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Abstract. User-level components can expose multiple functionally equi-
valent implementations with different resource requirements and perfor-
mance characteristics. A composition framework can then choose a suit-
able implementation for each component invocation guided by an objec-
tive function (execution time, energy etc.). In this paper, we describe
the idea of conditional composition which enables the component writer
to specify constraints on the selectability of a given component imple-
mentation based on information about the target system and component
call properties. By incorporating such information, more informed and
user-guided composition decisions can be made and thus more efficient
code be generated, as shown with an example scenario for a GPU-based
system.

1 Introduction

A software component consists of a description of a computational functional-
ity along with one or more implementations (sometimes called implementation
variants or simply variants) of that functionality. These implementations are
considered functionally equivalent and can be used interchangeably when doing
the computation. Implementations can come from various sources; from some
standard library, from an expert programmer [1] or automatically generated by
a tool by instantiating values for tunable parameters. The problem of selecting
an appropriate implementation for each component invocation in the program
is often referred to as the component composition (or implementation selection)
problem. Normally it is guided by some optimization objective function such as
execution time as we assume in this paper.

In GPU based systems supporting general purpose computations on GPU
devices with CUDA/OpenCL, the implementations can be device/architecture
specific. Considering this and the distributed memory address space in these sys-
tems, component composition is tightly coupled with resource allocation (current
system workload) and data locality in these systems. Moreover, implementations
can be written/optimized for certain execution scenarios and using them other-
wise may result in a sub-optimal (or even worse, incorrect) execution. The imple-
mentation writers should be able to specify such constraints about the conditions
on selectability of implementations they write. The composition decisions can
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Fig. 1. Overview of an application execution using a task-based runtime system.

then be guided by such conditions/constraints (i.e., conditional composition),
evaluated either before or during an actual program execution.

In this paper, we briefly discuss the component composition problem for
GPU-based systems and how it can be carried out in multiple stages. We describe
the idea of conditional composition and how it can provide flexible and powerful
composition capabilities for the programmer in an intuitive manner. Specifically,
we make the following contributions:

– We present the idea of conditional component composition for GPU-based
systems and how it can be used to improve composition decisions made by
the runtime system.

– We describe different information sources and how they can be queried in a
portable and generic manner. Our composition tool prototype has been ex-
tended to provide a powerful interface for lookup of application and platform
properties and to later use that information to affect composition decisions
made by the runtime system.

– We present a case-study where the state of operand data alongside informa-
tion about the underlying software platform is used to guide the composition
decisions made by the runtime system.

The paper is organized as follows: Section 2 describes component compo-
sition whereas conditional composition is described in Section 3 followed by
implementation details in Section 4. Section 5 describes the benefits of condi-
tional composition with an example scenario followed by related work in Section
6; Section 7 concludes.

2 Component composition

Composition is selection of an implementation among potentially many function-
ally equivalent implementations for each component invocation to either mini-
mize or maximize some objective function. For the discussion in this paper, the
objective function to be optimized is execution time, but it could also be energy
consumption etc. Normally, greedy composition decisions are made considering
one component invocation at a time for practical reasons [8–12]; however, the



ideas described here are equally applicable for global composition where the
objective function is maximized or minimized across multiple component calls1.

In general, the composition decisions can be made statically and/or dynam-
ically as described below.

2.1 Static (offline) composition

Static composition decisions are made offline (i.e., before the actual program
execution starts). These decisions can be made e.g., at compilation time or by
some preprocessor tool based on statically available information about the target
system resources/topology. For example, if GPU is not available on the target
system, all component implementations targeting the GPU can be disabled at
compilation time. Pruning implementation choices offline can significantly re-
duce the dynamic decision making overhead. However, the information for mak-
ing a decision at this time is often quite limited and preliminary. In few cases,
where information about the problem instance (data sizes etc.) and performance
models for those problem instance is available before execution, composition de-
cisions can be made completely offline. However, in most cases, the composition
decisions are made online during the actual program execution, based on per-
formance models (e.g. decision tree) or dispatch tables [13] constructed either
offline or made available from previous program executions.

2.2 Dynamic (online) composition

Dynamic composition decisions happen during the actual program execution.
Internally, they can happen as frequently as once for each component invocation
or just once during the whole program execution (at program initialization or
first invocation).

The state of the art techniques for component composition on GPU-based
systems (e.g., StarPU [12], UnMP [10], Nanos++ [11]) rely on dynamic schedul-
ing where the composition decisions are made at runtime (i.e., at invocation)
by considering performance characteristics of each implementation, along with
operand data locality and current system workload. A common dynamic schedul-
ing heuristic implemented by many such approaches is HEFT (Heterogeneous
Earliest Finish Time) [14]. Although a greedy heuristic, it performs well in prac-
tice and is shown to work with multiple applications.

Most runtime approaches make the decision once per component invocation.
At this time, information about the current operand data, system workload and
operand data locality is available besides the information sources available from
earlier stages. However, it is the stage most sensitive to the decision overhead
as the overhead is incurred for each component invocation, i.e., the potential
advantage of making better decisions can be superseded by the overhead of deci-
sion making. In many cases, the potential advantage of simultaneous executions

1
In global composition, the optimal (with respect to the objective function) choice at an individual
component invocation may result in an overall sub-optimal decision and vice-versa [16].



for independent computations as well as overlapping communication with com-
putation amortizes or hides the decision overhead. Most runtime approaches
implement dynamic composition as shown in Figure 1. Component invocations
are submitted as runtime tasks with multiple implementations to the runtime
systems. After data dependencies for a given task’s operand data are satisfied,
it is scheduled by some greedy scheduling heuristic such as HEFT [14].

3 Conditional composition

An implementation of a component can be specialized for some execution context
such that using it in a different execution context may yield poor performance or
even worse, can give incorrect results. By enabling component/implementation
writers to specify constraints on selectability for the component implementations
they write, more effective and powerful composition decisions can be made. These
constraints can be specified based on the following information sources:
– system resources and topology: information about number/type/frequency

of processing cores, NUMA organization, cache types/sizes, memory organi-
zation/sizes, interconnect type/capacity etc.

– software platform: information about availability of particular software li-
brary or a certain version of a library, device drivers and their versions,
compilers and their versions etc.

– system runtime characteristics: information about current CPU/GPU uti-
lization, application memory footprint, cache hit/miss ratio, effective band-
width etc.

– component call properties: information about operand data sizes, actual con-
tents of operand data (sparsity, sortedness) etc.
The first two information sources (i.e. information about system resources

and software platform) are known, in many cases before the actual program ex-
ecution starts. The information about the system runtime characteristics can be
collected and made available by a runtime system during the actual program
execution; either by monitoring system counters, or by employing application
monitoring mechanisms. For example, the StarPU runtime system provides cer-
tain online performance monitoring mechanisms that can provide profiling infor-
mation about individual tasks and registered operand data. Certain information
about CPU and GPU workers can be queried such as the amount of time a
worker spent in actual work compared to sleeping time etc. More powerful and
high-level metrics about workers’ availability can be built based on such infor-
mation sources. Besides the system runtime characteristics, information about
the actual component call is available for decision making at the component
invocation time. This mainly includes access to the actual operand data which
can be used to make the decisions. This does not require any specific mechanism
in the runtime system and can easily be exposed for conditional composition.

The above information sources can be used by the component implementation
writer for specifying hints or constraints on selectability of his implementations.
However, conditional composition requires a mechanism for both specification
and usage of that information, as described below.



Portable specification of selectability constraints: For systematic decision mak-
ing in a portable manner, information about system resources and software
platforms should be made available via a standard interface so that the com-
ponent writer can write constraints for a component implementation that can
work across different systems. Underneath that interface, the information about
system resources and software platforms can be collected e.g., via system-/OS-
specific routines or by doing micro-benchmarking. Libraries such as hwloc [6]
implement a mechanism to look up such information across different system/OS
configurations. One example of providing a generic interface for accessing infor-
mation about the underlying hardware and software platform is the PEPPHER
Platform Description Language (PDL) [15]. Similarly, the runtime system should
expose a generic interface to lookup and ”refer to“ information about runtime
system characteristics as well as component call properties.

Mechanisms to guide composition decisions by such constraints: A prepro-
cessing tool can process the constraints specified by an implementation writer
based on the information available offline (i.e., about system topology and soft-
ware platform) to enable or disable selection of certain component implemen-
tations. Although processing such constraints at runtime is also possible, it is
undesirable because of the runtime overhead. The constraints regarding runtime
and call properties need to be resolved at the runtime, by a runtime system when
doing the actual call invocation.

4 Design and Implementation

In our earlier work [7], we have implemented a composition tool (as a pre-
processor) that can parse component implementations along their meta-data
and can make static composition decisions while generating optimized code for
dynamic composition with the StarPU [12] runtime system. Figure 2 shows how
the developed prototype can be used to compose an application starting from the
legacy code to the final code executable with the runtime system. Recently, we
have implemented support for PDL [15] in the tool that allows modeling system
properties in an XML form. The tool can parse information present in the PDL
XML file and can serialize the information in the form of key-value properties.
The code is then generated to load this information at program initialization
time into internal data structures and provide a standard C++ API for efficient
lookup of this information in the program source code. Besides other things, this
PDL information can be used for conditional composition. For example, a CUDA
implementation may require availability of at least 16 streaming multiprocessors
for execution as specified below:

validIf(pdl:: getIntProperty("numCudaSM") >= 16)
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Fig. 2. Overview of the composition tool and how it could be used to compose an
existing application. The tool can generate skeletons of XML descriptor files from a
given function declaration in header file. The component writer can then fill in missing
information in the generated descriptors’ skeletons, and can provide actual component
implementations including specification of conditions (if any) on their selection. In the
end, the composition tool can generate code for execution with the StarPU runtime
system.

Multiple constraints can be appended together using operators (AND, OR
etc.) available in C/C++2. Furthermore, the tool can generate code for resolv-
ing constraints at runtime based on information about actual operand values.
The tool currently allows the implementation writer to specify constraints on
selection of an implementation based on system properties made available via a
C++ API as well as information about the actual operand data. As shown in the
next section with an example scenario, many interesting composition decisions
can be made with the help of the conditional composition capability.

5 Evaluation
The conditional composition implemented in the current prototype enables con-
ditional composition at runtime. To demonstrate conditional composition, we
consider a matrix-vector multiplication (mvmult) computation with the follow-
ing signature:

template <typename T>
void mvmult(GMatrix <T> &A, T *x, T *y);

2
As XML restricts usage of certain special characters, we encode them. For example, we represent
the logical AND operator && using .AND.



Table 1. Implementations for mvmult component.

Name For Valid If
mvmult cpu atlas CPU A.isDenseMatrix() .AND.

pdl::getBoolProperty(”atlasBlas”)
mvmult cpu goto CPU A.isDenseMatrix() .AND.

pdl::getBoolProperty(”gotoBlas”)
mvmult cpu csr CPU A.isSparseMatrix()
mvmult cuda cublas CUDA A.isDenseMatrix() .AND.

pdl::getBoolProperty(”cuBlas”)
mvmult cuda cusparse CUDA A.isSparseMatrix() .AND.

pdl::getBoolProperty(”cuSparse”)

Percentage of non-zero items (nnz)

 328  648  968  1288  1608  1928
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(a) Matrices’ size and sparsity distribution. (b) Execution time and memory
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Fig. 3. Conditional composition of mvmult computation. (a) shows distribution of ma-
trices over number of rows, columns and non-zero elements whereas (b) shows execution
time (ms), averaged over mvmult execution for all matrices. It shows execution on a
CPU, a C2050 GPU and composed execution where either the CPU or GPU is used
for each mvmult call (dynamic performance aware scheduling). Furthermore, it shows
memory usage (normalised) for different execution configurations.

The input matrix operand is passed using a generic matrix container that can
internally store the matrix data in either dense or CSR (Compressed Sparse
Row) sparse format. The container is parameterized on which format to use for
a given operand matrix. The mvmult component can thus do matrix-vector mul-
tiplication for matrices with different numbers of non-zero elements. However,
depending upon whether the matrix is stored in sparse or dense format, differ-
ent implementations can run faster. Table 1 lists the implementations that we
have devised for this component. Most of them are simply created by wrapping
optimised library functions available for this computation (e.g. AtlasBLAS and
GotoBLAS for sgemv on CPU). The table also lists the constraints on selectabil-
ity of each implementation. These constraints are based upon information about
the software platform as well as information about storage of operand data.

For evaluation, we generate 200 matrices, randomized over the number of
rows, columns and non-zero elements (nnz). Figure 3(a) shows the distribution



of randomly generated matrices based on number of rows, columns and non-
zero elements. The execution times, as shown in Figure 3(b), are taken with the
following three configurations:

1. AllSparse when all matrices are stored in sparse format so that implemen-
tations written for sparse sgemv get selected always.

2. AllDense when all matrices are stored in dense format so that implementa-
tions written for dense sgemv get selected always.

3. Mix when all matrices are stored in sparse format except those having more
than 50% non-zero elements;3 they are stored in dense format.

These different configurations are orthogonal to the actual component and its
implementations as they are not modified in this process. However, these config-
urations do affect the selection of implementations used for mvmult computation.
For example, when a matrix is stored in the sparse format, all implementations
with A.isDenseMatrix() condition cannot be selected and vice versa.

As shown in the figure, the Mix format performs better, on average, than
any other configuration considering both execution time and memory usage.

6 Related work

The notion of function interfaces in the Elastic Computing framework [5] pro-
vides a mechanism to specify simple constraints for each implementation based
on operand data state (e.g. sorted or random array contents are specified as
sort sorted and sort random respectively for a sort component). However,
the specification mechanisms are näıve and cannot model more complex informa-
tion sources. PetaBricks [3] allows the programmer to specify rules in a data-flow
manner to specify mappings from inputs to outputs which allows it to explore
multiple pathways while keeping the program execution consistent with the spec-
ified data-flow constraints. It relies on an auto-tuning compiler to actually make
the decisions and find suitability of rules to the system- and problem-specific
properties. Merge [4] provides predicate annotations to constrain selection of an
implementation based on structure and size of input data as well as the target
architecture type.

Our framework provides a more explicit and exhaustive set of information
sources accessible for the component writer to specify such constraints. For ex-
ample, we provide notions for runtime information about system workload and
data locality that could be important when making the composition decision.
Moreover, all these above mentioned frameworks (Elastic, PetaBricks, Merge)
propose a new unified programming language/API for the component writer
whereas we rely on existing well-established programming models (OpenMP,
CUDA etc.) for component implementations.

There exists a large body of work in Grid computing environments about
component models [17–19] and resource management [22–26]. Providing quality

3
The 50% threshold is chosen arbitrarily in this case as focus is on demonstrating conditional
selection rather than finding the optimum matrix sparsity threshold.



guarantees for executing jobs/applications is a tricky problem in grid comput-
ing considering the underlying complex, heterogeneous, dynamically fluctuating,
conditionally available and geographically spread hardware (computation and
storage) resources. Normally this is done by a Resource Management System
(RMS) which do matchmaking between the application/job demands [21] and
the capabilities advertised by the resources. The matchmaking is done by directly
comparing values of attributes advertised by the resources with those required by
different jobs. In [28], Tangmunarunkit et al. proposed a more complex matching
technique using semantic web technologies.

The resource management in grid computing is done for different jobs which
are normally independent of each other. In our case, composition decisions are
made for component computations inside an application with arbitrary data and
control dependency. Moreover, the decision in grid computing is mainly about
choosing where to run a job considering its resources requirements whereas we
deal with choosing a particular component implementation for execution, from a
set of implementations, based on the constraints specified on their selectability.

7 Conclusion

The composition problem is becoming increasingly important as more and more
computations are getting multiple implementations available to choose from;
these implementations differ in their resource and platform requirements, con-
text dependencies and performance behaviour. Conditional composition provides
a powerful mechanism for a component writer to affect/control the decision mak-
ing regarding selectability of a certain implementation in a given execution con-
text. The proposed framework allows component writers to specify conditions
on selectability of component implementations by providing standard APIs for
accessing both static and dynamic information sources.

Acknowledgements: Partly funded by the EU FP7 projects PEPPHER (www.pepp-

her.eu) and EXCESS (excess-project.eu) and by SeRC.

References

1. K. Asanovic et al. A view of the parallel computing landscape. Comm. ACM
52(10), pp 56–67, 2009.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA. 1990.

3. J. Ansel et al. PetaBricks: a language and compiler for algorithmic choice. In Proc.
ACM SIGPLAN conference on Programming language design and implementation
(PLDI ’09). ACM, New York, NY, USA, 2009.

4. M. D. Linderman et al. Merge: A programming model for heterogeneous multi-
core systems. In Proc. 13th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, (ASPLOS 2008). ACM, 2008.

5. J. R. Wernsing and G. Stitt. Elastic computing: a framework for transparent,
portable, and adaptive multi-core heterogeneous computing. SIGPLAN Not. Vol.
45(4), 2010.



6. F. Broquedis et al. hwloc: A Generic Framework for Managing Hardware Affini-
ties in HPC Applications. Proc. 18th Euromicro Int. Conf. on Parallel, Distributed
and Network-Based Processing (PDP), pp 180–186, 2010.

7. U. Dastgeer et al. The PEPPHER Composition Tool: Per- formance-aware dy-
namic composition of applications for GPU-based systems. Proc. Int. Worksh. on
Multi-core Com- puting Systems (MuCoCoS’12), Salt Lake City, USA, 2012.

8. M. Kicherer et al. Seamlessly portable applications: Mana- ging the diversity of
modern heterogeneous systems. ACM Trans. Archit. Code Optim., Vol. 8(4), pp
42:1–42:20, 2012.

9. M. Kicherer et al. Cost-aware function migration in heterogeneous systems. In
Proc. Int. Conf. on High Perf. and Emb. Arch. and Comp. (HiPEAC’11). ACM,
NY, USA, 2011.

10. A. Podobas, M. Brorsson and V. Vlassov. Exploring heterogeneous scheduling
using the task-centric programming model. Int. Worksh. on Algorithms, Models
and Tools for Parallel Computing on Heterog. Platforms (HeteroPAR’12), Euro-
Par: Parallel Processing Workshops, 2012.

11. J. Planas et al. Selection of Task Implementations in the Nanos++ Runtime.
PRACE WP53, 2013.

12. C. Augonnet et al. StarPU: A Unified Platform for Task Scheduling on Hetero-
geneous Multicore Architectures. Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009, Vol. 23, pp 187–198, 2011.
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