’01). ACM, New York, 626–631.

Altman, E. R., Govindarajan, R., and Gao, G. R. 1995. Scheduling and mapping: Software
pipelining in the presence of structural hazards. In Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI’95). ACM, New York, 139–150.

Bednarski, A. and Kessler, C. W. 2006. Optimal integrated VLIW code generation with integer
linear programming. In European Conf. on Parallel Computing (Euro-Par’06). Springer, Berlin,
461–472.

Blachot, F., de Dinechin, B. D., and Huard, G. 2006. SCAN: A heuristic for near-optimal
software pipelining. In Proc. of the European Conf. on Parallel Computing (Euro-Par’06).
Springer, Berlin, 289–298.

Chang, C., Chen, C., and King, C. 1997. Using integer linear programming for instruction
scheduling and register allocation in multi-issue processors. Computers and Mathematics with
Applications 34, 9, 1–14.

Charlesworth, A. 1981. An approach to scientific array processing: The architectural design of
the AP-120b/FPS-164 family. Computer 14, 9 (Sept.), 18–27.

Codina, J. M., Sánchez, J., and González, A. 2001. A unified modulo scheduling and register
allocation technique for clustered processors. In Proc. of the Int. Conf. on Parallel Architectures
and Compilation Techniques (PACT’01). IEEE, Los Alamitos, 175–184.

Eichenberger, A. E., Davidson, E. S., and Abraham, S. G. 1996. Minimizing register require-
ments of a modulo schedule via optimum stage scheduling. Int. J. Parallel Program. 24, 2,
103–132.

Eisenbeis, C. and Sawaya, A. 1996. Optimal loop parallelization under register constraints. In
Proc. of the 6th Workshop on Compilers for Parallel Computers (CPC’96). 245–259.

Eriksson, M. 2009. Integrated software pipelining. Licentiate degree thesis, Linköping Studies
in Science and Technology Thesis No. 1393, Linköping University, Sweden.

Eriksson, M. V. and Kessler, C. W. 2009. Integrated modulo scheduling for clustered VLIW
architectures. In Proc. of the Int. Conf. on High Performance Embedded Architectures and
Compilers (HiPEAC’09). Springer, Berlin, 65–79.

Eriksson, M. V., Skoog, O., and Kessler, C. W. 2008. Optimal vs. heuristic integrated code
generation for clustered VLIW architectures. In Proc. of the 11th Int. Workshop on Software
& Compilers for Embedded Systems (SCOPES’08). ACM, New York, 11–20.

Fan, K., Kudlur, M., Park, H., and Mahlke, S. 2005. Cost sensitive modulo scheduling in
a loop accelerator synthesis system. In Proc. of the 38th annual IEEE/ACM Int. Symp. on
Microarchitecture (MICRO-38). IEEE, Los Alamitos, 219–232.

Fernandes, M. M. 1998. A clustered VLIW architecture based on queue register files. Ph.D.
thesis, University of Edinburgh.

Fernandes, M. M., Llosa, J., and Topham, N. 1999. Distributed modulo scheduling. In
Proc. of the 5th Int. Symp. on High Performance Computer Architecture (HPCA’99). IEEE,
Los Alamitos, 130.

Fimmel, D. and Müller, J. 2002. Optimal software pipelining with rational initiation interval.
In Proc. of the Int. Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA’02). CSREA Press, 638–643.

Fisher, J. A. 1983. Very long instruction word architectures and the ELI-512. In Proc. of the
10th Annual Int. Symp. on Computer Architecture (ISCA’83). ACM, New York, 140–150.

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



24 · M. Eriksson and C. Kessler

Gebotys, C. and Elmasry, M. 1993. Global optimization approach for architectural synthe-
sis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 12, 9
(Sept.), 1266–1278.

Hanono, S. and Devadas, S. 1998. Instruction Selection, Resource Allocation, and Scheduling
in the AVIV Retargetable Code Generator. In Proc. of the 35th Annual Conf. on Design
Automation (DAC’98). ACM, New York, 510–515.

Huff, R. A. 1993. Lifetime-sensitive modulo scheduling. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI’93). ACM, New York, 258–267.

Kailas, K., Ebcioglu, K., and Agrawala, A. 2001. CARS: A new code generation framework
for clustered ILP processors. In Proc. of the 7th Int. Symp. on High-Performance Computer
Architecture (HPCA’01). IEEE, Los Alamitos, 133–143.

Kästner, D. 2001. Propan: A retargetable system for postpass optimisations and analyses. In
Proc. of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES’00). Springer, Berlin, 63–80.

Kessler, C., Bednarski, A., and Eriksson, M. 2007. Classification and generation of schedules
for VLIW processors. Concurrency and Computation: Practice and Experience 19, 18, 2369–
2389.

Keßler, C. W. and Bednarski, A. 2006. Optimal integrated code generation for VLIW archi-
tectures. Concurrency and Computation: Practice and Experience 18, 11, 1353–1390.

Lam, M. 1988. Software pipelining: an effective scheduling technique for VLIW machines. SIG-
PLAN Not. 23, 7, 318–328.

Lee, C., Potkonjak, M., and Mangione-Smith, W. H. 1997. Mediabench: A tool for evaluating
and synthesizing multimedia and communicatons systems. In Int. Symp. on Microarchitecture
(MICRO-30). IEEE, Los Alamitos, 330–335.

Leupers, R. 2000. Instruction scheduling for clustered VLIW DSPs. In Proc. of the Int. Conf.
on Parallel Architectures and Compilation Techniques (PACT’00). IEEE, Los Alamitos, 291.

Llosa, J., Gonzalez, A., Ayguade, E., and Valero, M. 1996. Swing modulo scheduling: A
lifetime-sensitive approach. In Proc. of the Conf. on Parallel Architectures and Compilation
Techniques (PACT’96). IEEE, Los Alamitos, 80–86.

Llosa, J., Valero, M., Ayguadé, E., and González, A. 1995. Hypernode reduction modulo
scheduling. In Proc. of the 28th Annual Int. Symp. on Microarchitecture (MICRO-28). IEEE,
Los Alamitos, 350–360.

Lorenz, M. and Marwedel, P. 2004. Phase coupled code generation for DSPs using a genetic
algorithm. In Proc. of the Conf. on Design, Automation and Test in Europe (DATE’04). IEEE,
Los Alamitos, 1270–1275.

Malik, A. M., Chase, M., Russell, T., and van Beek, P. 2008. An application of constraint
programming to superblock instruction scheduling. In Proc. of the 14th Int. Conf. on Principles
and Practice of Constraint Programming. Springer, Berlin, 97–111.

Nagarakatte, S. G. and Govindarajan, R. 2007. Register allocation and optimal spill code
scheduling in software pipelined loops using 0-1 integer linear programming formulation. In
Proc. of the 16th Int. Conf. on Compiler Construction. Springer, Berlin, 126–140.

Nagpal, R. and Srikant, Y. N. 2004. Integrated temporal and spatial scheduling for extended
operand clustered VLIW processors. In Proc. of the 1st Conf. on Computing Frontiers. ACM,
New York, 457–470.

Ning, Q. and Gao, G. R. 1993. A novel framework of register allocation for software pipelining.
In Proc. of the 20th ACM Symp. on Principles of Programming Languages (POPL’93). ACM,
New York, 29–42.

Nystrom, E. and Eichenberger, A. E. 1998. Effective cluster assignment for modulo scheduling.
In Proc. of the 31st annual ACM/IEEE Int. Symp. on Microarchitecture (MICRO-31). IEEE,
Los Alamitos, 103–114.

Ozer, E., Banerjia, S., and Conte, T. M. 1998. Unified assign and schedule: a new approach to
scheduling for clustered register file microarchitectures. In Proc. of the 31st Annual ACM/IEEE
Int. Symp. on Microarchitecture (MICRO-31). IEEE, Los Alamitos, 308–315.

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



Integrated Code Generation for Loops · 25

Pister, M. and Kästner, D. 2005. Generic software pipelining at the assembly level. In Proc. of
the Workshop on Software and Compilers for Embedded Systems (SCOPES’05). ACM, New
York, 50–61.

Rau, B. R. 1994. Iterative modulo scheduling: an algorithm for software pipelining loops. In
Proc. of the 27th Annual Int. Symp. on Microarchitecture (MICRO-27). ACM, New York,
63–74.

Rau, B. R. and Glaeser, C. D. 1981. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. SIGMICRO Newsl. 12, 4,
183–198.

Ruttenberg, J., Gao, G. R., Stoutchinin, A., and Lichtenstein, W. 1996. Software pipelining
showdown: optimal vs. heuristic methods in a production compiler. In Proc. of the ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI’96). ACM,
New York, 1–11.

Stotzer, E. and Leiss, E. 1999. Modulo scheduling for the TMS320C6x VLIW DSP architecture.
SIGPLAN Not. 34, 7, 28–34.

Tarjan, R. E. 1973. Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput. 2, 3, 211–216.

Texas Instruments Incorporated 2000. TMS320C6000 CPU and Instruction Set Reference Guide.
Texas Instruments Incorporated.

Touati, S. 2009. Data dependence graphs from Spec, Mediabench and Ffmpeg benchmark suites.
Personal communication.

Touati, S.-A.-A. 2007. On periodic register need in software pipelining. IEEE Trans. Com-
put. 56, 11, 1493–1504.

Vegdahl, S. R. 1992. A dynamic-programming technique for compacting loops. In Proc. of the
25th annual Int. Symp. on Microarchitecture (MICRO-25). IEEE, Los Alamitos, 180–188.

Wilken, K., Liu, J., and Heffernan, M. 2000. Optimal instruction scheduling using integer
programming. In Proc. of the ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI’00). ACM, New York, 121–133.

Wilson, T. C., Grewal, G. W., and Banerji, D. K. 1994. An ILP Solution for Simultaneous
Scheduling, Allocation, and Binding in Multiple Block Synthesis. In Proc. of the Int. Conf. on
Computer Design (ICCD’94). IEEE, Los Alamitos, 581–586.

Winkel, S. 2004. Optimal global instruction scheduling for the Itanium processor architecture.
Ph.D. thesis, Universität des Saarlandes.

Winkel, S. 2007. Optimal versus heuristic global code scheduling. In Proc. of the 40th Annual
IEEE/ACM Int. Symp. on Microarchitecture (MICRO-40). IEEE, Los Alamitos, 43–55.

Yang, H., Govindarajan, R., Gao, G. R., and Theobald, K. B. 2002. Power-performance
trade-offs for energy-efficient architectures: A quantitative study. In Proc. of the IEEE Int.
Conf. on Computer Design: VLSI in Computers and Processors (ICCD’02). IEEE, Los Alami-
tos, 174.

Received June 2009; revised January 2010; accepted March 2010

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.



26 · M. Eriksson and C. Kessler

 0

 20

 40

 60

 80

 100

1-10
(186)

11-20
(527)

21-30
(242)

31-40
(103)

41-50
(63)

51-60
(30)

%
 o

f t
ot

al

Number of nodes
(number of instances)

Sep. only
Sep. better

Equal

Int. better
Int. only

No solution

(a) Single cluster.

 0

 20

 40

 60

 80

 100

1-10
(186)

11-20
(527)

21-30
(242)

31-40
(103)

41-50
(63)

51-60
(30)

%
 o

f t
ot

al

Number of nodes
(number of instances)

Sep. only
Sep. better

Equal

Int. better
Int. only

No solution

(b) Double cluster.

12: Results of comparison between the separated and fully integrated version for the two archi-
tectures. The time limit is 2 minutes.

13: Results of comparison between the sep-
arated and fully integrated version for the
clustered architecture. The time limit is
30 minutes and the number of instances is
limited to 50 in this chart. For the cases
where Int. finds a solution that is better
than one found by Sep. the average value of
IntII/SepII is 0.82.  0

 20

 40

 60

 80

 100

1-10
(50)

11-20
(50)

21-30
(50)

31-40
(50)

41-50
(50)

51-60
(30)

%
 o

f t
ot

al

Number of nodes
(number of instances)

Sep. only
Sep. better
Equal

Int. better
Int. only
No solution

ACM Trans. Embed. Comput. Syst., Vol. 11S, No. 1, Art. 19, June 2012.


