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Abstract— In this position paper, we point out the
importance of teaching a basic understanding of parallel
computations and parallel programming early in computer
science education, in order to give students the necessary
expertise to cope with future computer architectures that
will exhibit an explicitly parallel programming model.

We elaborate on a programming model, namely shared-
memory bulk-synchronous parallel programming with sup-
port for nested parallelism, as it is both flexible (can be
mapped to many different parallel architectures) and sim-
ple (offers a shared address space, structured parallelism,
deterministic computation, and is deadlock-free).

We also suggest taking up parallel algorithmic
paradigms such as parallel divide-and-conquer together
with their sequential counterparts in the standard CS
course on data structures and algorithms, in order to
anchor thinking in terms of parallel data and control
structures early in the students’ learning process.

I. INTRODUCTION

For 50 years we have been teaching students program-
ming, algorithms and data structures with a program-
ming model dominated by the sequential von-Neumann
architecture. This model is popular because of its sim-
plicity of control flow and memory consistency and
its resemblance to the functionality of early computer
architectures.

However, recent trends in computer architecture show
that the performance potential of von-Neumann pro-
gramming has finally reached its limits. Computer ar-
chitectures even for the desktop computing domain are,
at least under the hood, increasingly parallel, e.g. in
the form of multithreaded processors and multi-core
architectures. The efforts for grafting the von-Neumann
model on top of thread-level parallel and instruction-
level parallel processor hardware, using techniques such
as dynamic instruction dispatch, branch prediction or
speculative execution, are hitting their limits, in the
form of high design complexity, limited exploitable
instruction-level parallelism in applications, and power
and heat management problems. We foresee that ex-
plicitly parallel computing models will emerge in the
near future to directly address the massive parallelism

available in upcoming processor architectures. In order
to fully exploit their performance potential, applications
will have to be parallelized, that is, be (re)written to
exhibit explicit parallelism. However, most programmers
are reluctant to adopting a parallel programming model,
(1) because parallel programming is notoriously more
complex and error-prone than sequential programming,
at least with the parallel programming systems that are
in use today, and (2) because most programmers were
never trained in thinking in terms of parallel algorithms
and data structures.

For the years to come, explicitly parallel program-
ming paradigms will have to be adopted by more and
more programmers. In this position paper, we suggest
preparing students in time for this paradigm shift. A
first step could be to take up parallel computing issues
relatively early in existing standard courses, e.g. in the
undergraduate course on data structures and algorithms.
Many fundamental algorithmic concepts such as divide-
and-conquer have an immediate parallel counterpart,
which may be considered together. The goal is to anchor
thinking in parallel structures early in the education
process.

In particular, we advocate simple parallel program-
ming models, such as the bulk-synchronous parallel
(BSP) model, because they are (a) still flexible enough to
be mapped to a wide range of parallel architectures, and
(b) simple enough to provide a good basis for the design
and analysis of parallel algorithms and data structures
that offers a compatible extension of the existing theory.

The remainder of this paper is organized as follows.
In Section II we summarize the most important parallel
programming models and discuss their suitability as a
platform for teaching parallel programming early. Sec-
tion III elaborates on one particular parallel program-
ming model and language, NestStep. We discuss more
teaching issues in Section IV, and Section V concludes.

II. SURVEY OF PARALLEL PROGRAMMING MODELS

With the need to exploit explicit parallelism at the
application programming level, programmers will have
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TABLE I

SURVEY OF PARALLEL PROGRAMMING MODELS

Progr. Model Control Structure Data View Consistency Main Restriction Examples
Message Passing Asynchronous, MIMD Local N.a. None MPI
Shared Memory Asynchronous, MIMD Shared Weak None Pthreads, OpenMP, UPC, Cilk
Data-Parallel Synchronous, SIMD Shared Strict SIMD-like Control HPF, C�

PRAM Synchronous, MIMD Shared Strict None Fork
BSP Bulk-synchr., MIMD Local N.a. Superstep Structure BSPlib, PUB
NestStep-BSP Nested BSP Shared Superstep Superstep Structure NestStep

to adopt a parallel programming model. In this section,
we briefly review the most important ones.

A. Message passing

The currently predominant model for programming
supercomputers is message passing with MPI, the
message-passing interface [13], which is a portable but
low-level standard for interprocessor communication.
Message passing may be considered a least common
denominator of parallel computing, which is available on
almost every parallel computer system that is in use to-
day. Message passing code is generally unstructured and
hard to understand, maintain and debug. It only supports
a local address space (starting from location 0 on each
processor) and requires the programmer to place explicit
send and receive operations in the code, and maybe
even handle buffering explicitly, in order to exchange
data between processors. Modest improvements such
as one-sided communication (automatic receive), nested
parallelism (by processor group splitting), and collective
communication operations (such as reductions, scatter
and gather) help to somewhat reduce complexity—
usually at the expense of some performance loss—but
are not enforced, such that unstructured parallelism is
still the default.

B. Shared memory and shared address space

Shared-memory parallel computing is, in practice,
often realized by asynchronously operating threads or
processes that share memory. Synchronization between
these parallel activities (here referred to as processors,
for simplicity) can be in the form of asynchronous sig-
nals or mutual exclusion in various forms (semaphores,
locks, monitors etc.). A global address space provides
to the programmer a more natural interface to access
data that is compliant with sequential computing mod-
els. Unstructured shared-memory parallel programming
platforms such as pthreads have been complemented by
more structured languages such as OpenMP [12], which
supports work-sharing constructs to schedule parallel

tasks such as parallel loop iterations etc. onto a fixed
set of processors. Additionally, shared-address-space lan-
guages such as UPC [2] that emulate a shared memory
view on top of a message passing platform have emerged
recently. On the other hand, memory consistency must
increasingly be handled explicitly by the programmer at
a fairly low level, e.g. by flush operations that reconcile
the local value of a cached memory location with its
main memory value. Finally, none of these platforms
really supports nested parallelism.

C. Data-parallel computing

Data-parallel computing is the software equivalent of
SIMD (single instruction stream, multiple data streams)
architectures. Processors share a single program control,
that is, execute at the same time the same operation
on maybe different data (or do nothing). Data-parallel
computing was very popular in the 1980’s and early
1990’s because it mapped directly to the vector pro-
cessors and array computers of that period. Many data-
parallel programming languages have been developed,
most notably High-Performance Fortran (HPF) [4]. Gen-
erally, data-parallel languages offer a shared address
space with a global view of large data structures such as
matrices, vectors etc. Data-parallel computing is suitable
for regular computations on large arrays but suffers
from inflexible control and synchronization structure
in irregular applications, for which a MIMD (multiple
instruction streams, multiple data streams) based model
is more appropriate. Although HPF is not widely used in
practice, many of its concepts have found their way into
standard Fortran and into certain shared-address-space
languages.

D. PRAM model

In the design and analysis of parallel algorithms, we
mainly work with three theoretical models that are all
extensions of the sequential RAM model (Random Ac-
cess Machine, also known as the von-Neumann model):
the PRAM, the BSP, and systolic arrays.
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The PRAM (Parallel Random Access Machine) mod-
el, see the book by Keller, Kessler and Träff [6] for an
introduction, connects a set of P processors to a single
shared memory module and a common clock signal. In
a very idealistic simplification, shared memory access
time is assumed to be uniform and take one clock cycle,
exactly as long as arithmetic and branch operations.
Hence, the entire machine operates synchronously at the
instruction level. If simultaneous accesses to the same
memory location by multiple processors are resolved in
a deterministic way, the resulting parallel computation
will be deterministic. Memory will always be consistent.
Synchronization can be done via signals, barriers, or
mutual exclusion; deadlocks are possible. As the shared
memory becomes a performance bottleneck without spe-
cial architectural support, the PRAM model has not been
realized in hardware, with one notable exception, the SB-
PRAM research prototype at Saarbrücken university in
the 1990s [6].

E. BSP model

In contrast, the BSP (Bulk-Synchronous Parallel)
model [15] is an abstraction of a restricted message pass-
ing architecture and charges a cost for communication.
The machine is characterized by only three parameters:
the number of processors P , the byte transfer rate g in
point-to-point communication, and the overhead L for a
global barrier synchronization (where g and L may be
functions of P ). The BSP programmer must organize
his/her parallel computation as a sequence of supersteps
that are conceptually separated by global barriers. Hence,
the cost of a BSP computation is the sum over the
cost of every superstep. A superstep (see also Figure 1)
consists of a computation phase, where processors only
can access local memory, and a subsequent communica-
tion phase, where processors exchange values by point-
to-point message passing. Hence, BSP programs have
to use local addresses for data, and the programmer
needs to write explicit send and receive statements for
communication. Routines for communication and barrier
synchronization are provided in BSP libraries such as
BSPlib [5] and PUB [1]. Nested parallelism is not
supported in classical BSP; in order to exploit nested
parallelism in programs, it must be flattened explicitly by
the programmer, which is generally difficult for MIMD
computations. Hence, although announced as a “bridg-
ing” model (i.e., more realistic than PRAM but simpler
to program and analyze than completely unstructured
message passing), some of the problems of message
passing programming are inherited. We will show in the
next section how to relax these constraints.

F. Which model is most suitable?

Table I summarizes the described parallel program-
ming models, with their main strenghts and weaknesses.

From a technical point of view, a model that allows to
control the underlying hardware architecture efficiently
is most important in high-performance computing. This
explains the popularity of low-level models such as MPI
and pthreads.

From the educational point of view, a simple, de-
terministic, shared memory model should be taught as
a first parallel programming model. While we would
opt for the PRAM as model of choice for this pur-
pose [10], we are aware that its overabstraction from
existing parallel computer systems may cause motivation
problems for many students. We therefore consider BSP
as a good compromise, as it is simple, deterministic,
semi-structured and relatively easy to use as a basis for
quantitative analysis, while it can be implemented on a
wide range of parallel platforms with decent efficiency.
However, to make it accessible to masses of program-
mers, it needs to equipped with a shared address space
and better support for structured parallelism, which we
will elaborate on in the next section.

The issues of data locality, memory consistency, and
performance tuning remain to be relevant for high-
performance computing in practice, hence interested
students should also be exposed to more complex par-
allel programming models at a later stage of education,
once the fundamentals of parallel computing are well
understood.

III. NESTSTEP

NestStep [8], [7] is a parallel programming language
based on the BSP model. It is defined as a set of
language extensions that may be added, with minor
modifications, to any imperative programming language,
be it procedural or object oriented. The sequential aspect
of computation is inherited from the basis language.
The new NestStep language constructs provide shared
variables and process coordination. The basis language
need not be object oriented, as parallelism is not im-
plicit by distributed objects communicating via remote
method invocation, but expressed by separate language
constructs.

NestStep processes run, in general, on different ma-
chines that are coupled by the NestStep language exten-
sions and runtime system to a virtual parallel computer.
Each processor executes one process with the same
program (SPMD), and the number of processes remains
constant throughout program execution.
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global barrier

local computation

communication phase

next barrier
update cached copies of shared variables

using cached copies of shared variables

Fig. 1. A BSP superstep. — In NestStep, supersteps form the units
of synchronization and shared memory consistency.

The NestStep processors are organized in groups. The
processors in a group are automatically ranked from
0 to the group size minus one. The main method
of a NestStep program is executed by the root group
containing all available processors of the partition of the
parallel computer the program is running on. A processor
group executes a BSP superstep as a whole. Ordinary,
flat supersteps are denoted in NestStep by the step
statement

step statement

Groups can be dynamically subdivided during pro-
gram execution, following the static nesting structure of
the supersteps. The current processor group is split by
the neststep statement, as in

neststep(2; @=(cond)?1:0) // split group
if (@==1) stmt1();
else stmt2();

into several subgroups, which can execute supersteps
(with local communication and barriers) independent of
each other. At the end of the neststep statement, the
subgroups are merged again, and the parent group is
restored. See Figure 2 for an illustration. Note that this
corresponds to forking an explicitly parallel process into
two parallel subprocesses, and joining them again.

Group splitting can be used immediately for express-
ing parallel divide-and-conquer algorithms.

Variables in NestStep are declared to be either shared
(sh) or private. A private variable exists once on each
processor and is only accessible locally. A shared vari-
able, such as sum in Figure 3, is generally replicated:
one copy of it exists on each processor. The NestStep
runtime system guarantees the superstep consistency
invariant, which says that at entry and exit of a superstep,
the values of all copies of a replicated shared variable
will be equal. Of course, a processor may change the
value of its local copy in the computation phase of a
superstep. Then, the runtime system will take special

changes to shared variables
are only committed within
the current group

subgroup-
local
barrier

subgroup-
local
superstep

end of nested superstep

commit inter-subgroup changes
to shared variables 

end of previous superstep

sub-supersteps are independently
executed by the two subgroups

split current group into 2 subgroups
processors join new subgroup
renumber processor ranks 

restore parent group

final combine phase

subgroup-wide

Fig. 2. Nesting of supersteps, here visualized for a
neststep(2,...) ... statement splitting the current group into
two subgroups. Dashed horizontal lines represent implicit barriers.

action to automatically make all copies of that variable
consistent again, during the communication phase of
the superstep. The conflict resolution strategy for such
concurrent writes can be programmed individually for
each variable (and even for each superstep, using the
combine clause). For instance, we could specify that an
arbitrary updated value will be broadcast and committed
to all copies, or that a reduction such as the global sum
of all written values will be broadcast and committed.
As the runtime system uses a communication tree to im-
plement this combining of values, parallel reduction and
even prefix computations can be performed on-the-fly
without additional overhead [8]. Exploiting this feature,
parallel prefix computations, which are a basic building
block of many parallel algorithms, can be written in a
very compact and readable way, see Figure 3.

Shared arrays can be either replicated as a whole, or
distributed (each processor owns an equally large part of
it), as a in the example program in Figure 3. Distributed
shared arrays are complemented by appropriate iterator
constructs. For instance, the forall loop

forall ( i, a )
stmt(i, a[i]);

scans over the entire array a and assigns to the private
iteration counter i of each processor exactly those
indices of a that are locally stored on this processor.

As superstep computations only allow access to lo-
cally available elements, values of remote elements
needed by a processor must be fetched before entry to
a superstep, and written elements will be shipped (and
combined) in the communication phase at the end of
a superstep. Fetching array elements beforehand can be
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void parprefix( sh int a[]</> )
{
int *pre; // priv. prefix array
int p=#, Ndp=N/p; // assume p divides N
int myoffset; // my prefix offset
sh int sum = 0;
int i, j = 0;
step {

pre = new_Array( Ndp, Type_int );
forall ( i, a ) { // owned elements
pre[j++] = sum;
sum += a[i];

}
} combine( sum<+:myoffset> );
j = 0;
step

forall ( i, a )
a[i] = pre[j++] + myoffset;

}

Fig. 3. Computing parallel prefix sums in NestStep-C.

a problem in irregular computations where the actual
elements to be accessed are not statically known. A
technique for scheduling the necessary two-sided com-
munication operations on top of NestStep’s combining
mechanism for replicated variables is described in [7].

NestStep does not support mutual exclusion, and is
thus deadlock-free. The main synchronization primitive
is the barrier synchronization included in the step
and neststep statements. In many cases, the need
for mutual exclusion disappears as it can be expressed
by suitably programming the concurrent write conflict
resolution of shared variables. Otherwise, the design
pattern for serializing computation is to determine the
next processor to do the critical computation, usually by
a prefix combine operation at the end of a superstep,
and then masking out all but that processor in the
computation phase of the following superstep.

At the time of writing, the run-time system of Nest-
Step, implemented on top of MPI, is operational. In mea-
surements on a Linux cluster supercomputer, NestStep
outperformed OpenMP (running on top of a distributed-
shared memory emulation layer) by a factor of up to
30 [14]. A front end (compiler) for NestStep is in
preparation.

IV. TEACHING PARALLEL PROGRAMMING

A. Parallel algorithmic paradigms

Many modern textbooks about (sequential) algorithms
teach algorithmic concepts and then present one or
several algorithms as incarnation of that concept. Many
of these concepts indeed have also a direct parallel
counterpart.

Fig. 4. Relative speedup of a parallel mergesort implementation in
NestStep where the merge function is not parallelized. Measurements
were done on a Linux cluster; the different speedup curves correspond
to different configurations of the NestStep runtime system [14].

For instance, divide-and-conquer (DC) is an impor-
tant algorithmic problem solving strategy in sequential
computing. A problem is split into one or more in-
dependent subproblems of smaller size (divide phase);
each subproblem is solved recursively (or directly if it is
trivial) (conquer phase), and finally the subsolutions are
combined to a solution of the original problem instance
(combine phase). Examples for DC computations are
mergesort, FFT, Strassen matrix multiplication, Quick-
sort or Quickhull.

In parallel computing, the parallel DC strategy al-
lows for a simultaneous solution of all subproblems,
because the subproblems are independent of each other.
Parallel DC requires language and system support for
nested parallelism, because new parallel activities are
created in each recursion step. However, a significant
speedup can generally be obtained only if also the work-
intensive parts of the divide and the combine phase
can be parallelized. This effect is often underestimated
by students. For instance, Figure 4 shows the relative
speed-up curve for a student’s implementation of parallel
mergesort that exploits the independence of subproblems
in the DC structure of mergesort but uses a sequen-
tial merge function for combining the sorted subarrays,
which leads to parallel time O�n� with n processors and
elements, rather than O�log� n� which can be achieved
if the merge function is parallelized as well to run in
logarithmic parallel time. If this phenomenon is not made
transparent to students in the form of a work-time-cost
analysis framework (see e.g. [6]), they wonder why their
“fully parallel” code does not scale to large numbers of
processors but shows saturation effects, as in Figure 4.
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B. Textbooks and curricular issues

At Linköping university, about 300 undergraduate
students in computer science and closely related study
programs per year take one of our fundamental courses
on data structures and algorithms, usually in the second
year. However, only few of these (ca. 40 per year)
find their way into the optional, final-year course on
parallel programming, and only 4–8 PhD students every
second year sign up for a PhD-level course in parallel
programming. Beyond unavoidable diversification and
specialization in the late study phases, this may also be
caused by a lack of anchoring a fundamental understand-
ing of parallel computing in undergraduate education
and, as a consequence, in the mind of the students.

Part of this effect may be attributed to an underrepre-
sentation of parallel computing issues in the established
course literature on algorithms. Standard textbooks on al-
gorithms generally focus on sequential algorithms. Some
also contain a chapter or two on parallel algorithms, such
as Cormen et al. [3]. Up to now, we only know of a single
attempt to provide a unified treatment of both sequential
and parallel algorithms in a single textbook, by Miller
and Boxer [11]. However, their text, albeit fairly short,
covers many different parallel programming models and
interconnection network topologies, making the topic
unnecessarily complex for a second-year student.

Instead, we propose to take up parallel algorithmic
paradigms and some example parallel algorithms in a
second-year algorithms course, but based on a simple
parallel programming model, for instance an enhanced
BSP model as supported by NestStep.

C. Experiences in special courses on parallel computing

In a graduate-level course on parallel programming
models, languages and algorithms, we used the PRAM
model and the C-based PRAM programming language
Fork [6], which is syntactically a predecessor of Nest-
Step. That course contained a small programming project
realizing a bitonic-sort algorithm as presented in theory
in Cormen et al. [3] in Fork and running and evaluating
it on the SBPRAM simulator [9]. The goal was that the
students should understand the structure of the algorithm,
analyze and experimentally verify the time complexity
(O�log�N� with N processors to sort N elements).
Our experiences [10] indicate that the complementation
of the theoretical description of the parallel algorithm
by experimental work was appreciated, and that the
available tools (such as a trace file visualizer showing the
computation and group structure) helped in developing
and debugging the program. We expect similar results
for NestStep once a frontend will be available.

V. CONCLUSION

We have motivated why technical and teaching support
for explicit parallel programming gets more and more
important in the coming years. We have reviewed the
most important parallel programming models, elaborated
on an enhanced version of the BSP model, and described
the NestStep parallel programming language supporting
that model. Overall, we advocate a simple, structured
parallel programming model with deterministic consis-
tency and synchronization mechanism, which should be
accessible to a larger number of students and presented
earlier in the curriculum to create a fundamental un-
derstanding of parallel control and data structures. We
suggested a scenario how parallel programming concepts
could be added into a standard course on algorithms, that
is, relatively early in computer science education.
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