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Abstract In this paper, we discuss the role, design and implementation of smart
containers in the SkePU skeleton library for GPU-based systems. These containers
provide an interface similar to C++ STL containers but internally perform runtime
optimization of data transfers and runtime memory management for their operand
data on the different memory units. We discuss how these containers can help in
achieving asynchronous execution for skeleton calls while providing implicit syn-
chronization capabilities in a data consistent manner. Furthermore, we discuss the
limitations of the original, already optimizing memory management mechanism im-
plemented in SkePU containers, and propose and implement a new mechanism that
provides stronger data consistency and improves performance by reducing commu-
nication and memory allocations. With several applications, we show that our new
mechanism can achieve significantly (up to 33.4 times) better performance than the
initial mechanism for page-locked memory on a multi-GPU based system.

Keywords SkePU · Smart containers · Skeleton programming · Memory manage-
ment · Runtime optimizations · GPU-based systems

1 Introduction

Skeleton programming [4] for GPU-based systems is increasingly becoming popu-
lar for mapping common computational patterns. Several skeleton libraries are espe-
cially written (from scratch) targeting GPU-based systems including SkePU [10, 6],
SkelCL [24] and Marrow [20]. Moreover, many existing skeleton libraries, initially
written for execution on MPI-clusters and/or multicore CPUs have been ported for
GPU execution, such as FastFlow [12] and Muesli [11]. These libraries differ in their
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approach and feature offering but they all aim to provide performance comparable to
hand-written code while requiring much less programming effort.

Providing high-level abstraction with good execution performance in a library re-
quires special design consideration. The question comes down to what is exposed to
the programmer and what is handled implicitly by the skeleton library. For exam-
ple, the Marrow library exposes concurrency to the application program by executing
skeleton calls asynchronously; it returns a handle which can be used to synchronize
execution when needed. This allows Marrow to effectively overlap computation and
communication from different skeleton computations. SkelCL makes data distribu-
tion explicit so that the application programmer can choose how to map a computa-
tion to the underlying computing platform.

Another important aspect in GPU computation is managing communication be-
tween CPU (main) memory and GPU (device) memory over PCIe interconnect. In
Muesli, FastFlow, SkePU and SkelCL, skeleton calls can execute on a single or mul-
ticore CPU as well as on a GPU. Considering that CPUs and GPUs have separate
physical memory, execution on a certain compute device may require transferring
data back and forth to its associated memory if data is not already available in that
memory. For example, in the following code,

// 1D arrays: v0 , v1
skel_call(v0 , v1); // ’v0’ read , ’v1’ read and written

if skel_call is executed on a GPU and vectors v0 and v1 are not already available
in that GPU memory, they need to be transferred. One idea could be to assume that
operands always reside in CPU main memory and any GPU execution would require
transferring input data to the GPU memory and output data back to main memory.
Although simple, transferring data back and forth each time could be sub-optimal
in presence of multiple executions on GPU. Libraries such as SkePU implement a
lazy memory copying mechanism where copies of operand data in GPU memory are
tracked and modified data is copied back to CPU memory only when needed.

In this paper, we discuss the role, design and implementation of containers in the
SkePU skeleton library that can be used to wrap operand data of skeleton calls. To
the best of our knowledge, SkePU containers have the most advanced implementation
available in any skeleton library for GPU-based systems considering memory man-
agement and synchronization capabilities. We discuss how SkePU containers provide
memory management for operand data while providing a high-level interface (simi-
lar to C++ STL containers) to the application programmer. These SkePU containers
encapsulate internal book-keeping information about the run-time state of the data,
e.g. in which memory units, and where there, valid copies of the container’s elements
can be found, and all element access is mediated through the containers by suitable
operator overloading. Beyond element lookup, the containers provide the following
services: memory management, data dependence tracking and synchronization, and
communication optimization. We refer to containers with such extended services per-
forming automatic optimizations as smart containers. Following are the major con-
tributions of our work:
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Fig. 1 Left: a simple illustration of SkePU skeletons, here for 1D operands. Right: partial copies of a
matrix and their mapping to memory locations in the original matrix.

– We describe how smart containers can help skeleton libraries in providing high-
level data abstraction while optimizing memory management and enabling asyn-
chronous skeleton executions at runtime.

– We discuss the initial memory management implemented in SkePU containers
[10] and its data consistency and performance limitations. We propose and im-
plement a more efficient and robust memory management mechanism in SkePU
containers, released open-source in SkePU v1.1 (May 2014)1.

– We do performance evaluation with several applications to show benefits of smart
containers as well as improvements of our new management mechanism inside
SkePU container over the mechanism available in SkePU v1.0 from August 2012.

This paper is structured as follows: Section 2 introduces SkePU and describes
how SkePU containers can optimize data transfers and can provide synchronization
in presence of asynchronous skeleton calls. In Section 3, we describe our work on
re-designing the memory management mechanism in SkePU containers. Evaluation
is presented in Section 4 followed by related work in Section 5. Section 6 concludes
and presents future work possibilities.

2 Smart containers in SkePU

SkePU [5] is a C++ template library for portable programming of GPU-based systems
that provides a simple and unified programming interface for specifying data-parallel
and task-parallel computations with the help of pre-defined skeletons including map,
reduce, maparray, mapoverlap, scan and farm (see Figure 1(left)). All non-scalar
operands of SkePU skeleton calls are passed in smart containers. For a more detailed
description of SkePU, we refer to [5].

There are vector and matrix container classes in SkePU for representing 1D and
2D data respectively. Containers in SkePU are made generic in the element type using
C++ templates and have interfaces similar to the C++ STL containers. For example,
the SkePU vector container implements all operations supported by the STL vec-
tor container such as resize, erase, iterators etc., but it also implements several other
functions related to memory management on different device memories such as up-
dateHost, updateDeviceCopy and invalidateDeviceCopy. A SkePU container object

1 SkePU is available at http://www.ida.liu.se/~chrke/skepu
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Fig. 2 Example for usage of
smart containers with skeleton
calls and other user code. The mid-
dle part shows a code scenario with
four skeleton calls and one vector
operand on a system containing 1
CPU and 1 CUDA GPU. The effect
of each statement on the state of the
data is also shown right for each
statement, assuming the four skele-
ton calls are executed on the GPU.
The left part highlights parallelism
between different skeleton calls for
asynchronous executions based on
data dependencies.

...
skepu::Vector<int> v0;
...
skel_call_1(..., v0); // v0 written
...
std::cout<<v0[0];
...
skel_call_2(v0); // v0 read & written 
...
skel_call_3(v0 ,...); // v0 read
...
skel_call_4(v0 ,...); // v0 read
...
v0[0] += 10;
...
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internally keeps track of different (partial) copies of its data elements residing on dif-
ferent memory units with their content state (e.g., valid or invalid copy). By operator
overloading (e.g. operator []), we ensure that data accesses on CPU side are handled
in a consistent manner and necessary data transfers are made implicitly when re-
quired. Moreover, the read and write accesses to container data are distinguished by
implementing proxy classes for element data in C++ [1]. This allows to differentiate
between different types of accesses made to a container object, as shown below for a
SkePU vector object v0:
skepu ::Vector <int > v0(...);
v0[0] = 11; // write access to v0[0]
int a = v0[0]; // read access to v0[0]
v0[0] += 11; // readwrite access to v0[0]

In the following, we describe how usage of containers in a SkePU program yields
performance benefits while providing a high level of abstraction.

Figure 2 depicts how usage of smart containers can help in optimizing commu-
nication across multiple skeleton calls as well as enable asynchronous skeleton call
executions allowing exploitation of parallelism across multiple skeleton calls. The
figure shows a simple scenario with four skeleton calls and one vector operand on a
system containing 1 CPU and 1 CUDA GPU. When the vector container v0 is cre-
ated, the payload data is placed in the main memory (master copy). Subsequently,
depending on the skeleton calls using that data along their respective data access pat-
tern (read, readwrite or write), other (partial) copies of operand data may get created
in different memory units. In this case, we have CUDA device memory which is a
separate physical memory. Assuming that all skeleton calls are actually executed on
the GPU, the figure also shows the effect of each statement execution on the vector
data state, i.e., creation/update/invalidation of data copies. As we can see, a SkePU
smart container not only keeps track of data copies on different memory units but
also helps in reducing the data communication between different memory units by
delaying the communication until it becomes necessary. In this case, only 2 copy
operations of data are made in the shown program execution instead of 7 copy oper-
ations which are required if one considers each skeleton call independently, as done
in, e.g., Kicherer et al. [17, 18].

The first skeleton call (line 4) only writes the data (v0) and hence no copy is made.
Instead, just a memory allocation is made in the device memory where data is written
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by the skeleton call. After the completion of the skeleton call (line 4), the master copy
in the main memory is marked outdated, which means that, in future, any data access
to this copy would first require an update of this copy with the contents of the latest
copy. The next statement (line 6) is actually a read data access from main memory.
As the master copy was earlier marked outdated, a copy from device memory to main
memory is implicitly invoked before the actual data access takes place. This is man-
aged by the container in a transparent and consistent manner without requiring any
user intervention. The copy in the device memory remains valid as the master copy is
only read. Next, we have a skeleton call (line 8) that both reads and modifies v0. As
we assume execution of all skeleton calls on the GPU in this scenario, the up-to-date
copy already present in the device memory is read and modified. The master copy
again becomes outdated. Afterwards, we have two skeleton calls (line 10 and 12) that
both only read the data. Executing these operations on the GPU means that no copy
operation is required before or after the skeleton call. Finally the statement in line 14
modifies the data in main memory so data is copied back (implicitly) from the device
memory to the main memory before the actual operation takes place. Afterwards, the
copy in the device memory is marked outdated.

In previous work [7] we have implemented support for the StarPU runtime sys-
tem in the SkePU skeleton library, which allows execution of SkePU skeleton calls
as asynchronous runtime tasks. This means that, when used with the StarPU runtime
system, all four skeleton calls are executed asynchronously as tasks. The runtime sys-
tem can infer data dependencies between different submitted tasks (i.e., skeleton calls
in our case) based on their operands, and can run independent tasks concurrently. In
the application program, the execution looks no different to the synchronous execu-
tion as data consistency is ensured by the smart containers. Blocking is implicitly
established for a data access from the application program to data that is still in use
with asynchronous skeleton invocations made earlier (with respect to program control
flow) than the current data access.

3 Memory management in smart containers

In this section, we discuss the memory management that is implemented inside the
SkePU containers. We discuss the initial memory management mechanism and its
limitations with respect to data consistency and performance issues. Afterwards, we
discuss the new, improved mechanism that we have developed as part of this work.

The idea of having multiple (also, partial) copies for a single container object is
common in both (memory management) mechanisms described later. However, in
the initial mechanism, copies of an object are represented as a 1D (one-dimensional)
range for both SkePU vector and matrix containers. Although the contents of a SkePU
matrix is stored consecutively (row-wise) and can be represented as a 1D range, par-
tial (device) copies of a matrix object may not always map to consecutive 1D (sub-
)ranges in the matrix. This is shown in Figure 1(right) with two partial device copies
representing two sub-matrices. The first partial device copy maps to elements that are
stored consecutively in the original matrix and thus can be represented as 1D range.
Partial copies that do not map to consecutive elements (such as device copy 2 in Fig-
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ure 1(right)) are not possible in the initial mechanism. In the new mechanism, we
have solved this problem by defining a separate mapping for matrix operands which
allows partial copies that do not map to consecutive elements in the original matrix.
In the following, we use the 1D range mapping for explaining the working of both
mechanisms. The 1D mapping is used in the initial mechanism for both vector and
matrix containers, and for vector containers only in the new mechanism. Later, we de-
scribe how the new mechanism generalizes this mapping to represent partial copies
with non-consecutive elements for matrix containers.

For explanation, suppose that we have a SkePU container object O that could be a
vector or matrix object. One main-copy of object O, called mainCopy(O), is created in
the main memory when the object is allocated (i.e., when a constructor for object O is
called in C++). This is the only copy in main memory created for that container object
and all accesses in CPU code (including C++/OpenMP skeleton implementations and
other program accesses) are directed to this copy. It covers the complete contents of
object O (i.e., mainCopy(O) has elements with index range [0,N) (first inclusive)2 if
the size of object O is N where N ≥ 1) and remains allocated as long as the object is
alive. Whenever a container object is resized, i.e., N is changed, all other copies on
device memories are deleted and the size of the main-copy is adjusted accordingly.

The communication bandwidth from device to host (DTH) and from host to de-
vice (HTD) (roughly) doubles if the main-copy of a container object in CPU mem-
ory is allocated as page-locked (pinned) memory. As page-locked memory is always
stored in physical CPU memory (i.e., RAM) and cannot be swapped out to disk, it can
be transferred via DMA without requiring any intermediate buffers [21]. Both SkePU
containers support page-locked memory allocation for their payload data, controlled
via a simple flag.

During the program execution, other (partial or full) copies of an object may
get created, used and later destroyed in different device memories depending on
the object usage with skeleton calls in a program. Let K (K ≥ 0) denote the num-
ber of device memory copies for object O at any given time, which are denoted by
dCopyi(O)where 1≤ i≤K. A device copy dCopyi(O) of the object O is identified by
〈devIDi,offseti,ni〉where devIDi is an identifier of the device on which the dCopyi(O)
is present, offseti is the index of the first element of dCopyi(O) with respect to the in-
dex range of mainCopy(O)3, and ni is the number of elements stored in the copy; i.e.,
dCopyi(O) covers O elements with the index range [offseti,(offseti + ni)) on device
devIDi. Furthermore, each device copy dCopyi(O) has a modified flag which is set
when contents in that copy is modified (e.g., by a GPU skeleton implementation).
The modified contents of this copy is eventually copied back to the main-copy (and
possibly other device copies) as described later.

Partial copies of a container object can exist in device memories for two reasons.
First, an application may have skeleton operations on parts of a container object. Both
vector and matrix containers support iterators [1] which allow us to call an operation
on a subset of the elements as illustrated below:

2 We use the standard set notation for representing a set of consecutive indices as index range. In set
notation, [a,b) is the half-open interval {x|a≤ x < b and x is a positive integer} [2].

3 The offset would be 5 if dCopyi(O) starts from the 6th element of mainCopy(O), i.e., the indexing is
zero-based as per C++ style.
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Fig. 3 The initial memory management mechanism for a single container object.

skepu ::Vector <int > v0(10); // create vector (v0) of 10 elements
...
skel(v0); // readwrite all 10 elements of v0
skel(v0.begin()+5, vo.end()); // readwrite last 5 elements of v0
skel(v0.begin()+3, v0.end() -3);// readwrite elements [3-7) of v0

If we execute the three skeleton calls (listed in the above code) on a single GPU, three
device copies of v0, with index ranges [0,10), [5,10) and [3,7) respectively, would
get created4. Secondly, partial copies are created if container objects are passed as
arguments to a skeleton call that is executed on multiple GPU devices in parallel. Di-
viding the computation work of data-parallel skeletons across different GPU devices
divides the container objects, passed as operands, into chunks.

SkePU containers are primarily designed for passing operand data to skeleton
calls and are not designed to be thread-safe. This means that concurrent memory
requests to overlapping elements in a container object are not handled in the memory
management mechanisms. We will discuss this in more detail in Section 3.4.

The concept of having one main-copy and potentially many overlapping device
copies is the same in both the initial and the new memory management mechanism.
However, the main difference comes with how read and write accesses to these copies
are handled, as described below.

4 As a device copy (dCopyi) is identified by a tuple 〈devIDi,offseti,ni〉, two or more device copies of
an object O with different starting elements (offset) and/or number of elements (n) are considered different
copies even on the same device.
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3.1 Initial mechanism

Figure 3 summarizes the initial memory management mechanism in SkePU. Before
any element of mainCopy(O) is read in main memory, all modified device copies (i.e.,
device copies with modified flag set) of the object are copied back to mainCopy(O).
Whenever a modified device copy is copied back to the main-copy, its modified-
flag is cleared. When writing to mainCopy(O), all device copies of the object are
removed (deallocated), i.e., only the main-copy remains. Obviously, one can think
about a more fine-grained control where only a chunk of data is updated instead of
everything; we have implemented this as improvement to the existing mechanism
(more on this in the next section).

Copies on device memories are created, if not present already, when a container
is used as operand with a skeleton call that is executed on a GPU. GPU read and
write accesses5 for an object are identified by 〈devIDacc,offsetacc,nacc〉 and handled
as follows. At a GPU read access 〈devIDacc, offsetacc,nacc〉 to object O, a lookup
is made to find an existing copy (dCopy j(O)) with same index range on the given
device. If an existing copy is found, it is used; this leads to consistency problems if the
contents of that copy is not the most recent one, as we will discuss later. If no existing
copy is found, multiple operations are carried out: (1) space for a new device copy is
allocated, (2) contents from all modified device copies is copied back to mainCopy(O)
and (3) required contents from mainCopy(O) is then copied to the newly created copy.
Similar operations are carried out for a GPU write access to object O except that
no data is copied (in any way) when a new device copy is allocated. Moreover, the
modified flag for the copy written (no matter if newly created or an existing one was
found) is set.

When creating a new device copy, the modified flag is cleared by default. It is
set for a device copy whenever contents in that copy is changed. Note that we track
content modifications for a complete device copy of a given size. This is because the
elements in a device copy exactly map to the elements that are requested for a GPU
read/write access.

3.2 Limitations of the initial mechanism

There exist both performance and data consistency issues with this mechanism. When
a device copy of a container is modified, other (possibly overlapping) device copies of
the same container on the same and other devices are neither marked invalid nor are
they removed. A future access to those device copies would access stale data and thus
result in data consistency issues. This could happen in both single and multi-GPU
based systems. In the following, we discuss two example scenarios where overlapping
copies of data in the same or different device memories result in data consistency and
performance issues6.

5 The access mode is implicitly given by the operand’s position in the skeleton call.
6 There exist several other possible scenarios where data consistency and performance issues can arise

especially when considering multiple GPUs.
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Fig. 4 Main and device memory copies of two vector objects after execution of the first loop iteration in
Listing 1 on a 2-GPU system.

Scenario one: In the first scenario, we consider three skeleton calls, all executed on
a single GPU while operating on different (overlapping) parts of a container object.

skepu ::Vector <int > v0(10);
map(v0, ...); // read all 10 elements of v0
map(..., v0.begin ()+5); // write last 5 elements of v0
map(v0, ...); // read all 10 elements of v0

For the first skeleton call, space for a device copy of vector v0 is allocated for 10
elements on GPU and data is copied from the main-copy to this new device copy.
Later, space for another device copy is allocated for the second skeleton call, mapping
to the second half of the v0 vector object. As the copy is written, no copying of
contents takes place; rather, the modified flag for this newly written device copy is
set. At this time, two device copies of v0 exist, one covering full contents of v0 and
one covering the second half of v0 but with newly written contents. Now, for the third
skeleton call executing on the same GPU, an existing device copy (created for the first
skeleton call) is found and used. However, the contents of this device copy is stale
for the second half which was overwritten in the device copy created in the second
skeleton call. Correct working of the above source code would require v0.flush()
between the second and third skeleton call, which discards all devices copies and is
highly inefficient fix in this situation.
Scenario two: When executing the computational loop (shown in Listing 1) on a sin-
gle GPU-based system, we do not need any explicit synchronization as there exist no
partial device-copies of data, i.e., only one device copy for each entire vector object
is created in the GPU device memory. However, when executing on two GPUs, Fig-

1 skepu ::Vector <...> v0(10);
2 skepu ::Vector <...> v1(10);
3 ...
4 loop (...)
5 {
6 maparray1(v0, v1 , v1); // read v0 - readwrite v1
7 ...
8 maparray2(v1, v0 , v0); // read v1 - readwrite v0
9 }

10 ...

Listing 1 Pseudo-code with two MapArray skeleton calls in a loop.
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ure 4 shows the memory state of both device memories as well as of main memory
after execution of the first loop iteration. Initially, the main-copies of v0 and v1 are
created in main memory (Line 1 and 2 respectively in Listing 1). When executing the
first skeleton call on two GPUs, the work is divided by partitioning the second input
and the output vector (v1) between two device memories; the first input vector (v0) is
replicated on both GPUs for reading purpose, as per the MapArray skeleton seman-
tics7. Similar things happen for the second skeleton call except that v1 is replicated
and v0 is partitioned across the two device memories.

The consistency problem arises with the second loop iteration as stale (full de-
vice) copies of v0 and v1 are read in the first and the second skeleton call respec-
tively. This is because the updated data from partial device copies is never copied to
these full device copies of the same vectors. The obvious fix to this scenario would
be to flush both vectors after each loop iteration, but this is too inefficient and an
overkill as it copies all modified contents back to memory as well as removes all de-
vice memory copies. Having it inside a loop means that this communication overhead
would be incurred for each loop iteration. Moreover, the problem is too specific as
it happens only when executing the skeleton calls on multiple GPUs and flushing
vectors becomes unnecessary in other execution scenarios.

Remarks: Clearly, the initial memory management mechanism implemented inside
the SkePU containers has memory consistency issues with execution on single and
multi-GPU systems. Although it is possible to ensure program correctness, the fixes
are normally an overkill and can hurt performance by increasing the communication
volume. Furthermore, whenever contents of a container object in the main-copy is
modified, all device copies are removed (i.e. device memory allocations are freed),
as in the following example:
// v0 with multiple device copies ...
v0[5] = 3; // removes all device copies
map(v0); // allocate device copy again if executed on a GPU ...

Any further usage of the container object for GPU execution would require memory
re-allocation on that GPU device memory. Marking device copies invalid instead of
removing them could be a better idea considering that the device memory allocation
is a blocking operation and can prevent asynchronous GPU execution [21]. Multi-
ple device accesses with different offset and/or size information result in different
device copies even in the same device memory. This could potentially lead to a situa-
tion where the device memory is exhausted and no space in device memory remains
available for future allocations. The initial mechanism does not handle this situation
explicitly. Last but not the least, contents of a device memory is always copied from
the main-copy that exists in main memory. One might think about scenarios where
(part of) the contents can be copied from other existing copies of the same object
in the same device memory. Next, we present our work on improving the memory
management mechanism implemented in SkePU containers to tackle these data con-
sistency and performance issues in an implicit and efficient manner.

7 MapArray (v1,v2,r) is a data-parallel skeleton where each element of the result vector, r[i], is cal-
culated as a function of the corresponding element of one of the input vectors, v2[i] and any number of
elements from the other input vector v1.
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3.3 New mechanism

We replaced the initial mechanism in order to provide a more robust and efficient
memory model for multi-GPU skeleton execution. The basic concept of having one
main-copy and possibly multiple device memory copies (identified by 〈devID, offset,
n〉8) of each object is the same. However, we introduce a more robust mechanism for
updating the state of the different copies when reading and writing contents in a copy.
A valid flag for each copy (including the main-copy) is added which specifies whether
the contents of a given copy is valid for reading purpose or not. If the valid flag of
a copy is not set9, a read operation on that copy would first require copying updated
data from either other device memories with valid contents or from main memory, as
described later. Furthermore, in order to control the potential problem of running out
of device memory space by creating too many device copies, each device copy has
a lastUsed attribute which tracks the time when that device copy was last accessed
(read and/or written). When not enough space is available for allocating a new device
copy, one or more least recently used (LRU) device copies can be deallocated to make
space for a new device copy.

Figure 5 summarizes the new memory management mechanism. In the new mech-
anism, we identify a read and write access on CPU also by an index range. By default,
the index range for an object covers all of its elements (i.e., [0,N) for an object of size
N); however, it could be a smaller range, e.g., when a skeleton call executes on CPU
with subset of elements such as:

skepu ::Vector <int > v0(10);
map(v0.begin()+5, v0.end()); // index range [5, 10)

or when a specific element of object is accessed/modified on CPU:

v0[3] = ...; // index range [3, 4)

In the new mechanism, most operations are carried out considering whether the index
ranges marked by two object copies (or accesses) overlap. The overlap between two
index ranges, [a,b) and [c,d), can be determined by taking the intersection (∩) of
both ranges, using the standard set notation [2], i.e.:

overlap if [a,b)∩ [c,d) 6= /0; no overlap otherwise.

Read and write accesses to the main-copy of an object with a given index range
are handled in the following manner. If the valid flag of the main-copy is set, any
read operation to it can proceed without any further processing. Otherwise, before
an index range [P,Q) of mainCopy(O) is read in main memory, all (if any) modified
overlapping device copies of the object O are copied back to mainCopy(O). The valid

8 For simplicity of presentation, we consider here the vector case. Device copies of matrix objects are
identified with a different tuple in the new mechanism, as discussed later.

9 This test of the valid flag is the main source of overhead added by the coherence mechanism at main
memory accesses by non-skeleton (CPU) code to the container. SkePU also provides customized variants
of the container access operations that skip this test, which can be used to eliminate the overhead where
the main copy of the container is statically known to be valid, e.g. in several subsequent accesses. The
containers also offer an explicit main memory update (flush) operation v.updateHost() that can be used
together with the customized access variants.
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CPU (main-memory) GPU (device memory)

if main-copy NOT valid then
  Copy all modified device copies overlapping 
   with range [P, Q) back to main-copy and 
   clear their modified flags.
  Set valid flag of main-copy if no other 
   modified device copy exist.
endif
Read main-copy

if main-copy NOT valid then
  Copy all modified device copies overlapping 
   but not subset of range [P, Q) back to main
   -copy and clear their modified flags
  Set valid flag of main-copy if no other 
   modified device copy exist.
endif
Clear valid flag for all valid device copies 
 overlapping with range [P, Q)
Write to main-copy

dCopy = dCopies.lookup <devID, offset, n>
if dCopy not found then 
   Allocate a new dCopy <devID, offset, n>
endif
if dCopy is not valid then
   Copy data from other valid copies
   Set valid flag for the dCopy
end if
Update lastUsed flag of the dCopy
Read the dCopy

dCopy = dCopies.lookup <devID, offset, n>
if dCopy not found then 
  Allocate a new dCopy <devID, offset, n>
endif
Clear valid flag for all overlapping copies
Set modified flag for the dCopy
Update lastUsed flag of the dCopy
Write the dCopy
Set (if not already) valid flag for the dCopy

Read
access
[P - Q)

Write
access
[P - Q)

One main-copy
Zero or more device-copies(dCopies) 
A device-copy (dCopy) identified by <devID, offset, n>

Copies

Read/
Write
access

if main-copy NOT valid then
  Copy all modified device copies overlapping 
   with range [P, Q) back to main-copy and
   clear their modified flags
  Set valid flag of main-copy if no other 
   modified device copy exist.
endif
Clear valid flag for all device copies 
 overlapping with range [P, Q)
Read/Write main-copy

dCopy = dCopies.lookup <devID, offset, n>
if dCopy not found then 
   Allocate a new dCopy <devID, offset, n>
endif
if dCopy is not valid then
   Copy data from other valid copies
   Set valid flag for the dCopy
end if
Clear valid flag for all overlapping copies
Set modified flag for the dCopy
Update lastUsed flag of the dCopy
Read/Write the dCopy

Fig. 5 The working of the new memory management mechanism for a single container object.

flag of the main-copy is set if all modified copies have been written back. Notice that
only contents of the modified device copies that overlap with the index range of the
read access are copied back to the main-copy. This means that the main-copy can
still be marked invalid (after the copying) if there exist some modified device copies
that do not overlap with the index range required by the current read access and
are thus not copied back. In any case, the read access can continue knowing that at
least the contents required for the access is up to date in the main-copy. Similarly,
before a write access of index range [P,Q) to mainCopy(O), all modified overlapping
device copies of the object O, whose index range is not a subset of the index range
requested in the write access, are copied back. After copying contents appropriately,
all overlapping device copies of the object are marked invalid.

Note that clearing the valid flag for a device copy (i.e., marking it invalid) also
clears its modified flag if set. When writing contents in the main-copy of an object,
the device copies of the object are marked invalid (i.e., their valid flags are cleared)
but space is not deallocated. Device copies are only removed and space is deallocated
when an object is either destroyed or when it is resized or when no space is available
for a new device copy allocation (least recently used device copies of an object are
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removed in that case). This could yield significant savings in memory (de-) allocation
overhead as we will discuss later.

When a GPU read access to object O occurs, a lookup is made to find an existing
copy (dCopy j(O)) with same index range on the given device. If an existing copy
is found and its contents is valid, it is used; otherwise, if the contents of the found
copy is not valid, it is copied from other copies in a similar manner as for a newly
created device copy (described below). If no existing copy is found, space for a new
device copy is allocated; afterwards, contents from other copies are copied to the
newly created device copy in the following manner.

In the new mechanism, contents to a device copy can be copied from other device
copies of the object (present in the same or other device memories) as well as from
the main-copy. However, when copying from other device memory copies, it might
happen that those copies only have partial overlap with what is required. For example,
if we need contents for a device copy in index range [0,10) and we have two valid
device copies of the same object with index range [0,7) and [5,10) respectively, then
we need two content copies of index subranges, e.g., [0,7) and [7,10), to copy all
contents. Theoretically, we could require from one copy operation (in the best case)
up to potentially as many as the size of the index range (nacc) to which we need to
copy. However, in practice, the index subranges that occur in skeleton programs are
very few (normally up to the total number of GPU devices) as we will see later.

The pseudocode of the algorithm for copying data to a device copy (dCopydst )
is outlined in Algorithm 1. The algorithm for copying data to a device copy builds
a copy plan for copying contents from multiple sources in the following precedence
order:

1. Copy contents from overlapping valid copies in the same device memory. This is
the fastest copy option as it happens within the same device memory.

2. Copy contents from the main-copy if it is valid. No further copy should be needed
as the main-copy has the full contents of an object available.

3. If GPU devices support direct data transfer between their memories (e.g., using
GPUDirect [23]), copy contents from valid copies in other device memories to
the current copy using this feature.

4. Copy contents from modified device copies that exist in other device memories
back to the main-copy and then copy required contents from the main-copy.

The getValidDevCopy() method in Algorithm 1 finds a valid device copy of an
object, on a given device, that has an index range overlapping with the specified in-
dex range. The getModifiedDevCopy() method does the same except that it looks for
a modified device copy. When copying contents from another device copy (dCopysrc),
the getOverlapRange() and getRemainingRanges() methods find out what index range
can be copied from a given device copy (dCopysrc) and what remaining index ranges
(if any) need to be copied from other sources10. For example, when copying the
[0,10) index range to a device copy (dCopydst ), we might find a dCopysrc with con-
tents [3,17); getOverlapRange() would return the overlap between the two index
ranges, i.e. [3,10) in this case. As the overlap is not complete, copying elements

10 There could be at most two new index ranges returned by getRemainingRanges() considering that
each object copy stores consecutive elements, marked by an index range.



14 Usman Dastgeer, Christoph Kessler

Algorithm 1: UpdateADeviceCopy
Input: dCopydst , device copy to be updated

O, object to which dCopydst belongs
1 begin
2 Init rangesToCheck and copyIn f PerRange
3 rangedst ← [offsetdst ,(offsetdst +ndst))
4 rangesToCheck.add(rangedst )
5 while not rangesToCheck.empty() do
6 range← rangesToCheck.pop()
7 dCopysrc← getValidDevCopy(O,range,devIDdst )
8 if dCopysrc then
9 subrange← getOverlapRange(dCopysrc,range)

10 copyIn f PerRange.push(dCopysrc,dCopydst ,subrange)
11 if range 6= subrange then
12 rem← getRemainingRanges(range,subrange)
13 rangesToCheck.push(rem)

14 go back to start of while loop

15 if mainCopy(O).valid then
16 copyIn f PerRange.push(mainCopy(O),dCopydst ,range)
17 go back to start of while loop

18 foreach dev ∈ AllDevices do
19 if dev 6= devIDdst then
20 dCopysrc← getValidDevCopy(O,range,dev)
21 if PeerCopyEnabled(devIDdst ,dev) ∧ dCopysrc then
22 subrange← getOverlapRange(dCopysrc,range)
23 copyIn f PerRange.push(dCopysrc,dCopydst ,subrange)
24 if range 6= subrange then
25 rem← getRemainingRanges(range,subrange)
26 rangesToCheck.push(rem)

27 go back to start of while loop

28 foreach dev ∈ AllDevices do
29 if dev 6= devIDdst then
30 dCopysrc← getModifiedDevCopy(O,range,dev)
31 if dCopysrc then
32 subrange← getOverlapRange(dCopysrc,range)
33 rangesrc← [offsetsrc,(offsetdst +nsrc))
34 copyIn f PerRange.push(dCopysrc,mainCopy(O),rangesrc)
35 copyIn f PerRange.push(mainCopy(O),dCopydst ,subrange)
36 if range 6= subrange then
37 rem← getRemainingRanges(range,subrange)
38 rangesToCheck.push(rem)

39 dCopysrc.modified← false
40 set mainCopy(O).valid flag if no modified copy exists
41 go back to start of while loop

42 // copy from main-copy (last option)
43 copyIn f PerRange.push(mainCopy(O),dCopydst ,range)

44 foreach copyIn f ∈ copyIn f PerRange do
45 // do the actual copying using e.g., cudaMemcpy etc.

46 dCopydst .valid← true
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[3,10) from dCopysrc would yield one remaining index range ([0,3)) to copy further.
In a nutshell, considering that the contents of a copy might need to be copied from
more than one source, the copy plan includes the 〈source, destination, index range〉
information of all the necessary copy operations to copy the required contents. These
copies are carried out by the system considering possible asynchronous execution se-
mantics offered by modern GPUs; the valid flag of the device copy (the one being
written to) is set in the end.

When a GPU write access, identified by 〈devIDacc,offsetacc,nacc〉 for an object
O occurs, it is handled in the following manner. First, a lookup is made to find an
existing copy with same index range on the given device. If not found, a new device
copy is allocated for the given index range on the given device. Before the actual
writing of contents in the current device copy can take place, all its overlapping valid
(main-copy and all other device) copies are marked invalid. The valid flag for the
main-copy and all other device copies that are overlapping with the currently writ-
ten device copy (dCopyacc) is cleared. When marking other device copies invalid, the
framework checks for copies that have modified contents and whose index range is
not a proper subset of the index range currently written. For example, if we write to
index range [0,10) and another device copy with modified contents has index range
[5,15), partial contents of the latter copy not overwritten by the current write opera-
tion (i.e., [10,15)) is copied back to the main-copy before its modified and valid flags
are cleared. The pseudocode for handling a write access to a device copy is shown in
Algorithm 2.

Algorithm 2: UpdateOthersWhenWritingADeviceCopy
Input: dCopyw, device copy that is written

O, object to which dCopyw belongs
1 rangew← [offsetw,(offsetw +nw))
2 begin
3 if mainCopy(O).valid then
4 mainCopy(O).valid← false

5 foreach dev ∈ AllDevices do
6 dCopies← getValidDevCopies(O,rangew,dev)
7 foreach dCopyi ∈ dCopies do
8 if dCopyi ∧dCopyi 6= dCopyw then
9 if dCopyi.modified then

10 rangei← [offseti,(offseti +ni))
11 subrange← getOverlapRange(rangei,rangew)
12 if rangei 6= subrange then
13 rem← getRemainingRanges(rangei,subrange)
14 Copy rem from dCopyi to mainCopy(O)

15 dCopyi.modified← false

16 dCopyi.valid← false
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3.3.1 Matrix operands

As already discussed, SkePU matrix objects in the new mechanism are treated dif-
ferently to enable partial device copies with contents not stored consecutively in the
original matrix (see Figure 1(right)). This is done by identifying device copies of a
R×C matrix by a tuple 〈devIDi,offseti,ri,ci〉 where:

– devIDi is an identifier of the device on which the device copy is present,
– offseti is the 1D index of the first element of the device copy with respect to the

index range of mainCopy(O),
– ri is the number of rows stored in the device copy, i.e., 1≤ ri ≤ R,
– ci is the number of columns stored in the device copy, i.e., 1≤ ci ≤C.

This allows us to represent a device copy mapping to any submatrix in the original
matrix, including the second device copy in Figure 1(right). Although a matrix de-
vice copy may represent multiple (disjoint) index ranges, it is still considered a single
device copy in the working of the new mechanism. The process of marking copies
valid, modified etc. remains the same as for vector objects. Contents in the device
copy are internally stored consecutively no matter if it represents multiple disjoint
index ranges. However, the difference comes in the implementation, e.g., when copy-
ing data to/from other copies, a copy operation may be needed for each index range.
Also, the overlap between two device copies is checked for each index range that
they contain and “no overlap” is defined when there exists no overlap with any index
range covered by two device copies.

This submatrix approach for two-dimensional containers could also be general-
ized to higher dimensions. For practical reasons, SkePU currently only implements
containers for one and two dimensions, though.

3.3.2 Remarks

The new mechanism is more powerful when it comes to managing read and write
accesses to multiple overlapping copies of an object in different device memories.
The consistency problems described with the initial mechanism, as depicted in the
two scenarios earlier, are taken care of automatically in the new mechanism. This
is achieved by tracking the state of each device copy and by proper handling of
other overlapping copies when contents in one device copy is updated. From the
programmer’s perspective, the new mechanism does not require any new information
and works transparently behind the generic container’s interface. Besides addressing
data consistency issues, the new mechanism improves performance first by not de-
allocating device copies whenever contents is modified in the main-copy. Moreover,
copying data to a device copy from existing object copies in the same device mem-
ory can reduce the communication overhead associated with data transfers between
main memory and GPU device memory. Partial device copies of a matrix object are
identified with a different tuple that allows partial device copies representing any sub-
matrix of the original matrix. Last but not the least, support for direct data transfers
between two device memories can yield significant savings as only one copy opera-
tion is needed rather than two copy operations in the original mechanism (first from
one device copy to main-copy and then from main-copy to another device copy).
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The granularity of control is more flexible in the new mechanism. Generally, the
granularity results from the operands being passed to/from the skeleton invocations,
i.e., from the application itself. It can be at the level of entire vectors and matrices,
or major or minor subarrays. Theoretically, the control could happen at individual
element level if there exist device copies consisting of one element. However, we
did not encounter such scenarios in the example applications that we implemented
(see Section 4) where the total number of device copies was very small even if many
invocations were made.

The framework, when managing communication between different copies, con-
siders their index ranges and optimizes data transfers by transferring only required
contents. Several optimizations are made in the new mechanism, e.g., a list of modi-
fied device copies per device memory is maintained for fast lookup.

The new mechanism is very similar to the MSI (Modified, Shared, Invalid) cache
coherence protocol [9]. A copy can be in valid (shared in MSI), modified or invalid
state. The main difference comes from the concept of (partially) overlapping copies
where state of different copies is updated considering their potential overlap, allowing
disjoint copies to be modified independently. For example, in our case, when a device
copy is modified, there exists only one valid copy for the index range covered by that
modified device copy. However, there can exist another modified device copy for the
same object if the index ranges of both modified device copies do not overlap with
each other.

In both initial and new mechanism, we match a device memory access
〈devIDacc,offsetacc,nacc〉 to an exact copy. For example, if we have a device memory
access request 〈0,5,5〉 (i.e., index range [5,10) on the device with ID 0) for a vector
object, we will check for an exact copy of that vector object with index range [5,10)
in that GPU device memory. If we do not find an existing copy, we will create a new
copy for this index range. A possible optimization could be to look for an overlapping
copy that totally includes the index range requested, i.e., covers an index range that
is a superset of the requested range. However, this might complicate the handling of
modifications and invalidations to device copies as partial contents in a device copy
then might be in different states (valid, invalid, modified). Splitting a device copy
into multiple logical sub-copies corresponding to different access requests might be
an interesting idea and can be investigated in future.

3.4 SkePU program execution model

SkePU containers are primarily designed to pass operands to skeletons calls in a
SkePU program. A typical SkePU program consists of sequential CPU code with
skeleton calls nested in the program control flow. The sequential CPU part manages
input/output operations and coordinates execution of different skeleton calls in the
program. The actual computations are marked by skeleton calls in the program.

Considering the above sequential-style program execution scenario, the SkePU
containers are not designed to be thread-safe, i.e., to be used in a concurrent environ-
ment outside the skeleton calls. For example, the behavior is undefined if overlapping
contents in a vector object v0 are read and written simultaneously in multiple threads.
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Considering our target usage scenarios, making containers thread-safe could hurt the
performance. The main container operations are performed inside the skeleton im-
plementations, which are designed to ensure proper behavior when using multiple
threads. For example, the OpenMP implementations of the skeletons in the SkePU
library ensure data consistency for the given skeleton semantics.

Outside the skeleton implementations, the application programmer needs to either
use containers in the sequential source code or provide adequate synchronization
when overlapping container data is read and written in a multi-threaded context.

Normally, skeleton calls in a SkePU program are blocking, i.e., control returns
from a skeleton call when it is completed and operand data is safe for subsequent
program accesses. However, SkePU skeleton calls can be non-blocking when using
the StarPU runtime system, i.e., the control returns to the calling thread before the
actual call is complete. As shown in Listing 2, the containers ensure proper synchro-
nization for program accesses in this case by ensuring that skeleton calls operating
on that data complete before those accesses can proceed. Details of the SkePU smart
containers’ interoperating with the StarPU runtime system can be found in Dastgeer
[6, Ch. 4.4].

Although the containers are mainly designed for passing operands to SkePU
skeleton calls, they can be used with other computations executing on either CPU
or GPU. The containers’ API used in the SkePU skeleton framework is generic and
can be used in other contexts. This could be useful e.g. in programs where not all
computations can be modeled with the existing set of skeletons present in SkePU
today.

4 Evaluation

In this section we evaluate the effect of the memory access optimizations imple-
mented inside the SkePU containers with the help of several applications/kernels im-
plemented using SkePU skeletons. The evaluation is carried out on a GPU-based
system with 2 Intel Xeon E5520 CPUs and 2 NVIDIA C2050 GPUs; C/C++ and
CUDA code is compiled using GCC (v4.8.1) and NVIDIA C (nvcc v0.2.1221 with
CUDA 5.0) compilers respectively. We carry out two kinds of evaluation: First, we
check the benefits of the memory management implemented in SkePU by comparing

1 skepu ::Vector <...> v0, v1;
2 ...
3 map(v0); // asynchronous Call 1
4 map(v1); // asynchronous Call 2, can overlap with call1
5 ...
6 v1[10] = 11; // blocks until Call 2 finished
7 ...
8 std::cout << v0[i]; // blocks until Call 1 finished

Listing 2 Task-parallel execution of a SkePU program with the StarPU runtime system. Call 2 is not data
dependent on Call 1 and thus the calls can overlap if resources are available.



Smart containers and skeleton programming for GPU-based systems 19

 0.1

 1

 10

 100

MSE
PPMCC

LU MandelBrot

NBody

SPH

E
x
ec

u
ti

o
n
 t

im
e 

(n
o
rm

al
iz

ed
)

Applications/Kernels

985.3 489.7
1 C2050 GPU - CMO

1 C2050 GPU - No CMO

 0.1

 1

 10

 100

MSE
PPMCC

LU MandelBrot

NBody

SPH

E
x
ec

u
ti

o
n
 t

im
e 

(n
o
rm

al
iz

ed
)

Applications/Kernels

1099.6
2 C2050 GPUs - CMO

2 C2050 GPUs - No CMO

Fig. 6 Normalized execution times of different SkePU applications/kernels with one or more skeleton calls
where each skeleton call is executed on 1 (left) or 2 C2050 GPUs. We compare execution where SkePU
communication and memory optimizations (CMO) are enabled to where operand data of skeleton calls is
transferred back and forth for each skeleton call (No CMO). The execution time is normalized with CMO
execution as baseline. MSE is a single-call program (thus nothing to optimize), showing that the overhead
of smart containers is negligible.

with executions where operand data to skeleton calls is transferred back and forth for
each call. In the second evaluation, we compare our new memory management mech-
anism with the initial memory management mechanism found in the initial version
of SkePU.

4.1 Effect of communication optimizations

We evaluate the benefits of our memory management inside the SkePU containers
for four applications (NBody, LU factorization, Smooth Particle Hydrodynamics,
Mandelbrot) and two image processing kernels (Pearson Product-Moment Correla-
tion Coefficient and Mean Squared Error). We do the evaluation by comparing the
execution time of these programs with the new memory management mechanism to
their execution time where data is not kept on a device memory after a skeleton call
execution, i.e., operand data is transferred for each skeleton call back and forth. The
benefits of memory optimizations come with GPU execution where communication
between different device copies and main-copy of an object can be optimized.

Figure 6 shows execution of several applications/kernels on two GPU setups (1
C2050 GPU, 2 C2050 GPUs where the work in each skeleton call is equally divided
across the 2 GPUs that are of the same type). The execution time is averaged over
multiple executions, with different problem sizes (both small and large), for each
application/kernel. In both single and multi-GPU executions, we can see substantial
benefit for memory optimizations for applications containing multiple skeleton calls.
In some cases, speedup is more than 100 times which shows the importance of ap-
plying communication optimizations in GPU based systems across multiple skeleton
calls. For applications such as NBody, passing operand data back and forth for each
time step makes the communication really expensive even for a small simulation (50
timesteps for these experiments). The MSE kernel contains just one skeleton call and
thus does no show any benefit as transferring data (back and forth) at least once is



20 Usman Dastgeer, Christoph Kessler

required in any case. However, the MSE execution shows that the overhead of our
memory management is less than 1%11.

4.2 New versus initial mechanism

Earlier, we have seen the benefits of optimizing communication for operand data
across multiple skeleton calls in the program. Now, we analyze the improvements of
our new memory management mechanism in comparison to the initial mechanism
for several applications. In the new mechanism, main improvements come from de-
vice copies of an object that (partially) overlap with each other. One possible way to
create these partial copies is having one or more skeleton calls in the program that
operate on partial elements of a container object, as shown in Scenario One (Sec-
tion 3.2). However, none of the applications that have so far been ported to SkePU
has such behavior. The other possibility that results in partial copies in device mem-
ory comes with multi-GPU execution where work in each (or some) skeleton call(s)
is partitioned across different GPUs. This was shown earlier (Section 3.2) with two
calls to the MapArray skeleton, and this is found in three of the applications (LU
factorization, NBody and SPH) that we have ported to SkePU.

For demonstration, we consider execution of these three applications on the above
mentioned GPU-based system. For each application, we do executions over multiple
problem sizes with three configurations of memory management, as listed below:

1. Initial CMO: Execution with the initial SkePU memory management mechanism.
2. New CMO: Execution with our new memory management mechanism. Device-

to-device memory transfers between the two peer GPU device memories (using
GPUDirect [23]) are still disabled in this configuration. This means that com-
munication between copies residing in the two device memories will happen in-
directly (via the main memory where data is first transferred from one device
memory to main memory and then from there to the other device memory).

3. New CMO (peer): Execution with our new memory management mechanism.
Device-to-device memory transfers between the two peer GPU device memories
(using GPUDirect [23]) is enabled in this configuration.

The new mechanism transparently finds out (via the CUDA API) whether the
peer device memory transfers can be enabled or not between different GPU device
memories and can optimize communication patterns between such devices. Even if
the peer device memory transfers are not available, the new mechanism still improves
over the initial mechanism by making execution both consistent (without requiring
any flush operation12) as well as reducing communication to main memory.

Table 1 describes the communication volume and device memory allocation size
(in megabytes) for the three applications. The values are accumulated over multiple
executions of each application with different problem sizes. For each application,

11 In absolute terms, the overhead is less than 1 microsecond. It is measured by comparing execution of
several kernels with different problem sizes.

12 The flush operation is both expensive, as it deallocates all device copies of the object, and exposes
data consistency issues to the application programmer.
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Table 1 Communication volume and device allocation size (in megabytes) for the three applications,
accumulated over different problem sizes. CMO=communication and memory allocation optimization by
smart containers. HTD/DTD/DTH=host-to-device/device-to-device/device-to-host communication.

LU Factorization
CMO Type HTD DTD DTD (peer) DTH Total Alloc
Initial CMO 119.8 0 0 60.1 179.9 359.1
New CMO 60.1 59.4 0 59.7 179.2 4.4
New CMO (peer) 0.6 59.4 59.4 0.3 119.7 4.4

NBody
CMO Type HTD DTD DTD (peer) DTH Total Alloc
Initial CMO 3121.9 0 0 1135.2 4257.1 6243.9
New CMO 1040.6 1040.6 0 1087.9 3169.1 567.6
New CMO (peer) 0 1040.6 1040.6 47.3 2128.5 567.6

SPH
CMO Type HTD DTD DTD (peer) DTH Total Alloc
Initial CMO 101.2 0 0 42.7 143.9 203.2
New CMO 33.7 33.7 0 34.1 101.5 4.0
New CMO (peer) 0 33.7 33.7 0.3 67.7 4.0

the table lists the size for different types of communication, namely, device to host
(DTH), device to device (DTD), device to device between two peer device memories
(DTD peer) and host to device (HTD) for each of the three configurations described
above. For each application, the table also lists the total communication size (penulti-
mate column) for each configuration as well as the accumulated size of device mem-
ory allocations (last column) made for different container objects used as operands
with the skeleton calls.

Just by looking at the total communication size (second-last column) for each
configuration, we can clearly observe the improvements of our new mechanism over
the initial one even when the peer device memory transfers are not enabled. The sav-
ings are more vital than what one might expect from looking at the total communica-
tion size as, in the new mechanism, we do more DTD memory transfers rather than
HTD each time. In the initial mechanism, there was no DTD data transfer as can be
seen in the table. On modern GPUs (e.g., C2050s that we have used for these experi-
ments), the achieved bandwidth for DTD communication is more than 25 times better
than the achieved bandwidth for HTD communication, as found by our experiments
on a C2050 GPU.

Enabling the peer device memory transfers, the total communication size reduces
even further considering that data can be directly transferred between the two device
memories without involving the main-copy that resides in the main memory. This
obviously reduces the overall communication size by 50%. Furthermore, the achieved
bandwidth for peer DTD device transfers is 1.5 to 3 times faster than for HTD. The
ratio varies considering whether the HTD transfers are done for page-locked memory
or for data with normal (default) allocations; communication with the former is faster
than the latter.

Besides the differences in communication size and speed, there comes a sub-
stantial saving in the total number of device memory allocations made for the device
copies of container objects. The differences in accumulated device memory allocation
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tial CMO) is 19.2; the average speedup
due to using peer over non-peer com-
munication with the new containers is
1.23.

size are 82, 11 and 50 times for the LU, NBody and SPH applications respectively.
This is because in the initial mechanism device memory allocations are removed for
each write access to the main-copy as well as correct execution requires flushing
contents between different skeleton calls. The savings in memory allocations are
substantial and can have a major performance impact considering that these device
allocations (and corresponding deallocations) are made during the actual skeleton
program execution.

Figure 7 shows the execution times for the three configurations for each applica-
tion, here with page-locked memory allocations. The savings are substantial; a speed-
up of up to 33.4 is observed in the best case (SPH), and on average over three iterative
applications we achieved a 19.2 times reduction in execution time when comparing
execution with the initial mechanism to the new mechanism for page-locked memory
allocations.

The new mechanism reduces the total number of data transfers, localizes commu-
nication when possible (e.g., DTD instead of HTD) as well as cuts the total number
of device memory allocations by 82 times in the best case. Besides making the appli-
cation execution faster, these savings can have a huge impact on power consumption
considering that memory operations consume 1 to 2 orders of magnitude more power
than floating-point operations [16, 22]. From the programming perspective, a skele-
ton program can now be executed on different GPU-based systems without any data
consistency issues.

5 Related work

SkelCL [24] is an OpenCL-based skeleton library that supports several data-parallel
skeletons on vector and matrix container operands. The SkelCL vector and matrix
containers provide memory management capabilities like the initial SkePU contain-
ers. However, unlike SkePU, the data distribution for containers is exposed to the
programmer in SkelCL. Furthermore, SkelCL allows only one copy per device for a
container object.
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The Muesli skeleton library, originally designed for MPI/OpenMP execution [3],
has been recently ported for GPU execution [11]. Memory management implemented
inside Muesli containers is inspired by the initial memory management mechanism
implemented in SkePU containers [10]. Moreover, it currently has a limited set of
data-parallel skeletons which makes it difficult to port applications such as N-body
simulation and Conjugate Gradient solver.

Marrow [20] is a skeleton programming framework for systems containing a sin-
gle GPU using OpenCL. It provides data (map) and task parallel (stream, pipeline)
skeletons that can be composed to model complex computations. It supports certain
data type objects for storing buffer data but their exact implementation is not publicly
known. Also, Marrow focuses on GPU execution only (i.e., no execution on multicore
CPUs) and exposes concurrency and synchronization issues to the programmer.

NVIDIA Thrust [15] is a C++-template library that provides algorithms (reduc-
tion, sorting etc.) with an interface similar to C++ standard template library (STL).
For vector data, it has the notion of host_vector and device_vector modeling
data on host and device memory respectively; data can be transferred between two
vector types using a simple vector assignment (e.g., v0 = v1).

For the functional data-parallel programming language SAC [13] there is a CUDA
back-end with support for dynamically scheduled hybrid CPU-GPU and multi-GPU
computing [8]. This implementation contains a form of smart containers that follows
the MSI protocol. However, it only allows for 1D partitioning along the outermost
array dimension and uses fixed-size data blocks as the data units of communication
and invalidation in MSI, which currently are unit-sized blocks along the topmost di-
mension (i.e., individual vector elements or matrix rows), not larger index subspaces
as in our case, thus leading to high overhead for large accesses where many blocks
need to be copied or invalidated. Moreover, direct GPU-GPU communication is not
supported in that work.

For a more detailed discussion of SkePU related work, we refer to [5] and [6].
On very recent and forthcoming GPUs that support a global address space atop a

NUMA memory system (such as CUDA Unified Memory [14, 19] on recent Nvidia
GPUs), the cost of data communication will not disappear. While a hardware-provided
global address space might be more convenient in scenarios with irregular memory
access patterns, skeleton computations are much more predictable and thus better
suited for software-level optimizations of communication and memory allocation.
From a performance portability perspective, we consider it actually better to use
location-aware smart containers to control and avoid unnecessary data movement
in software than to hide this cost-affecting property in the hardware’s programming
API. A software solution such as smart containers is also applicable to non-CUDA or
older GPUs or to non-GPU accelerators, and thus benefits portability.

6 Conclusion and Future work

We have seen how smart containers can help in optimizing communication and re-
ducing data transfers across multiple skeleton calls while exposing a high-level STL
like interface to the application programmer. We also discussed data consistency and
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performance issues associated with the initial SkePU memory management mech-
anism. A new memory management mechanism is designed and developed which
gives consistent program execution with better performance (i.e., less communication
and data (de-)allocations). Evaluation with several applications/kernels shows bene-
fits for memory optimizations for GPU-based systems. The evaluation also shows that
the new mechanism achieves a significant (up to 33.4 times) reduction in execution
time when comparing execution with the initial mechanism for page-locked memory.

In future work, smart containers can be extended to internally adapt not only the
storage location but also the storage format. This might include transposing a matrix
as well as conversion between different storage formats for a sparse matrix.
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