
Final Thesis

ARM9E Processor Specification for OPTIMIST
by

David Landén

LITH-IDA-EX--05/022--SE

2005-02-25



Linköpings universitet
Department of Computer and Information Science

Final Thesis

ARM9E Processor Specification for OPTIMIST
by

David Landén

LITH-IDA--EX--05/022--SE

2005-02-01

Supervisor: Andrzej Bednarski, Linköpings universitet

Examiner: Christoph Kessler, Linköpings universitet



Abstract

This thesis work provides hardware specifications of the ARM9E microprocessor for the retar-

getable code generator framework OPTIMIST. We evaluate and compare the code quality of

OPTIMIST to a commercial C/C++ compiler for the ARM9E architecture.

Since OPTIMIST is a retargetable code generator it needs both a source code file of the pro-

gram to generate code for (written in C) and a hardware description file of the processor. The

main part of this thesis describes how the specification files for ARM9E are created, using a

hardware description language called ADML (Architecture Description Mark-up Language).

Finally, as the language could not cover all parts of the processors features, it was extended

with new constructs, that are developed in the thesis.

OPTIMIST generated faster code to all test programs compared to the results from LCC

with ARM as back-end. In the comparison between OPTIMIST and the compiler from IAR

Workbench, OPTIMIST generated just as fast code for every other of the test programs, but the

IAR compiler generated faster solutions for the rest of the test programs. This is true for both

ARM and Thumb mode.

Sammanfattning

Detta examensarbete tillhandahåller hårdvaruspecifikationer för mikroprocessorn ARM9E till

en retargetable code generator kallad OPTIMIST. Vi utvärderar och jämför kodkvaliteten för

OPTIMIST och en kommersiell C/C++ kompilator för ARM9E arkitekturen.

Eftersom OPTIMIST är en retargetable code generator behöver den både en källkodsfil av pro-

grammet att generera kod för (skriven i C) och en fil som beskriver processorns hårdvara.

Huvuddelen av examensarbetet visar hur dessa specifikationsfiler skrevs för ARM9E med

hjälp av ett språk kallat ADML (Architecture Description Mark-up Language). Slutligen, efter-

som språket inte kunde täcka processorns alla egenskaper utökades det med ytterligare kon-

struktioner, som är framtagna i detta examensarbete.

OPTIMIST genererade snabbare kod för alla testprogram i jämförelse med resultaten från

LCC med ARM som back-end. I jämförelsen mellan OPTIMIST och kompilatorn från IAR

Workbench genererade OPTIMIST lika snabb kod för vartannat av testprogrammen, men IAR-

kompilatorn genererade snabbare lösningar för resten av testprogrammen. Det gäller både för

ARM och Thumb läge.



Contents

     1 Introduction........................................................................................................ 1
1.1 Goal and Intended Audience ......................................................................................... 1

1.2 Limitations and Sources ................................................................................................ 1

1.3 Contributions ................................................................................................................. 2

1.4 Related Work ................................................................................................................. 2

1.5 The Organization of the Report ..................................................................................... 3

     2 OPTIMIST......................................................................................................... 4

     3 LCC.................................................................................................................... 6

     4 ARM9E.............................................................................................................. 8
4.1 Overview ....................................................................................................................... 8

4.2 Register File................................................................................................................... 9

4.3 Processor Architecture................................................................................................. 10

4.4 Pipeline Hazards.......................................................................................................... 11

4.5 Multiplication Unit ...................................................................................................... 13

4.6 ARM Instruction Set.................................................................................................... 13
4.6.1 Data-processing Operands ............................................................................ 13
4.6.2 Load and Store Word or Unsigned Byte....................................................... 15
4.6.3 Miscellaneous Loads and Stores................................................................... 16
4.6.4 Load and Store Multiple. .............................................................................. 17
4.6.5 Branch Instructions and Swaps..................................................................... 18
4.6.6 Multiplication Instructions............................................................................ 19

4.7 Thumb Addressing Modes .......................................................................................... 20
4.7.1 Data-processing Instructions for Thumb ...................................................... 20
4.7.2 Load and Store Register for Thumb ............................................................. 21
4.7.3 Load and Store Multiple for Thumb............................................................. 22

     5 ADML.............................................................................................................. 23
5.1 General ADML Document Structure .......................................................................... 23

5.2 Notations...................................................................................................................... 23

5.3 Omega: Issue Width .................................................................................................... 23

5.4 Registers ...................................................................................................................... 23

5.5 Constants ..................................................................................................................... 25

5.6 Residence Classes........................................................................................................ 25

5.7 Functional Units .......................................................................................................... 25

5.8 Patterns ........................................................................................................................ 26

5.9 Instruction Set.............................................................................................................. 29
5.9.1 Instructions ................................................................................................... 29
5.9.2 Patterns ......................................................................................................... 31

5.10  Transfer....................................................................................................................... 32

     6 XADML........................................................................................................... 33
6.1 cycle_matrix ................................................................................................................ 33

6.2 Clause: test................................................................................................................... 33

6.3 Clause: Logical and ..................................................................................................... 33

6.4 Clause: Logical or........................................................................................................ 33

6.5 Clause: condition ......................................................................................................... 33
i



6.6 Clause: format ............................................................................................................. 34

6.7 Clause: Macro-or ......................................................................................................... 34

     7 ARM9E Processor Specifications.................................................................... 35
7.1 ARM Mode Specification............................................................................................ 35

7.1.1 Functional Units and Issue Width................................................................. 35
7.1.2 Registers, Residence Classes and Constants................................................. 36
7.1.3 Instructions and Patterns............................................................................... 37
7.1.4 General ARM Instruction Properties ............................................................ 37
7.1.5 Data-Processing Operations.......................................................................... 38
7.1.6 Load and Store Word or Unsigned Byte....................................................... 42
7.1.7 Miscellaneous Loads and Stores................................................................... 46
7.1.8 Branch Instructions....................................................................................... 49
7.1.9 Multiplication Instructions............................................................................ 50
7.1.10 Transfer ......................................................................................................... 52

7.2 The Thumb Specification ............................................................................................ 52

     8 Test................................................................................................................... 53
8.1 Testbenches.................................................................................................................. 53

8.2 Results ......................................................................................................................... 53

     9 Conclusion ....................................................................................................... 56
9.1 Evaluation of the Project ............................................................................................. 56

9.2 Future Work................................................................................................................. 56

Glossary ........................................................................................................... 58

References........................................................................................................ 59
ii



Chapter 1 Introduction

The considerable development of embedded microprocessors and their wide-spread
use in applications such as cellular phones, digital cameras and PDAs has increased the
demand on efficient compilers for microprocessors. Such microprocessors have often
irregular architectures1 where much functionality is held on a very tiny silicon area.
Additionally, the more complex the functionality of the processor is, the harder it is to
write a compiler that uses the available features in a efficient way. And there is no point
of developing new functionality if it is no benefit for the application. This problem is
most apparent for a type of microprocessors, called DSPs (Digital Signal Processor),
where the code quality (regarding performance, and/or code size) generated automati-
cally (by a compiler) shows an overhead of hundreds of percent compared to hand-
written assembler code [10]. The possibility to write programs directly in assembler
remains, but it takes much time, it is harder to write applications without the benefits of
using a high level language, and the assembler code, in most cases, cannot be moved to
a different architecture without considerable changes.

A possibility to solve this problem is to build an optimizing retargetable code gen-
erator, that is a code generator that can generate optimized code for different architec-
tures. The retargetability is achieved through the description of the underlying target
processor that is provided to the framework simultaneously with the source applica-
tion. The goal of the OPTIMIST project is to generate optimal code for DSP and
VLIW (Very Large Instruction Word) processors.

In this thesis we provide two specifications for the ARM9E processor and evaluate
OPTIMIST against LCC and a commercial compiler.

1.1  Goal and Intended Audience

The goal of this thesis work is to extend the specification language of OPTIMIST in
order to provide ARM9E specifications and compare its performance to a commercial
compiler for the same processor provided by IAR Systems. Two processor specifica-
tions files (describing the target architecture) are created, to be used by OPTIMIST, one
for ARM mode (32-bit mode) and one for Thumb mode (16-bit mode).

Two different testbenches, Media bench [11] and MiBench [12] are used in the test-
ing phase. The application programs are written in C and performs computations
related to multimedia processing, such as image compression and decompression,
speech recognition programs, etc. These catalogues represent typical programs for the
ARM9E processor.

We assume that the reader has knowledge in the basics of compiler construction
and computer hardware architecture.

1.2  Limitations and Sources

The limitations of this project have been quite natural since some parts of the instruc-
tions sets could not be implemented by OPTIMIST at the time of writing (see Section
9.2). However most part of the instruction set is implemented, using all addressing
modes.

1. Irregular architectures means processors with features such as multiple memory banks, specialized
register sets, intricate data paths.
1



The sources of information for this project have mainly been books (for the ARM
processor and the retargetable C compiler LCC), data sheets and manuals from ARM’s

homepage1. Other sources of information are the books for the IAR Workbench [14]

(used in the testing phase), and books [5] and online information2 about OPTIMIST.

1.3  Contributions

This thesis shows how the processor specification files for ARM9E’s ARM and Thumb
mode were developed and evaluated using the ADML language (the specification lan-
guage of OPTIMIST). Since some aspects of the processor were not covered by the
original version of ADML, some extensions had to be introduced. The additional con-
structs are described in Chapter 6. The work also includes an overview of the ARM9E
processor architecture, relevant for the creation of the specification. Chapter 7 shows
how the processor specification files for ARM and Thumb mode were created. The
results and conclusion are found in Chapter 8 and 9.

1.4  Related Work

AVIV is a retargetable integrated code generator framework, aimed for VLIW and DSP
processors [13]. It takes a hardware specification file written in ISDL (Instructions Set
Description Language), and the source file as input. The intermediate representation of
the source file consists of so-called split-node DAGs, that are DAGs of basic blocks
containing all possible ways to implement the operations on the target machine. Due to
the combinatorial explosion, AVIV uses branch and bound heuristics to produce a solu-
tion. The instruction selection, scheduling and register allocation are carried out con-
currently (but only on basic block level). Optimality of the resulting code cannot be
guaranteed but the code is “close to optimal”, when working on small basic block with
up to 20 instructions.

MARION [15] is a code generator construction system, that is a retargetable code
generator system designed specifically for uniprocessor RISCs that contain multiple
functional units and multi-cycle operations. MARION creates a code generator from a
natural machine description and performs instruction selection, instruction scheduling
and global register allocation. Thoses phases are performed one by one, unlike AVIV
and OPTIMIST and therefore cannot guarantee an optimal solution. The similarity
between MARION, OPTIMIST and AVIV is the usage of a hardware specification file.

The retargetable code generator environment called CHESS [16] is specialized for
DSPs and Application Specific Integrated Processors (ASIP), which have load-store
architectures with homogeneous or heterogeneous register set where each instruction is
micro-coded (computation takes one clock cycle for each instruction).

The hardware specification for CHESS is written in nML, which is a specification
language for specifying target processor architectures and instruction sets at the regis-
ter transfer level. CHESS takes the hardware specification and the source code of the
application as input. Two internal data structures, called control-data flow graph and
instruction-set graph are created. The intermediate representation of the source pro-
gram is lowered until all operations can be covered by an instruction from the instruc-

1. www.arm.com

2. www.ida.liu.se/~chrke/optimist/
2



tion set of the processor. CHESS solves the code selection, register allocation, bit
alignment and scheduling separately but each phase is bounded by the constraints from
the remaining phases. The code selection is similar to OPTIMIST’s approach, using
pattern matching for DAGs. The patterns are derived from the target processor descrip-
tion in nML. The patterns are identified when processing DAGs, and the algorithm
does not need to enumerate all possible coverage when unnecessary, which is similar to
OPTIMIST’s approach.

The CHESS framework not only produces the code for the application but also pro-
vides statistics that shows how well the model target processor fits the application.

1.5  The Organization of the Report

This report is organized into nine chapters. Chapter 1 briefly introduces the project and
OPTIMIST. OPTIMIST is described in greater detail in Chapter 2. Chapter 3 describes
the intermediate representation of LCC that represents the input form of programs for
OPTIMIST. The ARM9E processor is outlined in detail in Chapter 4. The hardware
description language used by OPTIMIST, called ADML, is explained in Chapter 5 and
its extension in Chapter 6. Chapter 7 shows how the processor specifications for ARM
and Thumb were created. Chapter 8 describes the testbenches and provides experimen-
tal result. Chapter 9 gives the conclusions of the work.
3



Chapter 2 OPTIMIST

OPTIMIST is a research project whose goal is to provide a retargetable code generator,
that produces optimal or highly optimized code for irregular VLIW and DSP architec-
tures. In order to make the retargetability feature possible, OPTIMIST takes the pro-
gram as input together with the specification file of the target processor for which to
generate code (see Figure 2.1). The hardware specification is written in a language that
is based on XML, called ADML (Architecture Description Markup Language). The
specification contains information about the target processor relevant to OPTIMIST.
The full description of the language is provided in Chapter 5, “ADML”.

OPTIMIST uses the information from the specification file to carry out the code gener-
ation for the source program. Code generation means to solve at least three problems;
instruction selection (chooses the most appropriate instruction regarding the optimiza-
tion goals), register allocation (which values should reside in registers, register assign-
ment) and order the sequence of instructions that comply with the program precedence
constraints and improve the optimization goal (orders of executing the instructions). In
general, for complexity issue, the problems are solved independently in different
phases. However, there exist strong couplings between the phases. An early instruction
selection may leave a poor choice for the instruction scheduling phase. Thus for gener-
ating optimal code it is necessary to solve those three phases simultaneously. This is
why OPTIMIST tries to solve the code generation in an integrated manner to produce
optimal or highly optimized code, for a given optimization criterion. This is depicted in
the compilation cube in Figure 2.1. In a decoupled code generation one follows along
the edges of the cube from IR to target code. There are various discussions on order of
phases. For instance, the compiler gcc adopted the following order: instruction selec-
tion, scheduling and register allocation. Instead of following the edges of the cube,

in ADML

OPTIMIST
integrated
code generatorADML

parser

Available specifications:
- TI C6201
- ARM 9E

parametr.

functional units
register sets
memory modules
instruction set

IR generator

source program

C front end

solution spacescheduling

selec
insn.

reg.
alloc.

(C, C++, Fortran)

LCC,  ORC

ORC HL opt.LCC-IR

emitter
asm code

assembler
linker

(11/2004)

architecture description

IR

target
code

execution/simulation
Figure 2.1 OPTIMIST takes LCC intermediate representation of the source program as input
together with the hardware specification ADML file. (Christoph Kessler, OPTIMIST homepage:
http://www.ida.liu.se/~chrke/optimist/)
4



OPTIMIST solves all phases simultaneously, thus going straight from IR and produces
target code.

LCC is used as front-end and it creates the intermediate representation of the pro-
gram. More about LCC will be given in Chapter 3.

At the time of writing, OPTIMIST can optimize only on basic block level, but will
be extended to cope with entire programs, in the long term. A basic block is a section
of instructions in the control flow graph with one single entrance and exit, and no
branches in the control flow in between.

OPTIMIST can be configured to optimize for different criteria such as: execution
time, energy, or register usage. In the future it will also be able to optimize for program
size.
5



Chapter 3 LCC

LCC is a retargetable C compiler, designed at AT&T Bell Laboratories and Princeton
University [1, 2]. LCC is a retargetable compiler i.e., it can generate assembler code for
different target processors, such as SPARC, MIPS R3000 or x86 Intel processors. The
compiler is small and mostly used for education purposes. LCC comes with a book [1]
that describes all the source code of the compiler and the 35 different IR-node types in
the intermediate representation. The retargetability is obtained by IBurg (Bottom Up
Rewriting Generator) [1]. The front-end performs lexical and syntactical analysis of
the source program and generates ASTs (Abstract Syntax Trees) as an intermediate
representation. The AST are fed (on the fly) to the back-end of LCC. The ASTs are
transformed into code DAGs (Directed Acyclic Graphs). The code DAGs are input rep-
resentation for the back-end and code generator. The back-end then maps the DAGs to
assembler instructions. The instruction selection, scheduling and register allocation
phases are decoupled, i.e. carried out one at the time.

In the OPTIMIST project, LCC is used as C front-end that produces LCC IR for
OPTIMIST. LCC front-end will be used as it is, and OPTIMIST will take the role as
back-end. Since OPTIMIST is tightly coupled to LCC-IR the specifications contains
information related to that representation.

A code DAG is a graph G = (V, E), where V is the set of DAG nodes and E the set
of directed edges, a subset of VxV, representing precedence constraints. The nodes are
called IR-nodes throughout this report, meaning that they are parts of the intermediate
representation of the program. Each node has an identifier, which is an integer number.
A node can have zero, one or two children, referenced by kid[0], kid[1] if any exists, and
are numbered from left to right in this report, as in Figure 3.1. Nodes with no children
are called leaf nodes.

Each node has a symbolic name that informs about the operation and types of operands
and operation [1,2]. For instance, the name BANDI4 is composed of the symbolic name
BAND and type info I4. BAND means that the IR-node represents the operation of binary
AND with two operands. The I4 gives the information about the operands, where I
stands for integer. Both operands must have this type. And 4 means that operands are
four bytes long.

Each IR-node is represented by a C structure with various fields. For instance, the
operator CNST holds in its field syms[0]->u.c.v the integer value of the constant it rep-
resents.

The DAGs are built up by IR-nodes such as the ones described above. In order to
understand the IR-node representation, here is an example of a short basic block of a
function:

BANDI4 = 4485 

kid[0] kid[1]

Figure 3.1 The IR-node BANDI4.
6



int x = 0;
void foo(int y)
{
    x = y + 3;
}

Only the DAG representation is of interest for OPTIMIST and for this report, so we
skip all but the last representation. The DAG for the code segment is depicted in
Figure 3.2.

The bottom node ADDRFP4 represents the address of variable y. The name suffix GP4
stands for G: global variable, P: the node is of pointer type and 4: the operands are four
bytes long. Before the value can be assigned to y, it has to be loaded into a register, and
is fetched by the INDIRI4 node. The value of y is added with the constant CNSTI4,
represented by the addition node ADDI4. The result of ADDI4 is the right child (kid[1])
of the assignment node ASGNI4. The result is stored at the address of variable x. We
refer to [1] for more information about LCC.

In Chapter 7, “ARM9E Processor Specifications”, we show how the specification
file describes rules for mappings from IR DAGs to assembler instructions. In order to
write the specification file, the processor has to be studied in detail first, which is done
in the following chapter.

ASGNI4

ADDRGP4 ADDI4

CNSTI4
INDIRI4

ADDRFP4
{address for y}

{put y in a register}
{the value 3}

{adds 3 and y}
{address for x}

{set the value of the additon in x’s address}

Figure 3.2 The DAG for the example basic block of function foo.
7



Chapter 4 ARM9E

This chapter describes the ARM9E architecture: its register file, functional units, pipe-
line, and pipeline hazards. It is shown how pipeline hazards occur and how they can be
avoided. Finally, the instruction set and various addressing modes of the processor for
both ARM and Thumb modes are described.

4.1  Overview

ARM9E is a 32-bit RISC (Reduced Instruction Set Computer) processor that is devel-
oped by ARM Ltd. [3, 4, 6, 7, 8, 9]. The processor is a single-issue architecture, which
means it can only issue one instruction at a time. However, other instructions can be
processed in parallel in the pipeline. The pipeline consists of five stages: fetch, decode,
execute, memory and write back. All stages except for the execution stage take one
clock cycle for the entire instructions set. The execution stage takes a different amount
of clock cycles, depending on the instruction and its destination register. Most of the
instructions spend one clock cycle in the execution stage.

The processor has 16 general purpose registers visible for the programmer, but
there are 37 registers in total. The remaining 21 registers are used internally for speed-
ing up the execution.

The outstanding feature of ARM9E is its two instruction sets associated with a dis-
tinct processor mode. The processor can both execute 32-bit instructions in ARM
mode, as well as 16-bit instructions in Thumb mode. The processor can switch between
the two modes at run time.
8



4.2  Register File

The ARM9E register file is depicted in Figure 4.1.

The processor has in total 37 registers. Registers in shaded boxes are banked, which
means that they are different from the general, user accessible registers (in white
boxes). For instance, there is only one register for the acronym R0, but there are six dif-
ferent registers for the acronym R14. The R14 register used in both the User and Sys-
tem mode is the same, but five different R14 register for the modes: Supervisor, Abort,
Undefined, Interrupt and Fast Interrupt. If an exception occurs in User mode, the pro-
cessor enters another state. In order not to overwrite the value of R14 in the exception
mode, the processor uses another register that is inaccessible for the user programs to
save the value of R14. Thus, when the processor leaves this mode, the value of R14 is
not altered because it is the Link Register (LR) and holds the subroutine return address.
The same holds for R13 which is the stack pointer register. Each mode has its own
stack pointer register, except User and System mode which share the same stack regis-
ter. The Current Program Status Register (CPSR) contains condition code bits: N (Neg-
ative), Z (Zero), C (Carry), V (oVerflow). CPSR also contains the bits determining the
current processor mode, if interrupts and fast interrupts are disabled or not, and if the
processor is set to execute ARM or Thumb code. The CPSR register is saved in a Saved
Program Status Register (SPSR) when entering an exception mode, and can thus be
restored when leaving the exception mode.

fast interruptInterruptUser SupervisorSystem Abort Undefined

Exception modes

Privileged Modes

Modes

R0R0 R0 R0R0 R0 R0

R1R1 R1 R1R1 R1 R1

R2R2 R2 R2R2 R2 R2

R3R3 R3 R3R3 R3 R3

R4R4 R4 R4R4 R4 R4

R5R5 R5 R5R5 R5 R5

R6R6 R6 R6R6 R6 R6

R7R7 R7R7 R7 R7

R8R8 R8R8 R8 R8

R9R9 R9R9 R9

R10R10 R10R10

R11R11 R11R11

R12R12 R12R12

R13R13

R14R14

PCPCPC PC

R13_scv

R14_scv

R13_irq

CPSRCPSR

SPSR_irq SPSR_fiqSPSR_undSPSR_abtSPSR_scv

PC

R14_irq

R9

R10 R10

R11 R11

R12 R12

PC

R13_und

R14_und

CPSR CPSR CPSR

R7

PC

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

CPSR CPSR

R14_abt

R13_abt

Figure 4.1 The register file with banked and unbanked registers.
9



4.3  Processor Architecture

The ARM9E processor core is depicted in Figure 4.2. The transitions between the
stages of the pipeline are outlined with black thick lines.

The five pipeline stages are:

Fetch: The instruction is fetched from memory and placed in the instruction cache /
pipeline.

Decode: The instruction is decoded and register operands read from the register file.
There are three operand read ports in the register file and two write ports, making it
possible to operate on two registers and put the result in a third one.

mul

shift

ALU

Register read

mux

byte repl.

D-cache

register write

D-cache

rot/sgn ex.

Inst. decode

D-cacheI-cache
+4

pc + 8

pc + 4

next pc

R15

load/store address

LDR pc

post-index

pre-index

reg
shift

fetch

instruction
decode

execute

buffer
/data

write-back

immediate fields
+4

LDM/STM

forwarding paths

(memory)

Figure 4.2 The ARM9E processor core.
10



Execute: Any data operation is carried out in the ALU. One of ARM9E features is that
the barrel shifter is connected to the second operand bus leading into the ALU. This
makes it possible to perform a shift on the second operand before it enters the ALU in
the same clock cycle as the operation is performed. The shifter unit can perform stan-
dard shifts such as logical left shift (LSL), logical right shift (LSR), arithmetic shift
right (ASR), rotate right (ROR) and rotate right with extend (RRE). The rotate with
extension performs a 33-bit rotate right, using the Carry Flag as the 33rd bit.

In case of a load or store instruction, the memory address is computed in the ALU
in the execution stage.

Memory: Data memory is accessed if required. Otherwise the ALU result is simply
buffered for one clock cycle.

Write-back: The result is written back to the register file. If data has been loaded from
memory, for instance, by a LDR (Load register) instruction, it will be written to the
register now.

4.4  Pipeline Hazards

Between each pair of subsequent stage of the pipeline lies a so-called forwarding path,
i.e. intermediate result registers that can pass data from one pipeline stage to another as
soon as it is available (see Section 4.3). But in some occasions an additional delay is
required when the result is needed before it is ready. This pipeline hazard is called
read-after-write hazard. For instance, an additional delay needs to be added when a reg-
ister is loaded and this register is set to be used in the following instruction, as depicted
by the assembler code below:

LDR R3, [<R2>, +<R4>] ; Loads R3, with the value from address R2 + R4.

ADD R5, R6, R3 ; This instruction uses the value of R3.

Both instructions spend one clock cycle each in the execution stage, since the program
counter is not the destination register. The content of the pipeline is

:

The data loaded into R3 enters at the end of the memory stage (1) and is needed at the
beginning of the execution stage for ADD (2). This leads to a pipeline hazard, which
means that the processor has to wait for one clock cycle before it can execute ADD in
the execute stage. The processor is stalled and the resulting pipeline looks as follows:

The ARM9E processor, automatically takes care of pipeline hazards, but it is of course
not a good outline of the assembler code since the stall results in an additional idle
11



clock cycle. In case there is any other instruction, independent of the LDR and ADD
instruction, that can be put in between LDR and ADD, the stall is removed. For
instance, the instruction:

SUB R8, R9, R10 ; R8 = R9-R10.

can be inserted between the LDR and ADD resulting in the pipeline contents1:

The data for R3 enters LDR’s memory stage (1) before it is used by ADD’s execution
stage (2). No processor stall is needed and this group of instructions takes just as long
time to be processed as the two instructions in the first example.

Another example of instructions that introduces stalls in the processor, but cannot
be avoided are various branch instructions. This type of hazard is called control haz-
ards. For instance, the instruction ADD using the program counter register (R15) as
destination register, i.e. performing a jump:

ADD R15, R6, R3 ; R15 = R6 + R3

ORR  R4, R5, R7 ;  R4 = R5 | R7

ORR  R10, R9, R4 ;  R10 = R9 | R4

AND  R10, R10, R4 ;  R10 = R10 - R4

SUB  R7, R8, R2 ;  R7 = R8 - R2

When the program counter (register R15) is used as destination for ADD, the pipeline
will be filled with fetches and decodes of the following instructions (ORR, ORR,
AND), until the execution stage of the branch instruction is reached and then, the
instructions have to be discarded and the pipeline flushed. This hazard cannot be
avoided, and occurs with all branch instructions.

The last type of hazard is the structural hazard, occurring when an instructions spends
more than one cycle in the execution stage of the pipeline. For instance, the instruction
MUL takes two clock cycles in the execution stage regardless of the following instruc-
tions operands. There is no way of solving this problem since the ARM9E has only one
functional unit and the following instructions have to wait for accessing the execution
stage.This gives us the following pipeline content:

1. Efficient instruction scheduling should fill, if possible, the delay slot of LDR instructions.

Fetch ExecuteDecode

DecodeFetch

MUL

SUB Execute Memory Write

Execute

Stall

WriteMemory
12



4.5  Multiplication Unit

The multiplication unit is connected to two of the read buses from the ALU (see
Figure 4.2). The unit can perform integer multiplication, and unsigned or signed multi-
plication-accumulate instruction (multiply two operands, and add another, a common
operation in DSP applications). The operands can be of 16 or 32 bits, producing 32- or
64-bit products. The multiplication unit uses a modified version of Booth’s algorithm
[4]. In the multiplication unit, there are four internal registers; two holding partial
sums, two holding partial carries. In case a multiply-accumulate operation will be car-
ried out, the partial sums registers are initially loaded by the value to add to the prod-
uct.

4.6  ARM Instruction Set

The instruction set for the ARM processor is divided into four groups, according to the
four groups of instruction types in the ARM Architecture Reference Manual [3]. The
four groups are:

1. Data-processing Operations.

2. Load and Store Word or Unsigned Byte.

3. Miscellaneous Loads and Stores.

4. Load and Store Multiple.

The remaining instructions, which lack different addressing modes, are various multi-
plication instructions, branch instructions and swap instruction. They form additionally
two groups.

Each group is described in greater details in the following sections. Whenever talk-
ing about different number of clock cycles, we refer to those of execution stage, since it
is the only stage that may differ between instructions.

4.6.1  Data-processing Operands

The set of instructions of this group is given in Table 4.1. Only the instructions that are
implemented in this project are listed here.

Depending on how the second operand is stored and decoded, there are three different
types of addressing modes for data-processing operations. The first operand always

Table 4.1 ASM Description of the Data-Processing Operations Group.

ADD Addition.

AND Bitwise logical AND.

BIC Performs bitwise AND of the value of the first operand and the complement of the sec-
ond operand.

EOR Performs bitwise Exclusive-OR.

MOV Moves a value to a register.

MVN Move negative, moves the logical one’s complement to a register.

ORR Logical OR, performs a bitwise (inclusive) OR of its two operands.

SUB Subtraction.
13



resides in a register. The result is written to another register. The first type corresponds
to the situation where the second operand is a constant, derived from two immediate
fields in the instruction, called rotate_imm (four bits) and immed_8 (eight bits). The 8-bit
field is the last eight bits in the 32-bit instruction word, and the 4-bit field lies directly
before the 8-bit field. The immediate value is obtained in the following way:

1. The value of rotate_imm is extracted.

2. All bits in the instruction word are set to zero, except the last eight bits,
immed_8.

3. The value in immed_8 is rotated right, by two times the value obtained in 1.

In other words, the constant is equal to:

immed_8 ROR (rotate_imm * 2)

Here is rotate_imm a number between zero and fifteen.

Observe that not all possible 32-bit constants can be constructed this way.
For this case, each instruction executes in one clock cycle; this includes data and

constant retrieval.
The second type corresponds to the situation when the second operand is stored in a

register. There is a possibility to shift this value (either a logical left or right shift, or a
arithmetic shift right or a rotation right by a given number, or a rotation right with
extension) before it is used. The shifting is possible since the second operand passes
the barrel shifter unit before it enters the ALU. The number of shifts is an immediate
value shift_imm (five bits) and lies in the instruction word. Using any kind of shift vari-
ant will not result in a longer execution time. Instructions of the second type execute in
one clock cycle too.

In the third case, the second operand is stored in a register, as well as the value
determining the shift. In this addressing mode it takes two clock cycles to execute an
instruction.

Observe that if the program counter is set to be the destination register, all three
addressing modes will take two additional clock cycles to complete (see Section 4.4).
The instructions in Table 4.2 have been left out of the project. TST, TEQ, CMP, CMN
update the conditions flags and there are no such nodes in LCC, i.e. the instructions do
not occur as a stand alone operation but rather as parts of jump and condition struc-
tures. The instructions are therefore used in the specification of the branch instructions
(see Chapter 7, “ARM9E Processor Specifications”). The instructions ADC, CLZ,
RSB, RSC and SBC, are specific assembler instructions that have no equivalent in the
LCC IR-representation (but could be included in a future extended version, see
Chapter 9).

Table 4.2 Instructions left out from the Data-processing Group.

ADC
ADD with carry. Addition with one register value and the carry flag and another
arithmetic value.

CLZ
Count leading zeros. Returns the number of binary zero bits before the first binary one
bit register value.

CMN Compare negative. Compare a register value with the negative of another arithmetic
value. The second value is added to the register value.

CMP Compare. Compare a register value with another arithmetic value. The second value is
subtracted from the register value.
14



4.6.2  Load and Store Word or Unsigned Byte

The set of instructions of this group is given in Table 4.3. Only the instructions that are
implemented in the project are listed here.

There are nine addressing modes for the Load and Store Word or Unsigned Byte group:

1. Immediate offset.

2. Register offset.

3. Scaled register offset.

4. Immediate pre-indexed.

5. Register pre-indexed.

6. Scaled register pre-indexed.

7. Immediate post-indexed.

8. Register post-indexed.

9. Scaled register post-indexed

1. Immediate offset.

The first type obtains its address by adding or subtracting the value of an immediate
offset offset_12 (of 12 bits) from a base register. The addresses reached from the base
register are base register +/- 4096. Using this address mode takes five clock cycles if
the program counter is set to destination register, and one clock cycle otherwise.

2. Register offset.

The second type obtains its address by adding or subtracting the value of a register
from a base register. The whole address space is accessible in this mode. Using this

SBC Subtract with carry. Subtract one arithmetic value and the carry flag from a register
value.

RSB Reverse SUB, i.e., RSB A B means B - A.

RSC Reverse SUB with carry.

TEQ Test if equal. Compare two values by logical exclusive OR-ing them together.

TST Test. Compare two values by logical AND-ing them together.

Table 4.3 ASM Description of the Load and Store Word or Unsigned Byte Group.

LDR Load register. Loads a word from memory to a register.

LDRB Load a register byte.

STR Store register. Store the content of a register to memory.

STRB Store register byte.

Table 4.2 Instructions left out from the Data-processing Group.

ADC
ADD with carry. Addition with one register value and the carry flag and another
arithmetic value.

CLZ
Count leading zeros. Returns the number of binary zero bits before the first binary one
bit register value.
15



address mode, it takes five clock cycles if the program counter is set to be destination
register and one clock cycle otherwise.

3. Scaled register offset.

The third type calculates its address by adding or subtracting the shifted (logical left
shift, logical right shift, arithmetic shift right) or rotated (rotation right, rotation with
extend) value of the content of a register to the base register. The whole address space
is accessible in this mode. Using this address mode, it takes six clock cycles if the pro-
gram counter is set as destination register, and two clock cycles otherwise.

4-6.  Pre-indexed modes.

The pre-indexed modes (4-6) works exactly as the corresponding offset modes (1-3),
with only one difference. The register holding the base address is updated with the cal-
culation of the address and its offset, before the value is stored or loaded from the new
address.

7-9.  Post-indexed modes.

The post-indexed modes (7-9), also update the base register, but after the value has
been stored/loaded.

The LDRT, LDRBT, STRT and STRBT instructions have the same effect as their
counter parts LDR, LDRB, STR and STRB, but if they are performed when the proces-
sor is in privileged mode, they are carried out as if the processor was in user mode.
Information about the instructions is given in Table 4.4.

4.6.3  Miscellaneous Loads and Stores

The set of instructions of this group is given in Table 4.5. Two instructions have been
left out from the project and are described in Table 4.6

There are no STRSH or STRSB instructions, because the instructions STRH and
STRB cover their functionality too.

There are six addressing modes in the group of Miscellaneous Loads and Stores:

Table 4.4 Instructions left out from the Load and Store Word or Unsigned Byte Group.

LDRBT Load register byte with translation.

LDRT Load register with translation.

STRBT Store byte with translation.

STRT Store register with translation.

Table 4.5 ASM Description of the Miscellaneous Loads and Stores Group.

LDRH Load register with halfword. The halfword is zero-extended to a 32-bit word when
loaded.

LDRSB Load register signed byte. The instruction loads a byte from memory, sign-extends it to
a 32-bit word.

LDRSH Load register signed halfword. The instruction loads a halfword from the memory and
sign-extend it to a 32-bit word.

STRH Store halfword. The instruction stores a halfword from the least significant halfword of
the register to memory
16



1. Immediate offset.

2. Register offset.

3. Immediate pre-indexed.

4. Register pre-indexed.

5. Immediate post-indexed.

6. Register post-indexed.

The first type obtains its address by adding or subtracting the value of an immediate
offset (8 bits) to the base register. The addresses reached by this mode are addresses
within the range of the base register +/- 255.

The second type obtains its address by adding or subtracting the value of a register
to the base register. The whole addressing space is accessible in this mode.

The addressing modes 3-6 in the group are exactly the same as the modes 1-2, but
the base address register is also pre-indexed for modes 3 and 4 (updated before the
store/load) and post-indexed (updated after the store/load) for modes 5 and 6.

The functionality of STRD and LDRD are covered by the instructions in the next
section and are therefore not specified. Information for the instructions is given in
Table 4.6.

4.6.4  Load and Store Multiple.

The instructions of this group, LDM and STM could not be implemented because of
their constraints. The Load (LDM) and Store multiple (STM) use a sequential range of
addresses. The first address is held in the base register. The remaining addresses are
created by adding or subtracting four from the base register. The lowest-number regis-
ter is stored at the lowest memory address, and the highest register at the highest mem-
ory address. The instruction has four addressing modes. The IB addressing mode adds
four to the base register for the first address. IA adds four to the next address, and uses
the address in the base register for the first store/load. The DB and DA works in a sim-
ilar way, but subtracts four from the base register instead.

For both instructions, regardless of the addressing mode, it is also possible to alter
the base register with the last calculated address value, performing a so-called base reg-
ister write back.

But the fact that the registers loaded or stored have to be in an increasing order,
OPTIMIST cannot guarantee this to happen, since the operands of the instructions are
mapped to sets of registers, not a specific register.

Table 4.6 Instructions left out from the Miscellaneous Loads and Stores Group.

LDRD Load double. Loads a pair of registers from two consecutive words of memory. The
pair of registers must start with en even numbered register and end with the subsequent
register, for instance, R0, R1.

STRD Store double. Stores a pair of registers to two consecutive words of memory. The pair
of registers must start with en even numbered register and end with the subsequent reg-
ister, for instance, R0, R1.
17



The LDM and STM instructions are given in Table 4.7

4.6.5  Branch Instructions and Swaps

The set of instructions of this group are given in Table 4.8. Five instructions have been
left out from the project (see Table 4.9).

All branch instructions have only one operand, a label. The branch can reach addresses

in the range of +/-226. The immediate value is of 24 bits but is shifted 2 times when
retrieving the address label and added to the program counter. All branch instructions
takes three clock cycles in the execution stage.

The BL, BLX and BX instructions have been removed from the project, since the
BX and BLX change the processor mode from ARM to Thumb. BL is branch with link
and is more useful when programming a call to subroutine in assembler. There is no
IR-node that represents this branch instruction. The SWP and SWPB instructions were
too hard to specify (their patterns contains cycles, i.e. cannot be mapped to DAGs).

Table 4.7 ASM Description of the Load and Store Multiple Group.

LDM Load multiple. The instruction loads a subset of the 16 registers, possible all of them.
If the PC is loaded, a branch will occur to that address.

STM Store multiple. The instructions stores a subset of the 16 registers, possible all to
sequential memory locations.

Table 4.8 ASM Description of the Branch Instructions and Swaps Group.

B Makes an unconditional jump.

BEQ Branch if equal. Branches if Z = 1.

BNE Branch not equal. Branches if Z = 0.

BGE Branch if greater than or equal. Branches if NV = 11 or NV = 00.

BLT Branch if less than. Branches if NV = 10 or NV = 01.

BGT Branch if greater than. Branches if Z = 1 and (NV = 11 or NV = 00).

BLE Branch if less than. Branches if Z = 1 or NV = 01 or NV = 10.

Table 4.9 Instructions left out from Branch Instructions and Swaps Group.

BL Branch and link. Branches and saves the return address in the link register (R14).
Other branch instructions can be combined with the link option too.

BLX Branch and exchange. Branches and switches to Thumb mode. The return address is
saved in the link register (R14).

BX Branch and exchange. Branches and switches to Thumb mode incase the Thumb-bit is
set in the CSPR or continues in ARM mode.

SWP Swaps a word from memory to a register, and a register value (a word) to the same
memory address. The receiving and sending register can be the same or two different
registers.

SWPB Swaps a byte from memory to a register, and a register value (a byte) to the same
memory address. The receiving and sending register can be the same or two different
registers.
18



4.6.6  Multiplication Instructions

The set of implemented instructions of this group is given in Table 4.10. The instruc-
tions that have been left out from the project are given in Table 4.11.

The multiplication instructions always operates directly on values in registers, never on
immediate values.

The MUL and MLA instructions take two clock cycles in the execution stage.
SMULTT, SMULTB, SMULBT, SMULBB, SMULWT and SMULWB takes three
clock cycles in the execution stage. The SMULTT, SMULTB, SMULBT, SMULBB,
SMULWT, SMULWB takes one clock cycle in the execution stage. If the following
instruction tries to use the value stored in the destination register in its first cycle in the
execution stage or memory stage the processor will be stalled for one clock cycle.

At the time of writing, OPTIMIST cannot handle instructions that generate a 64-bit
product. See Section 9.2 for more information about the difficulty in implementing
those instructions.

Table 4.10 ASM Description of the Multiplication Instructions Group.

MLA multiply-accumulate. Multiplies two unsigned operands to produce a 32-bit product
that is added to another 32-bit value.

MUL Multiply two unsigned values to produce a 32-bit value.

SMLATT

SMLATB

SMLABT

SMLABB

Signed multiply-accumulate on signed 16-bit values, taken from either top (T) or
bottom (B) halves of two registers. The result is sign-extended and added to a 32-bit
product.

SMLAWT

SMLAWB

Signed multiply-accumulate. A signed 32-bit value is multiplied with a signed 16-
bit value. The later one is taken from either the top (T) or bottom (B) half of a regis-
ter. The 48-bit producet is added to a 32-bit value and the bottom 16 bits are
ignored.

SMULTT

SMULTB

SMULBT

SMULBB

Signed multiply on two signed 16-bit values, taken from either top (T) or bottom
(B) halves of two registers.

SMULWT

SMULWB

Signed multiply. A signed 32-bit value is multiplied with a signed 16-bit value. The
later one is taken from either the top (T) or bottom (B) half of a register.

Table 4.11 Instructions left out from the Multiplication Instructions Group.

SMLAL Signed multiply-accumulate long. Multiplies two signed 32-bit values and produces
a 64-bit value. Another 64-bit value is added to the product.

SMULL Signed multiply long. Multiplies two signed 32-bit values and produces a 64-bit
product.

UMLAL Unsigned multiply-accumulate long. Multiplies two unsigned 32-bit values and
produces a 64-bit product. The product is added to another 64-bit value.

UMULL Unsigned multiply long. Multiplies the two unsigned 32-bit values and produces a
64-bit product.

SMLALTT

SMLALTB

SMLALBT

SMLALBB

Signed multiply-accumulate long on signed 16-bit values, taken from either top (T)
or bottom (B) halves of two registers. The result is sign-extended and added to a 64-
bit product.
19



4.7  Thumb Addressing Modes

The Thumb mode is much simpler than the ARM mode. The number of different
addressing mode types is fewer, compared to ARM mode. In a similar way as the ARM
instruction set, the Thumb instruction set can be divided into three groups:

1. Data-processing instructions.

2. Load and Store Register.

3. Load and Store Multiple.

Each group is described in greater details in the following three sections.

4.7.1  Data-processing Instructions for Thumb

The set of implemented instructions of this group is given in Table 4.12. Instructions
ADC, CMN, CMP(1), CMP(2), SBC and TST are not implemented in the Thumb spec-
ification basically, for the same reasons as their corresponding instructions in the ARM
specification (see Section 4.6).

Table 4.12 ASM Description of the Data-processing instructions for Thumb Group.

ADD(1) Addition of a register value and a 3-bit immediate. The result in another register than
the operand register.

ADD(2) Addition of a 8-bit immediate and a register value.

ADD(3) Addition of a register value to another.

ADD(4) Addition of any two registers (but both may not be of the registers R0..R7).

AND Logical AND with the value of destination register and the value of another register.

ASR Arithmetic shift right. Both the number of step to shift and the value to be shifted
reside in registers.

BIC Bit clear. Logical AND with the compliment of the second operand and the first oper-
and.

EOR Logical exclusive OR with the destination register and another register.

LSL(1) Logical shift left. The value to be shifted resides in a register and the number of steps
is given by a 5-bit immediate.

LSL(2) Logical shift left. The value to be shifted resides in a register and the number of steps
is given by another register value.

LSR(1) Logical shift right. The value to be shifted resides in a register and the number of steps
is given by a 5-bit immediate.

LSR(2) Logical shift right. The value to be shifted resides in a register and the number of steps
is given by another register value.

MOV(1) Moves a 8-bit immediate value to register.

MOV(2) Moves a register value to another register value.

MOV(3) Moves a register value between any two registers (but both may not be of the low reg-
isters, i.e. R0-R7)

MUL Multiply two register values.

NEG Negates a value in a register.

ORR Logical (inclusive) OR between the destination register and another register value.

ROR Rotate right. The value to be rotated and the number of steps to rotate reside in regis-
ters.
20



ADD(4) and MOV(3) are the only instructions that takes 3 respectively four clock
cycles in the execution stage if the program counter is set as destination register. In all
other cases, ADD(4) and MOV(3) as well as the rest of the data processing instructions
take one clock cycle. The largest possible immediate value to be added respectively
subtracted by ADD(1) and SUB(1) is 7. The number of steps of shift in LSR and LSL
ranges from 0 to 31 steps. The largest value to be represented by the 8-bit immediate in
ADD(2), MOV(1) and SUB(2) is 255.

4.7.2  Load and Store Register for Thumb

The set of instructions of this group are given in Table 4.13. Only the instructions that
are implemented in this project are listed here. The instructions: LDR(1), LDR(3),
STR(1) and STR(3) are left out since LDR(2) and STR(2) are regarded as sufficient
(see Table 4.14 for information about the instructions).

SUB(1) Subtract a 3-bit immediate from a register value. The result is assigned to another reg-
ister.

SUB(2) Subtract a 8-bit immediate from a register.

SUB(3) Subtract a register value from another register value.

Table 4.13 ASM Description of the Load and Store Register for Thumb Group.

LDR(2) Load word (register offset).

LDRB(1) Load unsigned byte (immediate offset).

LDRB(2) Load unsigned byte (register offset).

LDRH(1) Load unsigned halfword (immediate offset).

LDRH(2) Load unsigned halfword (register offset).

LDRSB Load signed byte (register offset).

LDRSH Load signed halfword (register offset).

STR(2) Store register (register offset).

STRB(1) Store byte (immediate offset).

STRB(2) Store byte (register offset).

STRH(1) Store halfword (immediate offset).

STRH(2) Store halfword (register offset).

Table 4.14 Instructions left out from the Load and Store Multiple for Thumb Group.

LDR(1) Loads the value on the address equal to the base register + (an immediate 5-bit value
times four) to a register.

LDR(3) Loads the value of the program counter + (an 8-bit immediate value times four) to a
register.

STR(1) Stores a register value to the address equal to the base register + (an immediate 5-bit
value times four) to a register.

STR(2) Stores the value of the stack pointer + (an 8-bit immediate value times four) to a reg-
ister.

Table 4.12 ASM Description of the Data-processing instructions for Thumb Group.

ADD(1) Addition of a register value and a 3-bit immediate. The result in another register than
the operand register.
21



4.7.3  Load and Store Multiple for Thumb

None of the instructions in this group were implemented in Thumb mode, due to the
same reason as for ARM mode. The set of instructions of this group is given in
Table 4.15.

Table 4.15 Instructions left out from the Load and Store Multiple for Thumb Group.

LDMIA Load multiple increment after. Loads a non-empty subset or possibly all of the low
registers.

POP Loads a non-empty subset or possibly all of the low registers and the program
counter (R15) from the stack.

PUSH Stores a non-empty subset, or possibly all, of the general-purpose registers and the
link register (R14) to the stack.

STMIA Store multiple increment after. Stores a non-empty subset, or possibly all, of the
general-purpose registers to sequential memory locations.
22



Chapter 5 ADML

ADML (Architecture Description Mark-up Language) is a hardware description lan-
guage, based on XML (Extensible Mark-up Language). The language is developed for
the OPTIMIST project solely, and is used to describe the relevant structures of the tar-
get processor [5].

This chapter describes different parts of the processor specification document.
Examples from the ARM-specification for the processor ARM9E elucidate the differ-
ent parts of the specification. The instructions that are mentioned here are all from the
ARM9E’s instruction set in ARM mode.

5.1  General ADML Document Structure

An ADML specification is an XML document. The specification is a tree with a root
node labeled “architecture” with children labeled, “omega”, “register”, “constants“,
“residence classes”, “functional units”, “patterns”, “instruction set”, and “transfer”.
There is no predefined order in which those parts should appear, but the sections below
follow the order in which they are specified in the processor specification for ARM.
The different parts are described in greater detail below.

5.2  Notations

A simple notation is presented in this section for describing the specification. The
expression [string] means a string of alphanumeric tokens. The string could start with a
numeric token and contain spaces. In the same way, [integer] means a number either
positive or zero. Adding a star after the type name, i.e., [integer*] means a strict posi-
tive number. The expression [type] corresponds to the string “unsigned” or “signed”.
Abbreviation (...) tells that parts of the specification have been left out.

5.3  Omega: Issue Width

The general description of the omega part is:

<omega>[integer]</omega>

The issue-width represents the maximum possible number of instructions that can be
issued simultaneously. For VLIW processors, omega is greater than one. For ARM9E,
there is only one instruction emitted every clock cycle, thus we specify:

<omega>1</omega>

5.4  Registers

The general description of the register part is:
23



<registers>
   <reg id = "[string]" size= "[integer*]"/>
   <reg id = "[string]" size= "[integer*]"/>
   ...
   <aliases>
        <alias id= "[string]" src= "[string]">
           <bits>
              <start>[integer]</start>
              <end>  [integer]</end>
           </bits>
         </alias>
         ...
  </aliases>
</registers>

The register part enumerates all of the registers that are accessible for the user pro-
grams. For each register, an optional attribute specifies its width in term of bits.

Example: The register part of the ARM-specification (there are 16 registers in
ARM mode):

<registers>
  <reg id = "R0" size = "32"/>
  <reg id = "R1" size = "32"/>
   ...
</registers>

The attribute id is the name of the register, R0 and R1 in this example. The attribute size
shows the length of the register in bits, 32 bits in this example.

Since there are processors that have instructions which operate on parts of registers,
it has to be possible to name those parts of the registers. In ARM9E, a few instructions
can operate on register halves. In order to specify those halves, the following alias part
is added to the register specification:

<registers>
   <reg id = "R0" size= "32"/>
   <reg id = "R1" size= "32"/>
   ...
     <aliases>
        <alias id= "R0B" src= "R0">
           <bits>
              <start>0</start>
              <end>15</end>
           </bits>
         </alias>
         ...
      </aliases>
</registers>

The attribute id of the aliases node is the name of the register part, and src is the regis-
ter, specified in the register declaration. The parts of the source register (section of bits)
are specified with a list of start/end nodes. The different parts are described in their
number of bits, given the start and end bit. In this manner, the 16 registers in ARM9E
are split up by alias into 32 register-halves.
24



5.5  Constants

Just as operands could be stored in registers, they could also reside in an instruction
word. Such a part of the instruction is a constant, and also has to be specified in the pro-
cessor specification.

The general description of a constant specification is:

<constants>
   <constant id = "[string]” width = "[integer*]" type = "[type]"/>
   <constant id = "[string]" alias = "[string]"/>
   ...
</constants>

For instance, in the branch instruction B, there is a 24-bit immediate value, holding the
destination address. Another example is the ADD instruction that could take one of its
operands from a register and the other from the instruction itself.

Example:

<constants>
   <constant id = "const_data_immediate"  width = "12" type = "unsigned"/>

<constant id = "const_signed_immed_24" width = "24" type = "signed"/>
 ...
</constants>

5.6  Residence Classes

The registers (see Section 5.4) are grouped together in different residence classes that
are derived from the instruction set (how this is done will be shown in Section 7.1.2). A
residence class contains a set of registers such that, regardless of which register is cho-
sen from the set for an operand of an instruction, the instruction will take the same time
to be executed. Here we assume that a register may not be present in two or more resi-
dence classes, i.e. the residence classes may not overlap. The id for the node reg is the
name of the register in the residence class.

Another entity called residence is also specified in this part, meaning a memory
module. The id for the node residence is the name of the memory module. The size of
the memory module is considered to be infinite.

The general description of a residence class is as follows.

<residenceclasses>
  <residenceclass id = "[string]">
    <reg id ="[string]"/>
    <reg id ="[string]"/>
    ...
   </residenceclass>
   <residenceclass id = "[string]">
    <reg id ="[string]"/>
    <reg id ="[string]"/>
    ...
   </residenceclass>
</residenceclasses>

5.7  Functional Units

A functional unit is a hardware part of a processor that performs a certain number of
computations, such as addition, multiply etc.

The general description of a functional unit in ADML is:
25



<funits>
   <fu id = “[string]“ occupation = “[integer*]“ latency=”[integer*]”/>
   <fu id = “[string]“ occupation = “[integer*]“ latency=”[integer*]”/>
   ...
<funits>

The attributes of a functional unit are id, the name of the unit. The occupation is the
number of clock cycles an instruction occupies the functional unit before another
instruction can enter the functional unit. The latency is the number of clock cycles taken
by an instruction on the functional unit before the result is available.

At present time, OPTIMIST’s algorithm assumes that occupation time is shorter or
just as long as the latency. This is true for most architectures.

ARM9E has only one functional unit containing both the multiplication unit and
the ALU, since multiplication instructions use the ALU in the computations too (see
Figure 5.1).

The functional unit in Figure 5.1 is specified as:

<funits>
   <fu id = "ALU" occupation = "1" latency = "1"/>
</funits>

5.8  Patterns

Patterns describe sub-DAGs (or forests of sub-DAGs) of IR-nodes that are computed
by a single instruction of the processor’s instruction set (described in Section 5.9).

To illustrate how a pattern is specified, we use a graph representation. Nodes with
circular shape have at least one child. Triangular-shaped nodes are leaf nodes, i.e., they
have no children. They are the parameters (operands) of the target instruction.

In the example, we have two nodes composing the BIC pattern, namely BANDI4
and BCOMI4 (see Figure 5.2).

Operand nodes can be named within the pattern. In the BIC pattern, the left operand
is named "left_op" and the right operand is called "complementOf". Nodes are connected
by data dependence edges and preceding edges forming an DAG called a DAG pattern.
We use nesting of XML to implicitly construct edges. Additional edges such as prece-

Shifter

ALU

MUL

Figure 5.1 The MUL, ALU and shifter unit in the ARM9E processor.
26



dence edges added implicitly by LCC (from LCC front-end) can be specified with the
clause <ddep src = "[string]" dest = "[string]"/>.

BIC is an example of a tree pattern, i.e., all IR-nodes in the pattern have exactly one
parent node, except the root-node, that has no parent. The attribute arity specifies the
number of child nodes for every node (the kids are numbered from left to right, as
described in Chapter 3, “LCC”). In LCC, IR-nodes have arity zero for leaf nodes, one
for unary operations and two for binary operations.

Another example of a pattern is the DAG pattern for the instruction STR (store one
register) using the pre-indexed addressing mode. First it calculates the destination
address by adding the immediate value as offset to the base register, and secondly
stores the data. This is performed by a single instruction on the ARM9E processor. The
pattern is specified as a DAG pattern, because there are two top nodes in this pattern.
Figure 5.3 shows the pattern and its description. The nodes str and addr_update are
the two top nodes.

<pattern id = "BIC">
   <node>
        <pinst id = "BANDI4" arity = "2" op = "4485"/>
               <kid nr = "0" id = "leftOp"/>
               <kid nr = "1">
                  <node>
                     <pinst id = "BCOMI4" arity = "1" op = "4501"/>
                         <kid nr = "0" id = "complementOf"/>
                  </node>
                </kid>
     </node>
</pattern>

Figure 5.2 The pattern BIC is created by grouping the IR-nodes BANDI4 and BCOMI4. The
identifiers “left_op” and “complementOf” are references to those nodes, operands of BIC LCC-IR
representation.
27



The general description of a pattern is:

<pattern id = "[string]">
   <node id = "[string]">
      <pinst id = "[string]" arity = "[integer]" op = "[integer]">
         <kid nr = “0”>
            <node>
            ....
            </node>
         <kidnr = “1”>
            <node>
            ....
            </node>
   </node>
   <node id = "[string]">
      <pinst id = "[string]" arity = "[integer]" op = "[integer]">
         <kid nr = “0”>
            <node>
            ....
            </node>
         <kidnr = “1”>
            <node>
            ....
            </node>
   </node>
   ...
</pattern>

The attribute id for the node pattern is the name of the pattern, referenced by an instruc-
tion specification in the instruction part (see Section 5.9). The attribute id of the node
named node is an optional reference to the node. The pinst nodes are the IR-nodes of
the pattern. Its attributes are the name id, the arity (number of children) and the opera-
tion number op. The children of an IR-node are numbered and referenced by the kid

<pattern id = "STR_ADD_OFFSET_PRE">
   <node id = “str”>
      <pinst id = "ASGNI4" arity = "2" op = "2102"/>
         <kid nr = "0" id = "incremented_address"/>
         <kid nr = "1" id = "destination"/>
   </node>
   <node id = “addr_update”>
         <pinst id = "ASGNI4" arity = "2" op = "4149"/>
            <kid nr = "0" id = "address"/>
            <kid nr = "1" id = "incremented_address">
               <node>
                  <pinst id = "ADDI4" arity = "2" op = "4405"/>
                     <kid nr = "0" id = "base">
                        <node>
                           <pinst id = "INDIRI4" arity = "1" op = "4165"/>
                           <kid nr = "0" id = "address"/>
                        </node>
                     </kid>
                     <kid nr = "1" id = "offset"/>
                </node>
             </kid>
     </node>
     <ddep src = "addr_update" dest = "str"/>
</pattern>

ASGNI4

ADDX4

"base"

"offset"

"destination"

"str"

ASGNI4
"addr_update"

INDIRX4

"address"

"incremented_address"

Figure 5.3 The pattern and pattern specification for the instruction STR, when adding a register or
immediate value to the base register.
28



nodes using the kid nr attribute of kid node. It is possible to set any node as commuta-
tive <node commutative="yes">, which means that the children of the nodes can be
switched and OPTIMIST cover both cases. This construct is optional and nodes are
noncommutative by default.

5.9  Instruction Set

In the instruction set part, all of the processors instructions are specified. An instruction
that corresponds to one IR-node solely, is specified as an instruction. An instruction
that covers a DAG-pattern (described in the pattern part, Section 5.8) is specified as a
pattern node of the instruction part.

5.9.1  Instructions

In this section we describe how instructions that cover single IR-nodes (i.e., one-to-one
mapping) are specified in ADML.

The general description of an instruction specification is:

<instruction id =”[string]” op =”[integer]”>
   <target id=”[string]” op1 = “[string]“ ... opN = “[string]” use_fu = “[string]“/>
      <cycle_matrix ... />
      <format>...</format>
   </target>
   <target id=”[string]” op0 = “[string]“ ... opN = “[string]” use_fu = “[string]“/>
      <cycle_matrix ... />
      <format>...</format>
   </target>
   ...
</instruction>

Below is an example of BANDU4, the LCC IR-node for the instruction for binary
AND with two operands each four unsigned bytes long. The instruction corresponds to
a single IR-node, BANDU4.

<instruction id = "BANDU4" op = "4486">
   <target id = "AND" op0 = "PC" op1 = "all"
                      op2 = "const_data_immediate" use_fu = "ALU">
      <cycle_matrix ... />
      ...
      <format> AND {op1},{op0},#{op2}</format>
   </target>
</instruction>

The attribute id of the instruction node is simply the name of the IR-node in LCC.
The attribute id of the node target is the name of the specified target instruction.

Attributes op0, op1 and op2 specify the residence class of operands (op1 and op2) and
the residence class of the result, if any (in op0). Attributes are optional, i.e., for leaf
nodes, there are no op1 and op2, and for root nodes op0 is not specified. The functional
unit to execute the instruction is set in the attribute use_fu.

The format clause tells the emitter how to produce the assembler command for the
instruction. Attributes inside curly brackets will be replaced by a register from the
respective residence class. Constants are replaced by their values. Everything else is
simply copied as strings. A possible output of the format specification may be:

AND R0, R1, #1
29



The cycle_matrix describes the reservation table of the target instruction. A reservation
table is simply a matrix with time as y coordinate and x as the number of resources that
can be occupied at a given time stamp. The resources in this case are the stages of the
pipeline. Time is counted in number of clock cycles:

<cycle_matrix ... >
   <cycle_matrix ... >
      ...
   </cycle_matrix>
</cycle_matrix>

The outermost row describes which resources are occupied by the instruction in its first
clock cycles. For instance, the instruction AND uses four clock cycles in the execution
stage and one in remaining stages. The reservation table and its specification are as fol-
lows:

The cycle_matrix specifies occupation status for each resource. Stages not occupied in a
clock cycle are omitted in the specification part.

For instructions with delay slots (that can introduce processor stalls), it is possible
to insert a latency row in the cycle_matrix clause specifying the amount of delay cycles.
LDR is an example of a delayed instruction, i.e. one stall cycle can occur (see Section
4.6.2). The reservation matrix of LDR is modeled by the following cycle_matrix clause:

OPTIMIST uses the reservation matrix to place instructions in the best possible way,
i.e. avoiding processor stalls and unnecessary bubbles in the pipeline. The concept of
cyclic_matrix is applicable in a single-issue or a VLIW processor, since the reservation
table is a general concept.

   <cycle_matrix   fetch = “1” decode = “1” execute = “3”>
            <cycle_matrix   execute = “1” memory = “1” write_back = “1”>
   </cycle_matrix>

F   D   E    M   W

   <cycle_matrix fetch = “1” >
      <cycle_matrix decode = “1”>
         <cycle_matrix execute = “1”>
            <cycle_matrix memory = “1”>
               <cycle_matrix write_back = “1”>
                  <latency l = “1”/>
               </cycle_matrix>
            </cycle_matrix>
         </cycle_matrix>
      </cycle_matrix>
   </cycle_matrix>
30



5.9.2  Patterns

In Section 5.8 we described how DAG-patterns are specified within pattern nodes. A
pattern is a map from a DAG of IR-nodes to a target instruction, where the leaves of the
pattern become the operands of the target instruction.

The general description of a pattern specification is:

<pattern id = “[string]“>
   <ptarget id = “[string]“/>
      <op op0 = “[string]“/>
      <op op2 = “[string]“/>
      <op id = “[string]“>
         <id>”[string]”</id>
      </op>
      ...
      <fu use_fu=”[string]”/>
      <cycle_matrix.../>
      <format>...</format>
   </ptarget>
   ...
</pattern>

The instruction description that connects to the BIC pattern described in Section 5.8, is
as follows:

<pattern id = "pattern_BIC">
   <ptarget id = "BIC" op0 = "allExceptPC">
   <op id="leftOp">
      <id>all</id>
   </op>
   <op id= "complementOf">
      <id>const_data_immediate</id>
   </op>
   <fu use_fu = "ALU"/>

<cycle_matrix.../>
   <format>...</format>
   </ptarget>
</pattern>

There are no significant differences between a pattern description and an instruction
description. One difference, though, is the specification of the operands. Operands are
referenced by their symbolic names declared in the pattern definition of the section
<patterns>...</patterns>, described in Section 5.8. The pattern node of the specification is
used to map a pattern definition to a specific target instruction. The pattern clause tells
that it is an instruction for a pattern of IR-nodes. The word ptarget is used instead of tar-
get.

The general description of the instruction set part is:

<instructionset>
   <instruction id =”[string]” op =”[integer]”>
      <target id=”[string]” op0 = “[string]“ ...  opN = “[string]” use_fu = “[string]“/>
         <cycle_matrix ... />
      <format>...</format>
      </target>
      <target id=”[string]” op0 = “[string]“ ... opN = “[string]” use_fu = “[string]“/>
         <cycle_matrix ... />
      <format>...</format>
      </target>
       ...
   </instruction>
   ...
   <pattern id = “[string]“>
31



      <ptarget id = “[string]“ op0 = “[string]“/>
         <op id = “[string]“>
            <id>”[string]”</id>
         </op>
         ...
         <fu use_fu=”[string]”/>
         <cycle_matrix.../>
         <format>...</format>
      </ptarget>
      ...
   </pattern>
   ...
</instructionset>

Observe that the second and following target node in the instruction is optional.

5.10   Transfer

Instructions that move data between different residences (memory modules and regis-
ters), i.e., various move, load and store instructions, are specified in this part. The
instructions in this part only have to be specified with their operands and residence
classes, cycle_matrix and format clause, since transfer instructions are used implicitly.
They are not to be mapped to IR-nodes, and thus not a part of the instruction selection.

The general description of the transfer part is:

<transfer>
   <target id = “[string]“ op0=”[string]” op1=”[string]”
      <fu use_fu = “[string]”/>
      <cycle_matrix execute = "1"/>
      <format>...</format>
   </target>
   ...
</transfer>

The attribute id of the node target is the name of the transfer instruction. The attribute
use_fu of the fu node describes which functional unit will carry out the transfer. The
cycle_matrix describes the behavior of the instruction in the pipeline. The format clause
shows how the instruction will be emitted.

Here is an example of STR that stores one register to memory.

<target id = "STR" op0 = "mem" op1 = "allExceptPC">
   <fu use_fu = "ALU"/>
   <cycle_matrix execute = "1"/>
   <format> STR {op1}, [{op0}, +{op2}]</format>
</target>
32



Chapter 6 XADML

In this chapter we show the new constructions in ADML that this work has contributed.
It extended original ADML to be able to specify a real world processor, i.e. ARM9E
processor. ADML with its extension is called XADML.

6.1  cycle_matrix

The clause cycle_matrix describes the reservation table and usage of resources of an
instruction in the pipeline. The different stages of the pipeline are specified with the
number of clock cycles it uses in each stage. In case of delay slots, those are specified
with a latency clause. For more information about this clause see Section 5.9.1 and
7.1.4.

6.2  Clause: test

The test clause contains a standard XML construct called CDATA, specified as ![CDATA[
... ]], that could contain any block of C code. The construct is used to evaluate simple
mathematical expressions (logical and arithmetical), as the one in the example below:

<test><![CDATA[ const_offset_12 <= 4095]]></test>

If the test clause is true it returns 1 to the condition clause.

6.3  Clause: Logical and

The logical and clause is used to bind test clauses together in a condition clause.

   <and>
      <test>...</test>
      <test>...</test>
      ...
   </and>

6.4  Clause: Logical or

The logical or clause is used to bind test clauses together in a condition clause.

   <or>
      <test>...</test>
      <test>...</test>
      ...
   </or>

6.5  Clause: condition

Apart from the mapping of operands to residences (a register in a register class, or
memory), a target instruction could have other constraints, such as a maximum value
constraint for constants. This is checked via a condition clause, containing logical C
expressions. If the condition clause is evaluated to true, the covering is possible.

As an example, the following specification examines if a constant value (offset in
this case) fits into a 12-bit immediate field in an instruction:
33



<condition>
   <test><![CDATA[
      ({const_offset_12}->syms[0]->u.value >= 0)]]>) &&
      ({const_offset_12}->syms[0]->u.value <= 4095)]]>
   </test>
</condition>

6.6  Clause: format

The format clause tells the emitter how to print out the assembler instructions. The
string in the clause is written as it is, but variables within curly brackets are replaced by
their register or constant value. Escape sequences are written just as in C, for instance a
newline is written as \n and the token “ is written as \”.

Here is an example:

<format>LDM IA {op0}, \{{1},{2},{3}\}</format>

The format line above corresponds to the output:

LDM IA R0, {R3, R4, R7}

6.7  Clause: Macro-or

The or clause is an extension of ADML and it is there only for compressing the size of
the specification file (see the example below). The clause means that OPTIMIST
should generate one pattern for each pinst (an IR-node) that appears in an or clause. The
compression rate is almost equal to the number of pinst in an or clause. If a pattern has
more than one or clause the compression rate is equal to the product of the number of
pinst in each or clause. Example:

In the ADDLSL pattern specification, OPTIMIST chooses one pinst from each or
clause, creating eight different ADDLSL patterns. Alternatively, we could specify in
the case of ADDLSL, eight stand-alone patterns. The compressed pattern looks as fol-
lows:

<pattern id = "ADDLSL">
   <node>
      <or>
         <pinst id = "ADDI4"  arity = "2" op = "..."/>
         <pinst id = "ADDU4" arity = "2" op = "..."/>
         <pinst id = "ADDF4" arity = "2" op = "..."/>
         <pinst id = "ADDP4" arity = "2" op = "..."/>
      </or>
            <kid nr = "0" id = "left_op"/>
            <kid nr = "1">
               <node>
                  <or>
                     <pinst id = "LSHI4"  arity = "2" op = "..."/>
                     <pinst id = "LSHU4"  arity = "2" op = "..."/>
                  </or>
                        <kid nr = "0" id = "shift_op"/>
                        <kid nr = "1" id = "step"/>
               </node>
            </kid>
   </node>
</pattern>
34



Chapter 7 ARM9E Processor Specifications

This chapter is divided into two parts. First we describe how we created specifications
for the ARM mode of the processor, and in the second part for the Thumb mode.

Both specification files can be found on the OPTIMIST homepage1.

7.1  ARM Mode Specification

By applying the ADML sections and rules in Chapter 5 for the target architectures
instruction set described in the ARM Reference Manual [3] or in Chapter 4, “ARM9E”,
the main parts of the specification can be written. We used the extensions of Chapter 6
and specified some parts of the specification file that standard ADML could not cover.

The specification is presented in order of increasing complexity. We start with spec-
ifying functional unit and issues part, followed by the register and residence class part.
The last part is the instruction and pattern part, which is the larger part of the specifica-
tion file.

7.1.1  Functional Units and Issue Width

Section 4.1 described the ARM9E processor as a single-issue processor, i.e., only one
instruction can be issued at a given time. Though, the processor exploits parallelism
due to its pipeline where at most five different instructions can be fetched, decoded,
executed, read from memory and written to the register file at the same time. The issue
width specification looks as follows:

<architecture>
   <omega>1</omega>

   ...

Since all instructions use the ALU in ARM9E (even the multiplication unit to some
extent, see Section 4) and there is only one such unit in the processor, the specification
of this functional unit is as follows:

<funits>
   <fu id = "ALU" occupation = "1" latency = "1"/>
</funits>
...

Both the occupation and latency delays are set to one clock cycle. In general, the func-
tional unit determines the time for each target instruction that is executed on it. In the
ARM9E architecture, this is no longer true. The occupation and latency may vary
depending on the registers used in an instruction and the instruction itself. Since there
is only one functional unit, this information must be specified elsewhere. Therefore the
pipeline and the number of execution cycles will be specified in each instruction and
pattern instead. For the ARM9E, the functional unit part was thus not relevant and
removed from the specification.

1. www.ida.liu.se/~chrke/optimist/
35



7.1.2  Registers, Residence Classes and Constants

The register section is simple. The 16 user registers are specified with names from the
ARM Architecture Reference Manual [3] and a length of 32 bits. Since some multipli-
cation and multiplication-accumulation instructions operate on halves of registers, 32
register halves have to be specified from the 16 registers. This is done by using aliases.

Residence classes and constants are created when studying the instruction set and
writing the instruction part of the specification in the following manner:

If an instruction uses a different amount of clock cycles in the execution stage for
any registers depending on which registers it uses, then the register file has to be
divided into sets. Each register that is used as an operand for an instruction and gives
the same number of clock cycles in the execution stage for this instruction belongs to
the same register class.

Example: The instruction ADD uses one or three clock cycles in the execution
stage depending on the register that serves as destination register. If the destination reg-
ister is the PC it takes three clock cycles, otherwise one. For ARM9E, the location of
all other operands for any instruction, i.e., in any of the 16 registers does not contribute
to additional clock cycles. This gives us two register classes called PC (containing the
PC only) and allExceptPC (contains the remaining 15 registers). The specification part
of the residence classes of ARM9E is depicted below:

<residences>
   <residence id = "PC">
      <reg id = "PC"/>
   </residence>
   ...
   <residence id = "allExceptPC">

<reg id = "R0"/>
<reg id = "R1"/>

      <reg id = "R2"/>
      <reg id = "R3"/>
      <reg id = "R4"/>
      <reg id = "R5"/>
      <reg id = "R6"/>
      <reg id = "R7"/>
      <reg id = "R8"/>
      <reg id = "R9"/>
      <reg id = "R10"/>
      <reg id = "R11"/>
      <reg id = "R12"/>
      <reg id = "SP"/>
      <reg id = "R14"/>
   </residence>
   ...
</residences>

We identify additional residence classes: all is a register class with all sixteen registers,
mostly used for base registers for many store and load instructions. The register classes
halfB and halfT, representing the register halves of the registers R0,...,R14, are used for
various multiplication and multiplication-accumulate instructions. The halfB register
class contains the bottom (bit 0 to 15) of the registers and halfT contains the top (bit 16
to 31) of the registers.

The constants are treated as a residence much like the memory modules, but with a
limited size specified by the number of bits. A constant refers to an immediate field in
an instruction. They are specified as residence classes, one constant in each class.
36



7.1.3  Instructions and Patterns

The last part of the specification contains the instructions and the patterns1.
All the instructions in the ARM instruction set can be divided into different groups

depending on the instruction type, as mentioned in Section 4.6. The different groups
are:

• Data-processing operations.

• Load and Store Word or Unsigned Byte.

• Miscellaneous Loads and Stores.

Some instructions do not have any special addressing modes, i.e. an instruction that
takes operands from registers and produce the result in a register, such as the multipli-
cation instruction MUL. Another type of instruction consists of instructions that take
only one parameter, an immediate value or a register, such as an unconditional jump or
a branch. So there are two more groups:

• Branch instructions.

• Multiplication instructions and Swap instructions.

From the description of how instructions and patterns from each group have been spec-
ified, the reader should be able to understand how the rest of the instructions from a
given group have been specified.

7.1.4  General ARM Instruction Properties

Before going into the detailed description of instructions, we present the general ARM
instruction specification features that apply to the whole of the specifications of the
instruction part. The specification of the IR-node ADDU4 is used as an example:

<instruction id = "ADDU4" op = "4406">
   <target id = "ADD" op0 = "all" op1 = "allExceptPC" op2 = "all" use_fu = "ALU">
      <cycle_matrix execute = "1"/>
   <format> ADD {op1},{op0},{op2}</format>
   </target>
</instruction>

Since all instructions in the instruction set spend one clock cycle in following pipeline
stages: fetch, decode, memory and write_back, those stages are not present in the
cycle_matrix rows, only the execution stage is specified.

For various instructions with delay slots, such as load and multiplication instruc-
tions, we model delays with the latency clause. For instance, the LDR instruction,
which has one delay slot, has the following cycle_matrix.

<cycle_matrix execute = "1">
   <latency L = “1”/>
</cycle_matrix>

1. In the instruction set part, a pattern covers a sub-DAG set of nodes of LCC-IR with a single target
instruction.
37



In the following sections we show a general specification of a binary data processing
operation and explain how the first group of instructions was implemented.

7.1.5  Data-Processing Operations

By showing a general specification of a binary data processing operation that corre-
sponds to the ADD, AND, EOR, ORR and SUB instructions, the implementation of
this group is explained. The unary instructions MOV and MVN are specified in a simi-
lar manner, apart from the fact that they have only one operand. For instructions that do
not have their equivalence in IR-nodes, such as BIC, and all the data processing opera-
tions when applying a shift to their second operand, a pattern has to be specified. We
will take a look at the ADDLSL pattern in this section.

We show how binary and unary instructions mentioned above are specified using a
generic instruction BINARY_OP. The binary data-processing instruction,
BINARY_OP, is specified with one specification for each of the first two addressing
modes. Therefore there will be one specification where the second operand is an imme-
diate value, and one where the second operand resides in a register. The letter X stands
for any type: I (signed integer), U (unsigned integer), F (float) and P (pointer) in the
specification.

<instruction id = "BINARY_OPX4" op = "...">
   <target id = "BINARY_OP" op0 = "allExceptPC" op1 = "all" op2 =
"const_data_immediate">

      <fu  use_fu = "ALU"/>
      <cycle_matrix execute = "1"/>
      ...
      <format> BINARY_OP {op0},{op1},#{op2}</format>
   </target>
   <target id = "BINARY_OP" op0 = "allExceptPC" op1 = "all" op2 = "all">
      <fu  use_fu = "ALU"/>
      <cycle_matrix execute = "1"/>
      <format> BINARY_OP {op0},{op1},{op2}</format>
   </target>
</instruction>

In case the program counter is the destination register, the BINARY_OP instruction
takes two additional clock cycles in the execution stage. Therefore we add the follow-
ing versions (common parts with previous specifications are left out for readability pur-
poses and the differences are highlighted). It is only the number of clock cycles in the
execution stage that differs between the two cases.

<instruction id = "BINARY_OPX4" op = "...">
   <target id = "BINARY_OP" op0 = "allExceptPC" op1 = "all" op2 =
"const_data_immediate">

    ...
   </target>
   <target id = "BINARY_OP" op0 = "PC" op1 = "all" op2 = "const_data_immediate">
       ...
       <cycle_matrix execute = "3"/>
       ...
   </target>
   <target id = "BINARY_OP" op0 = "allExceptPC" op1 = "all" op2 = "all">
   ...
   </target>
   <target id = "BINARY_OP" op0 = "PC" op1 = "all" op2 = "all">
        ...
        <cycle_matrix execute = "3"/>
        ...
38



   </target>
</instruction>

Since X corresponds to four different types, there must be one copy of each
BINARY_OP variant for each of these types.

But a BINARY_OP instruction can also be performed with its second operand
shifted, as mentioned in Section 4.6.1. The shift and binary operation are executed in
the same clock cycle. There is no IR-node that encodes a binary operation and a shift
together. For that we use the pattern construction to first specify the operation in terms
of sub-DAGs, and then we connect it to an ARM9E target instruction. The pattern for
BINARY_OP_SHIFT, a BINARY_OPX4 node with a SHIFT node (LSHY4, LSRY4,
ASRY4, RORY4 or RRXY4) is depicted in Figure 7.1. The letter Y is an abbreviation
(for either I or U types). Leaf nodes of a pattern are represented by triangular shaped
nodes that correspond to operands of the pattern. The names written in lower-case
within quotation marks are references to nodes, used later in the instruction part to bind
pattern operands to instruction operands.

The first child <kid nr = "0" id = "shift_op"/> of the SHIFTY4 IR-node, referenced as
“shift_op” is the value that needs to be shifted by the number of steps, specified by child
<kid nr = "1" id = "step"/>, referenced as “step”. By using references, we can identify the
operands of the pattern BINARY_OP_SHIFT. Below we show the binding between
BINARY_OP_SHIFT pattern of Figure 7.1 and target instruction BINARY_OP of the
instruction set section.

<pattern id = "BINARY_OP_SHIFT">
   <ptarget id = "BINARY_OP" op0 = "allExceptPC">
      <op id="add_left_op">
         <id>allExceptPC</id>
      </op>
      <op id="step">
         <id>const_shift_imm</id>
      </op>
      <op id="shift_op">
         <id>allExceptPC</id>
      </op>

      <pattern id = "BINARY_OP_SHIFT">
         <node>
            <or>
               <pinst id = "BINARY_OPX4" arity = "2" op = "..."/>
            <or>
                  <kid nr = "0" id = "left_op"/>
                  <kid nr = "1">
                     <node>
                        <or>
                           <pinst id = "SHIFTY4"  arity = "2" op = "..."/>
                       </or>
                              <kid nr = "0" id = "shift_op"/>
                              <kid nr = "1" id = "step"/>
                     </node>
                  </kid>
         </node>
      </pattern>

Figure 7.1 Textual and graphical representation of the pattern for a binary data operation with one
of its operands shifted.
39



      <fu use_fu = "ALU"/>
      <cycle_matrix execute = "1"/>
      <condition>...</condition>
      <format> BINARY_OP {op0}, {left_op}, {shift_op}, LSL #{step}</format>
   </ptarget>
</pattern>

The left operand1 of the root node is referenced by the name “left_op”. It is expected to
be in any register of register class allExceptPC, i.e., the destination is set to any regis-
ter, except PC. The instruction takes only one cycle in the execution stage of the pipe-
line as specified in the cycle_matrix.

This combined BINARY_OP and SHIFT instruction can also take the value deter-
mining the shift step from a register instead of using a constant. The tree pattern for this
variant is the same as for the previous case. The ptarget for the BINARY_OP with reg-
ister specified shift differs slightly from the one with an immediate value specifying
shift step, and the BINARY_OP_SHIFT instruction is extended as follows:

<pattern id = "BINARY_OP_SHIFT">
   <ptarget id = "BINARY_OP" op0 = "allExceptPC">
   ...
   </ptarget>
   <ptarget id = "BINARY_OP" op0 = "allExceptPC">
   ...
   <op id="step">
      <id>allExceptPC</id>
   </op>
   ...
   <cycle_matrix execute = "2"/>
   <format> BINARY_OP {op0}, {0}, {shift_op}, SHIFT {step}</format>
   </ptarget>
</pattern>

The step reference for this variant is expected in the residence class allExceptPC, instead
of being an immediate value of the instruction. This addressing mode takes two clock
cycles in the execute stage, as described in the cycle_matrix. The format string is differ-
ent since we take the value of register {step} to determine the number of shifts.

In the final specification, there are nine different variants of BINARY_OP instruc-
tions in the instruction set part and five patterns in the patterns part.

One part left out intentionally from the first BINARY_OP variant remains to be
explained. Variants using an immediate value must assure that the immediate value
actually fits into the limited space of the target instruction word. The omitted part of
BINARY_OP corresponds to the C function testConstant({step}) within test and condition
clauses:

  <condition>
         <test>testConstant({step})</test>
   </condition>

1. i.e. kids[0] in LCC notation.
40



The function is as follows:

int testConstant (int constantToCheck)
{
  int ones = 255;       //First eight bits are set to 1.
  int leftShifts = 0;   //Number of steps to leftshift
  int shiftedValue = 0; //The shifted value
  int number11 = 3;
  int number1111 = 15;
  int number111111 = 63;

  while (leftShifts <= 30)
    {
      if (leftShifts <= 24)

   {
       shiftedValue = ones << leftShifts;

        }
      if (leftShifts == 26)
        {
          shiftedValue = (ones << leftShifts) + number11;

}
      if (leftShifts == 28)
        {
         shiftedValue = (ones << leftShifts) + number1111;
        }
      if (leftShifts == 30)
        {
          shiftedValue = (ones << leftShifts) + number111111;

}
      if (leftShifts > 30)

{
          printf("error");

}
      if (constantToCheck == (constantToCheck & shiftedValue))
       {
         return 1;

}
         leftShifts = leftShifts + 2;
    }
  return 0;
}

The function checks if the constant step consists of a bit pattern that has its one-valued
bits in a row of maximum length eight bits, somewhere in the word. In case this is true,
the function returns 1, and the constant can be written as an immediate value (a number
of eight bits, rotated by an even number of steps through the instructions word, see Sec-
tion 4.6.1). The following numbers can be used as immediate values for data process-
ing operations. Observe that the first three series correspond to the case when the eight-
bit number has been rotated and a part of it is at the end of the instruction word, and the
other half in the beginning:

0…63[ ] 2
26

0…3[ ]+⋅

0…15[ ] 2
28

0…15[ ]+⋅

0…3[ ] 2
30

0…63[ ]+⋅
41



And for the general case:

During code generation, OPTIMIST evaluates the expressions in the test construction
for each matched pattern. If the expression is evaluated to true, then the matching is
accepted, and the instruction appended to the current slot (see details in [5]). Otherwise
the instruction is not accepted, discarded, and OPTIMIST tries other matching possi-
bilities.

The constant used in the BINARY_OP instruction is a 5-bit immediate holding the
number of steps to shift the second operand. The condition part requires the constant to
be a number between 0 and 31.

The unary instructions can also be combined with any shift. The only difference
between them is the fact that the root node in their patterns has only one child. It looks
as the tree in Figure 7.1, without the left_op node.

7.1.6  Load and Store Word or Unsigned Byte

The second group of instructions to be specified are the instructions of the Load and
Store Word or Unsigned Byte Group (see Table 4.3). The general specification called
LOAD will be used in this section (to specify both LDR and LDRB). Graphs of the
corresponding patterns show the structure of LOAD for each of its addressing modes,
see Figure 7.2 and Figure 7.3.

The LOAD instruction has nine addressing modes (see Section 4.6.2), which need
many more pattern specifications, since the offset can be both added and subtracted and
the shift, in three out of nine modes, can be of six different types. The letter N in the
graphs in Figure 7.2 and Figure 7.3 means either one or four (bytes).

The LDR instruction in this group can incur one processor stall if the immediately
following instruction tries to access the loaded value. This is specified with a latency
clause.

<pattern id = "LDR_ADD_OFFSET">
         ....

      <cycle_matrix execute = "1">
            <latency l = "1"/>

      </cycle_matrix>
         ...
</pattern>

The LDRB instruction has two delay slots.
The first two modes can be matched using the same pattern specification. The pat-

tern is depicted in Figure 7.2 with its ADML textual representation.

0…255[ ] 2
0…24[ ]⋅
42



Figure 7.3 shows the third mode, where a register value is shifted and then subtracted
from the base register.

The offset can also be added to the base register, so there are two more patterns just as
those in Figure 7.2 and Figure 7.3 but with ADDX4 nodes instead of SUBX4 nodes. It
is not possible to put both the ADDX4 and the SUBX4 in the same or clause and bind
them to one instruction specification only since OPTIMIST does not keep track on
which pinst has been chosen in an or clause.

The shift can be a right shift, an arithmetic right shift, a rotation or a rotation with
extension. This means that there are 24 patterns for LOAD only for the three offset
modes.

The three pre-indexed patterns are depicted in Figure 7.4 and Figure 7.5. The
ASGNX4 node shows how the base register is updated before the value is loaded from
the new address into “destination”. The nodes referenced by “address” and “inc_address”
are not used in the instruction part of the instruction, but are there only as internal refer-
ences in the pattern specification. This allows us to cover DAGs.

The instruction below is connected to the pattern description presented in
Figure 7.4.

<pattern id = "LOAD_SUB_OFFSET">
   <node id = "destination">
      <pinst id = "INDIRXN" arity = "1" op = "..."/>
         <kid nr = "0">
            <node>
               <pinst id = "SUBX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base"/>
                  <kid nr = "1" id = "offset"/>
               </node>
            </kid>
   </node>
</pattern>

Figure 7.2 Textual and graphical representation of LOAD pattern, when subtracting the content of a
register or an immediate value from the base register.

<pattern id = "LOAD_SUB_SHIFTED_LSL_OFFSET">
   <node id = "destination">
      <pinst id = "INDIRXN" arity = "1" op = "..."/>
         <kid nr = "0">
            <node>
               <pinst id = "SUBX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base"/>
                     <kid nr = "1">
                        <node>
                           <pinst id = "LSHY4" arity = "2" op = "..."/>
                              <kid nr = "0" id = "shift_op"/>
                              <kid nr = "1" id = "step"/>
                        </node>
                  </kid>
            </node>
         </kid>
   </node>
</pattern>

Figure 7.3 Textual and graphical representation of LOAD pattern, when subtracting a left shifted
value from the base register.
43



<pattern id = "LOAD_SUB_OFFSET_PRE">
   <ptarget id = "LOAD">
      <op id ="destination">
         <id>allExceptPC</id>
      </op>
      <op id = "base">
         <id>all</id>
      </op>
      <op id = "offset">
         <id>const_offset_12</id>Figure 6.6
      </op>
      <fu use_fu = "ALU"/>
      <cycle_matrix execute = "1">
         <latency l = "1"/>
      </cycle_matrix>
      <condition>
              <test><![CDATA[
                     ({const_offset_12}->syms[0]->u.value >= 0)]]>) &&
                     ({const_offset_12}->syms[0]->u.value <= 4095)]]>
              </test>
      </condition>
      <format> LDR {destination}, [{base}, #-{offset}]!</format>
   </ptarget>
</pattern>

The test clauses check if the value of the node referenced by “offset“ fits into a 12-bit
immediate value.

The pre-indexed modes can also add or subtract the offset from the base register,
and the shift in Figure 7.4 can be of any type, which leads to another 24 patterns for
LOAD with the pre-indexed modes.

The last three post-indexed modes are depicted in Figure 7.6 and Figure 7.7. They
are also 24 variants, and sums up to 72 patterns in total for the LOAD instruction. The
data dependencies arrow (doted) in Figure 7.6 and Figure 7.7, shows that the base reg-
ister is updated (addr_update) before the value is loaded (destination).
44



<pattern id = "LOAD_SUB_OFFSET_PRE">
   <node id = “destination”>
      <pinst id = "INDIRXN" arity = "1" op = "4165"/>
         <kid nr = "0" id = "inc_address"/>
   </node>
   <node id = “addr_update“>
      <pinst id = "ASGNX4" arity = "2" op = "4149"/>
         <kid nr = "0" id = "address"/>
         <kid nr = "1" id = "inc_address">
            <node>
               <pinst id = "SUBX4" arity = "2" op = "4421"/>
                  <kid nr = "0" id = "base">
                     <node>
                        <pinst id = "INDIRX4" arity = "1" op = "4165"/>
                           <kid nr = "0" id = "address"/>
                     </node>
                  </kid>
                  <kid nr = "1" id = "offset"/>
            </node>
         </kid>
   </node>
</pattern>

INDIRXN

SUBX4

"destination"

"base"

"address"

"addr_update"

"inc_addresss"

"offset"

INDIRX4

ASGNX4

Figure 7.4 Textual and graphical representation of LOAD pattern, when subtracting a register or
immediate value to the base register.

<pattern id = "LOAD_SUB_SHIFTED_LSL_OFFSET_PRE
   <node id = “destination>...</node>
   <node id = “addr_update“>
      <pinst id = "ASGNX4" arity = "2" op = "..."/>
         <kid nr = "0" id = "address"/>
         <kid nr = "1" id = "inc_address">
            <node>
               <pinst id = "SUBX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base">
                     <node>
                        <pinst id = "INDIRX4" arity = "1" op = "..."/>
                           <kid nr = "0" id = "address"/>
                     </node>
                  </kid>
                  <kid nr = "1">
                     <node>
                        <pinst id = "LSHY4" arity = "2" op = "..."/>
                           <kid nr = "0" id = "shift_op"/>
                           <kid nr = "1" id = "step"/>
                        </node>
                     </kid>
            </node>
         </kid>
   </node>
</pattern>

"addr_update"

SUBX4

"destination"

"inc_address"

INDIRXN

ASGNX4

SHIFTY4

"step""shift_op"

"address"

"base"
INDIRX4

Figure 7.5 Textual and graphical representation of LOAD pattern, when subtracting a register
specified shift from the base register.
45



7.1.7  Miscellaneous Loads and Stores

The third group (see Table 4.5) containing store and load instructions for signed or
unsigned half-words and bytes are very much alike the group described in the previous
section. Miscellaneous Loads and Stores lack the possibility to add or subtract a shifted
offset value to the base register, which leads to a lower number of patterns that have to
be specified for this group. The instruction STORE_MISC will be used as generic

<pattern id = "LOAD_SUB_OFFSET_POST">
   <node id = “addr_update”>
      <pinst id = "ASGNX4" arity = "2" op = "..."/>
         <kid nr = "0" id = "address"/>
         <kid nr = "1">
            <node>
               <pinst id = "SUBX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base">
                     <node>
                        <pinst id = "INDIRX4" arity = "1" op = "..."/>
                           <kid nr = "0" id = "address"/>
                     </node>
                  </kid>
                  <kid nr = "1" id = "offset"/>
            </node>
         </kid>
   </node>
</pattern>

Figure 7.6 Textual and graphical representation of LOAD pattern, when subtracting a register or
immediate value from the base register.

<pattern id = "LOAD_SUB_SHIFTED_LSL_OFFSET_POST">
   <node id = “addr_update”>
      <pinst id = "ASGNX4" arity = "2" op = "..."/>
         <kid nr = "0" id = "address"/>
         <kid nr = "1">
            <node>
               <pinst id = "SUBX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base">
                     <node>
                        <pinst id = "INDIRIX4" arity = "1" op = "..."/>
                           <kid nr = "0" id = "address"/>
                     </node>
                  </kid>
                  <kid nr = "1">
                     <node>
                        <pinst id = "LSHY4" arity = "2" op = "..."/>
                           <kid nr = "0" id = "shift_op"/>
                           <kid nr = "1" id = "step"/>
                     </node>
                  </kid>
            </node>
         </kid>
   </node>
</pattern>

Figure 7.7 Textual and graphical representation of LOAD pattern when using the post-indexed
mode and subtracts a left shifted value from the base register.
46



name for instructions STRB and STRH. The LDRSB and LDRH and LDRSH are spec-
ified much the same as the LOAD instruction in the previous section.

The patterns for the addressing modes offset, pre-indexed and post-indexed for this
group and their corresponding specifications are shown in Figure 7.8, Figure 7.9 and
Figure 7.10. Since the patterns do not require the “offset” sub-DAG to be a register or an
constant, one pattern is sufficient for both cases. Each pattern corresponds to two
instructions in the instruction part, one for immediate offset, one for register offset.
This leads to a number of 6 patterns and 12 instruction specifications in total. A check
is performed in the instruction specification to see if the constant is 8 bit long.

<!-- The instruction: STORE_MISC <Rd>, [<Rn>,#+<offset>] -->
<pattern id = "STORE_MISC_ADD_OFFSET">
   ....
   <condition>
      <and>
         <test><![CDATA[ {const_offset_8} >= 0]]></test>
         <test><![CDATA[ {const_offset_8} <= 255]]></test>
      </and>
   </condition>
   </ptarget>
   <format> STORE_MISC {destination}, [{base}, #+{const_offset}]</format>
</pattern>

OPTIMIST can choose the other STORE_MISC variant if the constant value is greater
than 255 or negative. In case a register holds the offset, the format clause is replaced by:
<format> STORE_MISC {destination}, [{base}, +{const_offset}]</format>

As mentioned in the ARM9E chapter, there is no separate STRSH instruction, and
because of this, the STRH pattern matches both ASGNU2 and ASGNI2 nodes.

The latency for the load instruction in this group is two clock cycles if the register
loaded is accessed in the following instruction, thus the delay slot is specified as fol-
lows:

<!-- The instruction: LDRH <Rd>, [<Rn>,#+<offset>]! -->
<pattern id = "LDRH_ADD_OFFSET_PRE">
   ...
   <cycle_matrix execute = "1">
      <latency l = "2"/>
   </cycle_matrix>
   ...
</pattern>
47



<pattern id = "STORE_MISC_ADD_OFFSET">
   <node>
      <pinst id = "ASGNY2" arity = "2" op = "..."/>
         <kid nr = "0">
            <node>
               <pinst id = "ADDX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base"/>
                  <kid nr = "1" id = "offset"/>
            </node>
         </kid>
         <kid nr = "1" id = "destination"/>
   </node>
</pattern>

ASGNY2

ADDX4

"base" "offset"

"destination"

Figure 7.8 Textual and graphical representation of STORE_MISC pattern. It calculates the address
by adding an immediate value or a register value to the base register.

<pattern id = "STORE_MISC_ADD_OFFSET_PRE">
   <node id = “strh”>
      <pinst id = "ASGNX2" arity = "2" op = "..."/>
         <kid nr = "0" id = "inc_address"/>
         <kid nr = "1" id = "destination"/>
   </node>
   <node id = “addr_update”>
      <pinst id = "ASGNY4" arity = "2" op = "..."/>
         <kid nr = "0" id = "address"/>
         <kid nr = "1" id = "inc_address">
            <node>
               <pinst id = "ADDX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base">
                     <node>
                        <pinst id = "INDIRX4" arity = "1" op = "..."/>
                           <kid nr = "0" id = "address"/>
                     </node>
                  </kid>
                  <kid nr = "1" id = "offset"/>
               </node>
            </kid>
   </node>
</pattern>

ADDX4

"base"

"offset"

ASGNX4
"addr_update"

INDIRX4

"address"

"inc_address"

ASGNY2

"strh"

"destination"

Figure 7.9 Textual and graphical representation of STORE_MISC pattern using pre-indexed offset.
It updates the base register with the new address value first, then performs the store.
48



7.1.8  Branch Instructions

LCC has seven IR-nodes corresponding to different branches. The simplest one is the
unconditional JUMP. The node has only one child, which holds the label where to
jump. The other six branch types are:

• EQ: branch if equal.

• GE: branch if greater than or equal.

• GT: branch if greater than.

• LE: branch if less than or equal.

• LT: branch if less than.

• NE: branch if not equal.

In this section, the general specification of pseudo BRANCH_COND corresponds to
all branches listed above.

For BRANCH_COND, each node has two children, holding the left- and right-part
of a logical expression. The node has an entry into the symbol table that is a label to
which it should jump if the condition is true. Only the two children are specified in the
pattern:

<pattern id = “STORE_MISC_ADD_OFFSET_POST”>
   <node id = “strh”>
      <pinst id = "ASGNY2" arity = "2" op = "..."/>
         <kid nr = "0" id = "base">
            <node>
               <pinst id = "INDIRXF4" arity = "1" op = "..."/>
                  <kid nr = "0" id = "address"/>
            </node>
         </kid>
         <kid nr = "1" id = "destination"/>
   </node>
   <node id = “addr_update”>
      <pinst id = "ASGNX4" arity = "2" op = "..."/>
         <kid nr = "0" id = "address"/>
         <kid nr = "1">
            <node>
               <pinst id = "ADDX4" arity = "2" op = "..."/>
                  <kid nr = "0" id = "base">
                     <node>
                        <pinst id = "INDIRX4" arity = "1" op = "..."/>
                     </node>
                  </kid>
                  <kid nr = "1" id = "offset"/>
            </node>
         </kid>
   </node><ddep src = "strh" dest = "addr_update"/>
</pattern>

Figure 7.10 Textual and graphical representation of STORE_MISC pattern that calculates the
address by adding an immediate value or a register value to the base register. The base register is
updated with this value afterwards.
49



<pattern id = "BRANCH_COND">
   <pinst id = "BRANCH_CONDX4" arity = "2" op = "..."/>
      <kid nr = "0" id = "right_child"/>
      <kid nr = "1" id = "left_child"/>
</pattern>

ARM9E has one instruction called B, that performs the different jumps depending on
how the flags in the program status register (the NZCV-flags) are set. The instruction
CMP compares two values and updates the flags. Figure 7.11 describes the instruction
the BRANCH_COND pattern is bound to, and its graphical representation.

The two test clauses check if the label fits into the immediate value of the branch
instruction. Symbol entries in the IR-nodes are accessed by the top.SYM0.X.NAME
expression.

Here we touch the issue of matching a single IR-node with two instructions. In
OPTIMIST, optimality issue is based on the fact that the IR-level is low enough. In
case of the branch instruction in ARM, this is no longer the case. Here we may loose
optimality of the generated code. This does not matter as long as we are concerned
with basic blocks. Beyond the basic block level OPTIMIST still does not guarantee
optimality.

7.1.9  Multiplication Instructions

The various multiply-accumulate instructions are all written as patterns, and the multi-
ply variants are written as instructions only. The MUL and MLA instruction will be
used as example in this part, starting with MUL.

<pattern id = "BRANCH_COND">
   <ptarget id = "CMP">
      <op id="right_child">
         <id>all</id>
      </op>
      <op id="left_child">
         <id>all</id>
      </op>
      <fu use_fu = "ALU"/>
      <cycle_matrix execute = "4"/>
      <condition>
         <and>
            <test><![CDATA[{top}->syms[0].x.name <= 33554428]]></test>
             <test><![CDATA[{top}->syms[0].x.name >= -33554432]]></test>
         </and>
      </condition>
      <format> CMP {right_child},{left_child}\n
                       BRANCH_COND {{top}->syms[0].x.name}</format>
   </ptarget>
</pattern>

Figure 7.11 Textual representation of the instruction BRANCH_COND and graphical
representation of its pattern.
50



<instruction id= "MULI4" op = "4565">
   <!-- Common multiplication -->
   <target id = "MUL" op0 = "allExceptPC" op1 = "allExceptPC"
                                op2 = "allExceptPC" use_fu = "ALU">
      <cycle_matrix execute = "2"/>
   <format> MUL {op0},{op1},{op2}</format>
   </target>
   <target id = "MOV" op0 = "allExceptPC" op1= "allExceptPC"
                                 op2= "allExceptPC" use_fu = "ALU">
      <cycle_matrix execute = "1"/>
      <condition>
         <and>
            <test>0 == (log2(op1) - trunc(log2(op1)))</test>
            <test>log2(op1) < 32</test>
         </and>
      </condition>
   <format> MOV {op0},{op2}, LSL #{log2(op1)}</format>
   </target>
   <target id = "MOV" op0 = "allExceptPC" op1= "allExceptPC"
                                 op2= "allExceptPC" use_fu = "ALU">
      <cycle_matrix execute = "1"/>
      <condition>
         <and>
            <test>0 == (log2(op2) - trunc(log2(op2))</test>
            <test>log2(op2) < 32</test>
         </and>
      </condition>
   <format> MOV {op0},{op1}, LSL #{log2(op2)}</format>
   <target id = "MOV" op0 = "allExceptPC" op1 = "allExceptPC"
                                 op2= "allExceptPC" use_fu = "ALU">
      <cycle_matrix execute = "2"/>
         <condition>
            <test>0 == ((log2(op1)) - trunc(log2(op1)))</test>
         </condition>
   <format> MOV {op0},{op2}, LSL {log2(op1)}</format>
   </target>
   <target id = "MOV" op0 = "allExceptPC" op1 = "allExceptPC"
                                 op2= "allExceptPC" use_fu = "ALU">
      <cycle_matrix execute = "2"/>
         <condition>
            <test>0 == (log2(op2) - trunc(log2(op2)))</test>
         </condition>
   <format> MOV {op0},{op1}, LSL {log2(op2)}</format>
</instruction>

The instruction MULI4 contains five different target specifications. The first one is a
simple multiplication. The remaining four implement the multiplication as a MOV
with left shift (that is faster and may not incur processor stalls, i.e., has no latency
clause). This is only possible when at least one of the operands is a power of two. The
test clauses <test>0 == (log2(op1) - trunc(log2(op1)))</test> check if this is the case. If the
number of shifts is smaller than 32, the shift can be specified using an immediate value,
and thus save one register. Otherwise, a register holds the number of shifts. There are
four target specifications since any of the two operands may be a power of two. The
{log2(op1)} expression in the format clauses has to be evaluated to a number, and it is
done when the assembler code is emitted. OPTIMIST replaces all such expressions
with their evaluated number.
51



In all, this group is specified with 23 instructions, and 13 of them are bound to 13
patterns.

7.1.10  Transfer

The transfer part is written by simplifying the STR, STRB, LDR, LDRB, STRH,
LDRH, LDRSH, LDRSB, STM and LDM instructions, and specifying them as instruc-
tions without patterns, since they are not supposed to be matches to IR-nodes, but to
move data from different residence classes, i.e., registers and memory units.

A version of LDR from the transfer is as follows.

<target id = "LDR" op0 = "all" op1 = "allExceptPC">
   <fu use_fu = "ALU"/>
   <cycle_matrix execute = "1">
      <latency l = "1"/>
   </cycle_matrix>
   <format> LDR {op1}, [{op0}, #+{op2}]</format>
</target>

For the transfer instructions, only two operands are used, showing sources and destina-
tion of the moved dated. The cycle_matrix information is needed to show the implication
on pipeline stage and latency information.

7.2  The Thumb Specification

The three instruction groups for the Thumb specification are specified much in the
same way as in the ARM specification, but with a lower number of instructions and
patterns since the addressing modes of Thumb are a subset of the ARM addressing
modes. An instruction can only operate on two registers, or one register and one imme-
diate value, and produces the result in a register. This cuts down the length of the spec-
ification file enormously compared to the size of the ARM mode specification. Since
no new features had to be specified for Thumb, the derivation of this specification is not
a part of this report.
52



Chapter 8 Test

In this chapter we evaluate OPTIMIST and the processor specification files against a
commercial C/C++ compiler for ARM9E (included in IAR Workbench [14]) and a
publicly accessible IBurg back-end written for ARM7 for LCC (called LCC-ARM in
this chapter).

8.1  Testbenches

Test cases were chosen from various applications in the MediaBench [11] and Mibench
[12] testbenches. Every test case is a small segment of code corresponding to an IR-
DAG with about 20 IR-nodes. The code segment was cut manually from its original
application and put into a new main function and tested by the IAR compiler, LCC-
ARM and OPTIMIST. The IAR compiler was set to produce medium optimized code
and optimized for time. Test case 1 was taken from the dijkstlarge.c file (network,
MiBench), test case 2 from patricia.c, (network, MiBench) test cases 3, 4, 5, 6 from
jctrans.c (jpeg-6a, MediaBench), test case 7 from edges.c (epic, MediaBench) and test
cases 8, 9, 10 from collapse_ortho_pyr.c (epic, MediaBench).

8.2  Results

The number of clock cycles for the output assembler code was calculated using IAR’s
simulator and the result was also checked by counting clock cycles by hand. The
results are given in Table 8.1 for ARM mode and Table 8.2 for Thumb mode. The num-
bers in the 3rd - 6th column mean the level of optimization chosen in the IAR work
bench: 0 = none, 1 = low, 2 = common subexpression elimination and 3 = common
subexpression elimination, code motion and static clustering.

Since LCC only performs common subexpression elimination, a comparison
between the IAR 2 and OPTIMIST is the fairest comparison. In ARM mode, OPTI-
MIST produces equally fast code for test cases 2, 3, 6, 7, 9 and 10. By inspecting the
assembler code, one can see that OPTIMIST manages to group multiplication and
addition nodes together into MLA operations. It performs similarly with data opera-
tions and shifts or load and store with shifted offset (in ARM mode).

One reason for the longer execution times of code produced by OPTIMIST could
be the fact that major parts of the ARM specification file could not be used, including
the pre- and post-addressing modes for the store and load instructions. Currently the
ADML parser cannot handle their pattern descriptions, nor could the LDM/STM
instructions be implemented (see Section 9.2).

Another thing, that is most likely to be the crucial point for the difference between
OPTIMIST’s and IAR Workbench’s results is the shape of the intermediate representa-
tion. There is no reason to believe that the DAGs LCC produces for OPTIMIST looks
exactly the same as the intermediate representation IAR Workbench uses. Another dif-
ference is the fact that OPTIMIST cannot check if data has to be stored to memory
(using STR instructions) or could be stored in a register (using MOV). This is quite
obvious in the 4th test case (in ARM mode). OPTIMIST that is conservative stores and
loads partial computations while IAR Workbench uses MOV instructions instead
(moving values between registers). If the information needed for solving this problem
is provided in the C code it is propagated into LCC IR of ADDR-nodes, in the field
53



sclass (storage class). Currently OPTIMIST does not consider the information and it is
left for future work.

The last column in Table 8.1 shows the number of clock cycles used by LCC-
ARM’s solutions to the test problems. LCC-ARM is simple LCC using a back-end
written for ARM7. The most interesting aspect of this test is the fact that both OPTI-
MIST and LCC-ARM uses the same intermediate representation. The back-end for
LCC-ARM is an earlier ARM version, that uses a three stages pipeline, and also has a
slight smaller instruction set. But those missing instructions that ARM9E has but
ARM7 does not, are not used in any of the solutions from either IAR or OPTIMIST, so
the comparison is still fair regarding the instructions set. Why LCC-ARM uses many
more clock cycles in all cases depends first and foremost on the fact that LCC-ARM
introduces many more read-after-write hazards than OPTIMIST, but OPTIMIST also
cover up some groups of instructions better by using patterns. The results were as
expected, since LCC-ARM does not solve the three code-generation problems in one
single phase as OPTIMIST does, but in three separate phases.

In Thumb mode, OPTIMIST produced faster code for test case 2, equal for test
cases 1, 6, 9 and 10. Unlike the ARM specification, the Thumb specification contains a
much greater percentage of the instruction set than of the ARM mode. From the previ-
ous section we know, that this comparison might not be completely fair.

Since there is no Thumb back-end for LCC available, only OPTIMIST and IAR
Workbench were evaluated for Thumb mode.
54



Table 8.1  Number of clock cycles in ARM mode.

Tests Clock cycles used

Arm mode OPTIMIST IAR 0 IAR 1 IAR 2 IAR 3 LCC-ARM

Test 1 15 16 16 13 11 18

Test 2 14 16 15 14 14 18

Test 3 14 20 20 14 10 20

Test 4 20 18 15 12 12 32

Test 5 15 14 9 9 9 24

Test 6 15 31 31 15 11 16

Test 7 13 31 31 13 10 16

Test 8 15 16 14 11 11 25

Test 9 13 19 19 13 10 17

Test 10 11 16 14 11 9 19

Table 8.2  Number of clock cycles in Thumb mode.

Tests Clock cycles used

Thumb mode OPTIMIST IAR 0 IAR 1 IAR 2 IAR 3

Test 1 16 18 18 16 14

Test 2 14 24 21 20 20

Test 3 18 20 20 16 12

Test 4 20 31 19 19 19

Test 5 15 16 10 9 9

Test 6 17 31 31 17 13

Test 7 16 31 31 14 11

Test 8 15 14 14 11 11

Test 9 14 19 19 14 11

Test 10 11 15 13 11 9
55



Chapter 9 Conclusion

9.1  Evaluation of the Project

The results from Section 8.2 show that OPTIMIST performed quite well in ARM mode
(under the circumstances with only parts of the specification file in use in ARM mode
and different IR-representations to start with) and better in Thumb mode.

OPTIMIST produced faster code than LCC-ARM for all test programs, as
expected.

Since it took some time before I could use OPTIMIST to test my specification files
it was very hard to know if the constructs and patterns I had written were useful or not.
The best thing would have been if I could have tested them under the time of writing
the specifications. I also believe that some patterns have to be modified or added to
cover some parts I have not thought about before, but this is left as future work.

It would be interesting to see how well it could have worked with the entire ARM
specification and with the same IR.

The specification files need more constructs that can reduce the redundancies in the
files and makes them smaller and easier to read. The or-construct is the only one used
now, but one might think of various macros used for describing the shift options in
those instructions that can shift its second operand. Over and above this, the new
ADML constructs covered their corresponding problems. See Section 9.2 for more
notes about further extensions.

9.2  Future Work

The most obvious extension of this project would be to add the instructions left out
from the specifications. Instructions such as RSB (reverse subtraction) and ADC (add
with carry) could be specified with so-called pragma clauses in the source program.
This means that low-level instructions can be coded in the source file. There are no
rules for how the statements following the pragma clause should look like, and any
low-level instruction can be specified as convenient for LCC as possible. For instance,
the following pragma would be recognized by an extended version of LCC, creating a
RSB IR-node, later mapped by new instruction and pattern specifications in the specifi-
cation files:

...
int a, b;
...
# pragma RSB b a LSL #2; meaning b - a LSL #2;
...

It would be possible to extend the LCC front-end instead, and creating new operations
for ADC, for instance, but then the programmer has to learn those new constructs,
therefore the usage of pragmas is better and follows the standard.

The problem regarding the MOV and STR instructions (mentioned in section 8.2)
has to be solved.

Another way to improve the specifications file would be to introduce switch clauses
in XADML. Now, every pattern that uses any sort of shift has to be specified one by
one. A switch clause could make it possible to use one pattern, only for all shifts. Still,
OPTIMIST has to extract all variants using the clause, but it would reduce the size of
the specification file, limit possible typing errors and make the file easier to read.
56



Another future improvement would be to automate the generation or part of the
generation of the ADML specification file, which also will limit possible typing errors.

The Load and Store Multiple instructions (STM) and (LDM) could not be specified
due to the fact that the registers loaded have to be in increasing order. Since OPTIMIST
does not regard this order when assigning a register class to an operand, STM and
LDM could not be implemented. How this problem could be solved is not known at the
time of writing.

Instructions that use more than one register as destination register introduce a prob-
lem for OPTIMIST when matching IR-nodes in bottom-up fashion. The destination
nodes in such an instruction have two outgoing edges and it is supposed to be only one.
The solution to this problem is not known.
57



Glossary

ADML: Architecture Description Mark-up Language. An XML language, used to
specify the characteristics of the processor. See XADML.

ARM Ltd.: A Hardware Company, manufacturing various processors in the ARM-
family, ARM9E is one of them.

ARM9E: Embedded processor with two instructions sets, a five stage pipeline, 16 gen-
eral purpose registers, manufactured by ARM Ltd. (The specification files are written
for this processor.)

AST: Abstract syntax tree.

Basic Block: A section of consecutive instructions in the control flow of the program.
The section has only one entrance and one exit, and no branches in between.

cycle matrix: Description of reservation of resources when an instruction is carried out
in the pipeline of the processor. The entity is known as reservation table in the litera-
ture.

DSP: Digital Signal Processor. An integrated circuit whose main task is to process a
digital input signal and produce an output signal (usually connected to an Analog-Dig-
ital Converter, and Digital-Analog Converter).

Functional Unit: Part of the processor core that can carry out different operations.

IR-node: Intermediate Representation-node.

LCC: Lean C Compiler. A retargetable C compiler, designed at AT&T Bell Laborato-
ries and Princeton University for the ANSI C programming language.

VLIW: Abbreviation for Very Large Instruction Word. It is a processor containing
more than one functional unit. Rather than one instruction at a time, this processor can
execute n instructions at a time, where n is the issue width of the processor.

XADML: Extended version of ADML provided by this project. The original specifica-
tion language was enriched with new constructs to specify the ARM9E embedded pro-
cessor.
58



References

[1] Christopher W. Fraser, David R. Hanson. A Retargetable C Compiler: Design and
Implementation. Addison-Wesley, February 2003.

[2] Christopher W. Fraser, David R. Hanson, The lcc 4.x Code-Generation Interface,
Microsoft Research, July 2001.

[3] David Seal, ARM Architecture Reference Manual, second edition, Addison-Wesley,
2001.

[4] Steve Furber, ARM System-on-chip architecture, second edition, Addison-Wesley,
2000.

[5] Andrzej Bednarski, A Dynamic Programming Approach to Optimal Code Genera-
tion for Irregular Architectures, Department of Computer and Information Science,
Linköping, Sweden, 2002.

[6] ARM9E-STM Technical Reference Manual, (Rev 2), ARM Limited, 2002.

[7] ARM946-S System-on-chip enhanced processor, (Rev 1), ARM Limited, 2000.

[8] Product Comparison, ARM CPU Products, Performance of the ARM9TDMITM and

ARM9E-STM, cores compared to the ARM7TDMTM core. ARM Limited 2000.

[9] Simon Segars, The ARM9 Family - High Performance Microprocessors for Embed-
ded Applications, ARM Ltd.

[10] Rainer Leupers. Code Optimization Techniques for Embedded Processors. Kluwer
Academic Publishers, 2000.

[11] Chunho Lee, Miodrag Potkonjak, William H. Mangione-Smith, MediaBench.
http://cares.icsl.ucla.edu/MediaBench/ (2005-01-13).

[12] Todd Austin, Richard Brown, Matthew Guthaus , Trevor Mudge, Jeff Ringenberg,
MiBench, University of Michigan, http://www.eecs.umich.edu/mibench/ (2005-
02-28).

[13] Silvina Hanono, Srinivas Devadas, Instruction Selection, Resource Allocation, and
Scheduling in the AVIV Retargetable Code Generator, Proceedings of the 35th
annual conference on Design Automation Conference, pages 510-515, pub-ACM,
San Francisco, California, United States, 1998.

[14] ARM IAR Embedded Workbench IDE User Guide, IAR Systems, Ninth Edition,
2004

[15] David G. Bradlee, Tobert R. Henry, Susan J. Eggers, The Marion System for
Retargetable Instruction Scheduling. Department of Computer Science and Engi-
neering, FR-35. University of Washington, Seattle, Washington.

[16] Peter Marwedel, Gerd Goossens, Code Generation for Embedded Processors,
Kluwer, 1995.
59



60



David Landén ARM9E Processor Specification for OPTIMIST 05:022


	Final Thesis
	ARM9E Processor Specification for OPTIMIST
	by

	David Landén
	LITH-IDA-EX--05/022--SE
	2005-02-25
	Final Thesis


	ARM9E Processor Specification for OPTIMIST
	by

	David Landén
	LITH-IDA--EX--05/022--SE
	2005-02-01
	Chapter 1 Introduction
	1.1 Goal and Intended Audience
	1.2 Limitations and Sources
	1.3 Contributions
	1.4 Related Work
	1.5 The Organization of the Report

	Chapter 2 OPTIMIST
	Figure 2.1 OPTIMIST takes LCC intermediate representation of the source program as input together...

	Chapter 3 LCC
	Figure 3.1 The IR-node BANDI4.
	Figure 3.2 The DAG for the example basic block of function foo.

	Chapter 4 ARM9E
	4.1 Overview
	4.2 Register File
	Figure 4.1 The register file with banked and unbanked registers.

	4.3 Processor Architecture
	Figure 4.2 The ARM9E processor core.

	4.4 Pipeline Hazards
	4.5 Multiplication Unit
	4.6 ARM Instruction Set
	1. Data-processing Operations.
	2. Load and Store Word or Unsigned Byte.
	3. Miscellaneous Loads and Stores.
	4. Load and Store Multiple.
	4.6.1 Data-processing Operands
	Table 4.1 ASM Description of the Data-Processing Operations Group.
	1. The value of rotate_imm is extracted.
	2. All bits in the instruction word are set to zero, except the last eight bits, immed_8.
	3. The value in immed_8 is rotated right, by two times the value obtained in 1.
	Table 4.2 Instructions left out from the Data-processing Group.


	4.6.2 Load and Store Word or Unsigned Byte
	Table 4.3 ASM Description of the Load and Store Word or Unsigned Byte Group.
	1. Immediate offset.
	2. Register offset.
	3. Scaled register offset.
	4. Immediate pre-indexed.
	5. Register pre-indexed.
	6. Scaled register pre-indexed.
	7. Immediate post-indexed.
	8. Register post-indexed.
	9. Scaled register post-indexed
	1. Immediate offset.
	2. Register offset.
	3. Scaled register offset.
	Table 4.4 Instructions left out from the Load and Store Word or Unsigned Byte Group.


	4.6.3 Miscellaneous Loads and Stores
	Table 4.5 ASM Description of the Miscellaneous Loads and Stores Group.
	1. Immediate offset.
	2. Register offset.
	3. Immediate pre-indexed.
	4. Register pre-indexed.
	5. Immediate post-indexed.
	6. Register post-indexed.
	Table 4.6 Instructions left out from the Miscellaneous Loads and Stores Group.


	4.6.4 Load and Store Multiple.
	Table 4.7 ASM Description of the Load and Store Multiple Group.

	4.6.5 Branch Instructions and Swaps
	Table 4.8 ASM Description of the Branch Instructions and Swaps Group.
	Table 4.9 Instructions left out from Branch Instructions and Swaps Group.

	4.6.6 Multiplication Instructions
	Table 4.10 ASM Description of the Multiplication Instructions Group.
	Table 4.11 Instructions left out from the Multiplication Instructions Group.


	4.7 Thumb Addressing Modes
	1. Data-processing instructions.
	2. Load and Store Register.
	3. Load and Store Multiple.
	4.7.1 Data-processing Instructions for Thumb
	Table 4.12 ASM Description of the Data-processing instructions for Thumb Group.

	4.7.2 Load and Store Register for Thumb
	Table 4.13 ASM Description of the Load and Store Register for Thumb Group.
	Table 4.14 Instructions left out from the Load and Store Multiple for Thumb Group.

	4.7.3 Load and Store Multiple for Thumb
	Table 4.15 Instructions left out from the Load and Store Multiple for Thumb Group.



	Chapter 5 ADML
	5.1 General ADML Document Structure
	5.2 Notations
	5.3 Omega: Issue Width
	5.4 Registers
	5.5 Constants
	5.6 Residence Classes
	5.7 Functional Units
	Figure 5.1 The MUL, ALU and shifter unit in the ARM9E processor.

	5.8 Patterns
	Figure 5.2 The pattern BIC is created by grouping the IR-nodes BANDI4 and BCOMI4. The identifiers...
	Figure 5.3 The pattern and pattern specification for the instruction STR, when adding a register ...

	5.9 Instruction Set
	5.9.1 Instructions
	5.9.2 Patterns

	5.10 Transfer

	Chapter 6 XADML
	6.1 cycle_matrix
	6.2 Clause: test
	6.3 Clause: Logical and
	6.4 Clause: Logical or
	6.5 Clause: condition
	6.6 Clause: format
	6.7 Clause: Macro-or

	Chapter 7 ARM9E Processor Specifications
	7.1 ARM Mode Specification
	7.1.1 Functional Units and Issue Width
	7.1.2 Registers, Residence Classes and Constants
	7.1.3 Instructions and Patterns
	7.1.4 General ARM Instruction Properties
	7.1.5 Data-Processing Operations
	Figure 7.1 Textual and graphical representation of the pattern for a binary data operation with o...

	7.1.6 Load and Store Word or Unsigned Byte
	Figure 7.2 Textual and graphical representation of LOAD pattern, when subtracting the content of ...
	Figure 7.3 Textual and graphical representation of LOAD pattern, when subtracting a left shifted ...
	Figure 7.4 Textual and graphical representation of LOAD pattern, when subtracting a register or i...
	Figure 7.5 Textual and graphical representation of LOAD pattern, when subtracting a register spec...
	Figure 7.6 Textual and graphical representation of LOAD pattern, when subtracting a register or i...
	Figure 7.7 Textual and graphical representation of LOAD pattern when using the post-indexed mode ...

	7.1.7 Miscellaneous Loads and Stores
	Figure 7.8 Textual and graphical representation of STORE_MISC pattern. It calculates the address ...
	Figure 7.9 Textual and graphical representation of STORE_MISC pattern using pre-indexed offset. I...
	Figure 7.10 Textual and graphical representation of STORE_MISC pattern that calculates the addres...

	7.1.8 Branch Instructions
	Figure 7.11 Textual representation of the instruction BRANCH_COND and graphical representation of...

	7.1.9 Multiplication Instructions
	7.1.10 Transfer

	7.2 The Thumb Specification

	Chapter 8 Test
	8.1 Testbenches
	8.2 Results
	Table 8.1 Number of clock cycles in ARM mode.
	Table 8.2 Number of clock cycles in Thumb mode.


	Chapter 9 Conclusion
	9.1 Evaluation of the Project
	9.2 Future Work

	Glossary
	References
	[1] Christopher W. Fraser, David R. Hanson. A Retargetable C Compiler: Design and Implementation....
	[2] Christopher W. Fraser, David R. Hanson, The lcc 4.x Code-Generation Interface, Microsoft Rese...
	[3] David Seal, ARM Architecture Reference Manual, second edition, Addison-Wesley, 2001.
	[4] Steve Furber, ARM System-on-chip architecture, second edition, Addison-Wesley, 2000.
	[5] Andrzej Bednarski, A Dynamic Programming Approach to Optimal Code Generation for Irregular Ar...
	[6] ARM9E-STM Technical Reference Manual, (Rev 2), ARM Limited, 2002.
	[7] ARM946-S System-on-chip enhanced processor, (Rev 1), ARM Limited, 2000.
	[8] Product Comparison, ARM CPU Products, Performance of the ARM9TDMITM and ARM9E-STM, cores comp...
	[9] Simon Segars, The ARM9 Family - High Performance Microprocessors for Embedded Applications, A...
	[10] Rainer Leupers. Code Optimization Techniques for Embedded Processors. Kluwer Academic Publis...
	[11] Chunho Lee, Miodrag Potkonjak, William H. Mangione-Smith, MediaBench. http://cares.icsl.ucla...
	[12] Todd Austin, Richard Brown, Matthew Guthaus , Trevor Mudge, Jeff Ringenberg, MiBench, Univer...
	[13] Silvina Hanono, Srinivas Devadas, Instruction Selection, Resource Allocation, and Scheduling...
	[14] ARM IAR Embedded Workbench IDE User Guide, IAR Systems, Ninth Edition, 2004
	[15] David G. Bradlee, Tobert R. Henry, Susan J. Eggers, The Marion System for Retargetable Instr...
	[16] Peter Marwedel, Gerd Goossens, Code Generation for Embedded Processors, Kluwer, 1995.





