
Proc. 21st PARS - Workshop, Hamburg, Germany, May 31-Jun 1, 2007.
GI/ITG-Fachgruppe Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware (PARS).

PARS-Mitteilungen 24, ISSN 0177-0454, GI, Dec. 2007

Bulk-Synchronous Parallel Computing

on the CELL Processor

Daniel Johansson, Mattias Eriksson, and Christoph Kessler

PELAB, Dept. of Computer Science (IDA)
Linköping university, Sweden

{x06danjo,mater,chrke}@ida.liu.se

Abstract. In order to ease programming of heterogeneous architectures with explicitly
managed memory hierarchies such as the CELL processor, we propose a solution adopting
the BSP model as implemented in the parallel programming language NestStep. This allows
the programmer to write programs with a global address space and run them on the slave
processors (SPEs) of CELL while keeping the large data structures in main memory. We
have implemented the run-time system of NestStep on CELL and report on performance
results that demonstrate the feasibility of the approach. The test programs scale very well
as their execution time is mostly dominated by calculations, and only a fraction is spent in
the various parts of the NestStep runtime system library. The library also has a relatively
small memory footprint in the SPE's software managed local memory.

Key words: Cell processor, NestStep, bulk-synchronous parallel programming, global ad-
dress space, run-time system

1 Introduction

The Cell Broadband EngineTM , developed as a joint e�ort by IBM, Toshiba and Sony, is a
heterogeneous multicore system. On a single chip, it accommodates

� one master processor core (called the PPE), which is a 64-bit dual-thread SMT PowerPC
with level-1 and level-2 cache;

� 8 slave processor cores (called Synergistic processing elements or SPE s), which are 32-bit
RISC processors with SIMD instructions operating on 128-bit data items per cycle; each
SPE is equipped with a DMA controller and a local memory bu�er of 256 KB for storing
both data and code;

� a ring-based high-bandwidth interconnection network, and
� controllers for accessing (o�-chip) main memory and I/O channels.

IBM provides a Linux-based operating system for Cell that runs on the PPE. Even for
the Cell processor versions used in the recent Sony PlayStation-3TM , the game operating
system can be replaced by Linux. IBM also provides a complete development environment
and a Cell simulator [3]. Using the (slower) cycle-accurate simulation mode in the simulator,
it is possible to evaluate the performance of Cell programs even without having a hardware
version of the Cell processor at hand.

The SPEs cannot access main memory directly; instead, each of them has a DMA con-
troller that allows to move blocks of data and instructions between main memory and the
SPE's local memory bu�er. Parallelism resulting from overlapping DMA and SPE compu-
tation in time is one of several concerns in exploiting the performance potential of the Cell
processor [1]. Other sources of parallelism that the programmer (or a parallelizing compiler)
should exploit are the data parallelism provided by the SIMD instructions in the SPEs, and
the task parallelism by running the PPE and/or eight SPEs in parallel.

Of course, additional parallelism potential could be gained by aggregating several Cell
processors, e.g. in the IBM blade servers consisting of two Cell processors sharing one
copy of the operating system [4], and racks containing 7 blades. A Cell-based supercom-
puter (�Roadrunner�) with 16000 Opteron and 16000 Cell processors is planned by the Los
Alamos National Laboratory [5], which accumulates to a theoretical peak performance of
1.6 peta�ops. A new Cell generation with more PPE and many more SPE cores per chip is
already planned.

Unfortunately, programming the Cell processor to utilize these sources of parallelism
e�ectively is not an easy task. Communication and synchronization between PPE and SPEs
is done by mailboxes and signals, and communication between SPEs and memory by DMA
transfers; moreover, the local memory bu�ers of the SPEs are not included in the global
address space. Hence, programming at this level reminds rather of a message passing system
than a SMP chip multiprocessor.

Eichenberger et al. [1] proposed a virtual shared memory implementation across PPE and
all SPEs by utilizing (part of) the local SPE memory bu�ers as software-controlled caches.
This implies DMA tra�c for each cache miss and also for maintaining cache coherence across
the SPEs and the PPE. To get more e�cient code, they use static analysis to minimize cache
usage and optimize the placement of data transfers: by prefetching, software pipelining to
overlap data move and computation, by improving data locality by loop tiling, and by
agglomerating several DMA accesses into larger ones. In this way, they provided a SMP
platform on which OpenMP programs can be executed.

In this paper, we propose an alternative way of realizing a shared address space on
Cell. To control deterministic parallel execution, synchronization and memory consistency,
we adopt the bulk-synchronous parallel (BSP) programming model [12]. The BSP model
postulates that a parallel computation be structured as a barrier-separated sequence of su-
persteps, each consisting of a local computation phase and a global communication phase.
The parallel programming language NestStep developed in earlier work [7, 8] extends the
BSP model, replacing message passing by the emulation of a Combining CRCW BSP with
a shared address space, realized by the compiler and the run-time system on top of a
message-passing system. NestStep supports shared variables, shared objects and distributed
shared arrays with block-cyclic distributions, in addition to ordinary thread-private vari-
ables. Memory consistency will be re-established at the end of a superstep; for each shared
variable and array element, the policy of achieving consistency and resolving concurrent
writes in a deterministic way within the same superstep can be programmed. In particular,
reduction and multipre�x computations are supported. As superstep consistency must also
hold for distributed shared arrays, read accesses to non-local array elements must be ordered
by explicit prefetch statements at the end of the preceding superstep, and write accesses to
non-local array elements are committed at the end of their superstep. The necessary com-
munication for array accesses is scheduled at run-time by a BSP-compliant parallel version
of the inspector-executor technique; the overhead for this is kept low by packing the access
messages on top of the consistency-restoring and synchronizing messages at the end of each
superstep [8].

Although being more restrictive compared to general shared memory programming in
OpenMP, we see from a long-term perspective an advantage of using the NestStep/BSP
model in its simplicity and scalability: Clusters consisting of multiple Cells connected by a
message passing network could be programmed in NestStep in the same uniform way as a
single Cell, while OpenMP basically relies on the existence of a shared memory platform
and would need to be combined with MPI to a hybrid programming model.

We implement NestStep on Cell such that all computational NestStep code is running on
the SPEs, while the PPE takes care of launching SPE threads and manages memory alloca-

tion/deallocation, committing combined values to main memory, and synchronization. The
core of the NestStep run-time system on Cell is a loop running on the PPE polling combine
request messages from the SPE mailboxes, handling them and then sending a message back
to the SPEs with updated values of modi�ed shared variables, telling them to continue ex-
ecuting. We �nd a quite large bottleneck in the SPE's 256 KB local store; for instance, we
cannot store large array variables locally, and even the program size might become an issue.
We have chosen to handle these problems by allowing the programmer to split a NestStep
program into several parts that are run after each other, and also by storing shared variables
in main memory and only use the local store as a kind of programmer/compiler-managed
cache. We even introduced a special kind of global private variables that are stored in main
memory, such that their state is preserved even when changing between consecutive SPE
program parts.

We keep one data area dedicated for each SPE in main memory to store home versions
of all variables created by a speci�c SPE: its distributed shared array segments, replicated
shared variables and arrays, private variables stored in main memory, and consistency man-
agement structures such as combine lists communicated at the end of a superstep.

The cluster implementation of the NestStep runtime system [11] uses combine trees for
handling the combining of updates to shared variable and replicated arrays at the end of a
superstep. On Cell we adopted instead a �at combining mechanism, dedicating the PPE to
act as central manager for combining. However, in future versions of Cell with many more
SPE cores, trees should be used for combining as they are more scalable, distributing most
of the combining work across the SPEs.

The remainder of this article is organized as follows: After illustrating some central
NestStep language concepts in Section 2, we describe the structure of the NestStep run-
time system for Cell in some more detail in Section 3. The experimental evaluation of the
prototype implementation is described in Section 4, Section 5 discusses related work, and
Section 6 concludes and lists issues for future work.

2 NestStep by example

We illustrate some of NestStep's language concepts by considering a simple example, parallel
dot product. The following general version does not yet consider the memory hierarchy of
Cell:

sh �oat s; // shared variable � one local copy per processor
sh �oat a[N] < / >; // block-wise distributed shared array
sh �oat b[N] < / >; // block-wise distributed shared array
int i; // private variable
...
step { // executed by a group of processors
forall (i, a) // iterate over owned elements of a

s = s + a[i] ∗ b[i];
} combine (s < + >);
...

The above example code contains one superstep (marked by the step statement) that is
terminated by a global communication phase and an implicit barrier synchronization. The
communication phase will restore consistency of all copies of a shared variable (here, s)
written in the superstep. By the combine clause, the programmer can, for each variable,
override its default combine policy by specifying how this should be done, here for instance by
writing the global sum of all values of modi�ed copies of s, denoted by s < + >; several other

combine policies are also prede�ned in NestStep, and even user-de�ned combine functions
are possible. Arrays a and b are block-wise distributed shared arrays, thus each of the p
processors that see their declaration owns a contiguous partition of approximately size N/p
exclusively. The forall(i, a) loop lets each executing processor's i variable iterate over its
owned elements of a, such that all elements of a and b are read in the example above. After
the superstep, s holds the global sum of all per-processor contributions, i.e., the dot product
of a and b.

To run this example for large N e�ciently on Cell with its size-limited software managed
local store on each SPE, the baseline code needs to be extended for strip mining, by explicit
management of bu�ers in the local stores and DMA statements to pre-fetch operands and,
where necessary, poststore computed results, to overlap DMA transfers with computation.
The resulting NestStep-Cell (source) code has 233 lines of code and can be found in [6].

3 NestStep-Cell Run-time System Structure

The Cell processor is di�erent from previous targets for NestStep, mainly because of its
very limited size of the local store. Because of this we need to extend the NestStep run-time
system (a C library providing a kind of intermediate language for NestStep) in a few ways.

To be able to create programs that themselves are larger than the local store, we give
the programmer (or a future Cell-aware NestStep frontend compiler) the possibility to store
all NestStep variables in main memory and to read in only those that are currently being
worked on to the smaller local memory for each node. We also support that a large program
be split into several smaller program units that can run in sequence, where the values of
variables are preserved between subsequent units.

Since the PPE has direct access to the memory while the SPEs do not, we decided to
do all combining and calculations of combine functions (e.g., addition as in the example
above) on the PPE. We are aware that this sequentializes the combining process, which will
have a performance impact when combining large amounts of data. However, this makes
implementation much easier, as we do not need to allocate bu�ers for system functions
inside the already small SPE local store, and as we do not need to split combines into small
workable chunks.

As a consequence, we decided to remove the possibility to have user-de�ned combine
functions since the NestStep code runs on the SPEs and combining runs on the PPE. The
alternative would be to either de�ne the combine functions inside the PPE block of code
and manage pointers into those from the SPEs, or move the combining to run on the SPEs.

In Fig. 1 we can see how the memory is managed in NestStep-Cell. We have a memory
manager data structure both in main memory and in the LS of the SPE for each SPE
thread. The memory manager is identical in LS and in main memory. Inside this data
structure we store pointers to the location of the variables in the current scope of visibility,
as well as metadata about how large distributed shared arrays are, their element type and
so on. In the case of distributed shared arrays, the array is created in parts, one part per
thread, that together form the entire data structure. In the memory managers we also store
information about the owned range for the array, the size of the owned partition. In the
access functions for reading and writing distributed shared array elements we have logic
for calculating partition-local indices from their global counterparts and vice versa. In the
case of replicated shared variables, we store one copy of the variable for each thread. For
instance, in the dot product example above, the shared �oat variable s actually exists in 8
instances in main memory, one instance for each SPE thread. This replication is necessary
to guarantee the BSP-compliant deterministic memory consistency model of NestStep.

Data manager − SPE7

b

s

a

partition of array
owned by SPE0

instance of s
owned by SPE0

instance of s
owned by SPE7

partition of array
owned by SPE7

b

a

. . .

s

. . .

Main memoryData manager − SPE0

a

. . .b

s

Fig. 1. One memory manager for each SPE exists in main memory, with a copy in the SPE's local store. For a
block distributed shared array, the memory manager points to the owned partition of the array that belongs to the
corresponding SPE. For a shared variable, the memory manager points to the local copy of that variable that belongs
to the SPE.

3.1 Implementation details

A NestStep-Cell program consists of PPE binary code and the SPE binaries, which are
supposed to run alternatingly: The PPE program will begin by initializing the PPE part
of the runtime-system, i.e., the memory managers on the PPE. It then loads the �rst SPE
binary to all allocated SPEs and enters a waiting loop that polls the SPEs' mailboxes for
messages. If the PPE �nds a message (usually a request for combining or for allocating
memory), it will handle it and continue polling the mailboxes. This will continue until the
PPE has received a DESTROY_THREAD message from each SPE; then the PPE exits the loop
and executes the next SPE binary that was linked in. When all the SPE binaries have
terminated, the PPE cleans up its data structures and exit.

This message passing is done through the use of Cell's MFC mailboxes. These mailboxes
only support passing of integers, therefore we have chosen to pass an integer value referring
to a separate message data structure in the LS that the SPE thread can write into to pass
additional data, such as the name of an array that is to be created, and the length of the
array.

On the SPE side, the program will begin with a call to NestStep_SPU_init(Addr64
argp). This function takes the address of the memory manager for this thread as an argu-
ment. The address is passed through the main function and has to be sent to the initializing
function explicitly. The memory manager is then DMA'd to the SPE's LS. After this, the pro-
gram is set up and can start executing user-level code, i.e. supersteps, requesting combining
and other PPE services as encountered in the compiled NestStep code. Finally, the SPE pro-
gram has to end with a call to NestStep_SPU_finalize() that sends the DESTROY_THREAD
message to the PPE.

3.2 Speci�c constructs

With the addition of the possibility to have NestStep programs spanning several SPE pro-
grams, pre�x variables being handled on the PPE, and the remote read/write requests being

done on the PPE, we need to have private variables stored in main memory, too. This made
us introduce two new data types to the NestStep runtime system, the Private variable (a
private NestStep variable residing in main memory) and the Private array (a private array
residing in main memory). These are very similar to shared variables and replicated shared
arrays, respectively, in the sense that they reside in main memory, but with the di�erence
that these can not be used in combine functions.

To manage NestStep's special data types and transfer them to and from main memory,
we provide the following functions:

� DMA_read_variable(lsaddr, var)
loads a variable var from main memory into local store at address lsaddr.

� DMA_read_array(lsaddr, arr, lbound, ubound)
loads a contiguous section of an array arr (delimited by global indices lbound and
ubound) from main memory into local store.

� DMA_write_variable(lsaddr, var)
stores a variable from local store into main memory.

� DMA_write_array(lsaddr, arr, lbound, ubound)
stores an array from local store into main memory.

� DMA_wait(lsaddr, var)
waits for completion of an asynchronous DMA transfer of a variable.

� DMA_wait(lsaddr, arr)
waits for completion of an asynchronous DMA transfer of an array.

These are all mapped to asynchronous DMA-read and DMA-write calls. On Cell, DMA
transfer requests have a few restrictions on their parameters. If a transfer is larger than 16
byte, it needs to be 16-byte aligned, it needs to be a multiple of 16 byte in size, and it can
be at maximum 16384 bytes in size. If a transfer is smaller than 16 byte, it can be naturally
aligned (4, 8 or 16-byte aligned, depending on the transfer size). We allow 30 concurrent
data transfers at a time, and the program has to do an explicit wait on all transfers in order
to clear the DMA transfer �ags.

3.3 Communication structure

Because we assigned combining work (including handling pre�x variables) to the PPE, and
because the current Cell processor only has at most 8 SPEs 1 we have chosen to remove
the tree-based implementation of combining used in the NestStep runtime system for MPI
clusters [11], and only use a �at tree for combining.

The NestStep construct mirror(a[l:r]) denotes a bulk prefetch operation for all
remote elements in the section between (global) index positions l and r of a distributed
shared array a, in order to make them available as a local copy at the entry of the following
superstep. Likewise, the construct update(a[l:r]) denotes a bulk poststore operation for
written local copies that should be committed to their remote home location at the end of
the current superstep. Mirror instructions are necessary to enforce the BSP memory model
for distributed shared arrays (accessing unmirrored remote elements would cause a run-time
error) while update is just a hint by the programmer for the compiler to coordinate remote
updates of the same array, avoiding many separate one-element update requests.

The handling of mirror and update requests has also been moved to the PPE since, on
Cell, this just amounts to memcpy operations.2 It might be faster if it could be managed via
MFC; looking into this is a topic for future work.
1 The IBM roadmap depicts Cell processors with at most 32 SPEs for the coming years.
2 A parallelized inspector-executor realization of bulk remote array accesses on a cluster NestStep implementation
was presented in earlier work [8].

4 Evaluation

We report on �rst results that should demonstrate how well NestStep's global-address-space
BSP model can be implemented on a heterogeneous multicore architecture such as the Cell
processor with our approach. Our test programs were initially benchmarked on a Sony
PlayStation-3, which supports 6 SPEs on Cell. Later we got access to an IBM QS20 which
allowed us to scale up to 8 SPEs. We did no benchmarking on the Cell System Simulator since
the time for cycle-accurate simulation would be too high for larger problem instances. We
used no SIMD operations in our test programs, thus the theoretical maximum performance
in any test should be 1/4 of peak performance, or 50 GFLOPS, for single precision and
1/2 of peak performance, or 3 GFLOPS, for double precision. We did not try to optimize
code outside the NestStep runtime system library, and thus the number of FLOPS achieved
is less meaningful; instead, a comparative analysis showing how much time was spent in
the di�erent parts of the program should be more illustrative. Optimal behavior is that the
program only spends time in the calculation part of the program. The time spent in DMA-
wait is caused by some data transfers not being complete yet when the calculation should
be done. Since the combining mechanism also acts as a barrier synchronization, time spent
here can stem from load imbalance in a superstep, i.e., some calculations or data transfers
on one SPU might have taken longer time to �nish than on other SPUs.

Test programs For the purpose of testing the implementation, we provide four NestStep-
Cell test programs: Pi calculation is a calculation-dominated program approximating π by
numerical integration, where the sum loop over 10 million subintervals is parallelized. The
dot product program calculates the dot product of two large (16M �oat elements) block-
distributed arrays that do not �t in the local store. The parallel pre�x program computes
the pre�x sums of a large block-distributed shared array of 8M integer elements and stores
them in another block-distributed shared array. Finally, the Jacobi program contains a loop
iterating over one-dimensional Jacobi relaxation steps with a 5-point stencil (smoothening
a sampled signal by a low pass �lter) on a one-dimensional block-distributed shared array
of 7M �oat elements, until an accuracy criterion is met.

Results Fig. 2 and Table 1 show relative speedups and times required for the di�erent phases
of the test programs. We note that all test programs that have to shu�e major amounts of
data between memory and SPEs (i.e., all but Pi calculation), the time spent in DMA_wait
approximately decreases by half as we double the number of SPEs. This is because, for each
doubling of the SPEs, each SPE only works on half its amount of data. We also see that the
SPEs spend more time in the combine phase, because we need more time to handle combine
requests, putting more (sequential) work on the PPE, as we add more SPE threads.

The pi calculation program scales very well; the relative speedup is at 7.3 for 8 SPUs
and almost all of the time is spent inside the main calculation loop. This is to be expected
since the program does not need to transfer much data on the bus.

There is a lot of DMA tra�c in the dot product program, but we still obtain a relative
speedup of 6.2 when using 8 SPUs. This program also spends some time in combining, as
can be seen in the time distribution table (b). The size of the arrays is 16 · 10242.

Parallel pre�x calculation is quite similar to dot product with respect to memory access
patterns, but it uses the runtime system more as pre�x combining needs some more work
by the PPE. We can see that the parallel pre�x program achieves a speedup of 5.9 on 8
SPEs, which is almost the same as for dot product. The array size for this test is 8 · 10242.

Jacobi calculations are more mixed in their memory accesses than the previous programs;
it also spends more time in the runtime system. We still get a speedup of 6.1, and, as can be

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9

Pi speedup

Speedup

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9

Dotproduct speedup

Speedup

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9

Parallell prefix speedup

Speedup

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9

Jacobi speedup

Speedup

(d)

Fig. 2. Relative speedups of our test programs.

SPUs 1 2 4 8
Calculation 0.408 0.204 0.102 0.051
DMA Wait 0.000 0.000 0.000 0.000
Combine 0.000 0.001 0.002 0.005

(a) Pi calculation.

SPUs 1 2 4 8
Calculation 4.521 2.260 1.130 0.565
DMA Wait 0.034 0.016 0.008 0.004
Combine 0.012 0.034 0.080 0.168

(b) Dot product calculation.

SPUs 1 2 4 8
Calculation 5.948 2.974 1.487 0.744
DMA Wait 0.045 0.023 0.012 0.007
Combine 0.024 0.059 0.123 0.266

(c) Parallel pre�x calculation

SPUs 1 2 4 8
Calculation 4.446 2.223 1.111 0.556
DMA Wait 0.197 0.112 0.058 0.029
Combine 0.005 0.068 0.091 0.174

(d) Jacobi calculation

Table 1. Times spent in Calculation, DMA and Combine phases.

seen in the time distribution table (d), the runtime system still takes quite moderate time
compared to computations. The array size for this test is 7 · 10242.

As we can see from the time distribution diagrams, the NestStep-Cell run-time system
library takes up some fraction of the program time. This can however be decreased if we were
to use SIMD instructions during combines as well as use two PPE threads to parallelize the
combining mechanism. The library's most important metric for Cell is however the size of
libNestStep_spuliba.a, the part of the library that gets linked into all SPE binaries. This
part takes up 53 KB of the SPE local store. This leaves 203 KB for the NestStep program
and its bu�ered data. It is possible to further decrease the library's memory footprint by
removing the debug structures and thus getting rid of the stdio library. This would however
increase the di�culty of writing NestStep-Cell programs since one would no longer get any
warnings when trying to read data that will cause the processor to stall, which can happen
for several reasons. We therefore o�er two versions of the library, a debug version and a
small version.

5 Related Work

Knight et al. [9] chose another way to handle programming for architectures with di�erent
explicitly managed memory hierarchies. They present a compiler for Sequoia [2], a program-
ming language for memory hierarchy aware parallel programs. In their compiler they treat
memory as a tree of di�erent memories with coupled processors and try to optimize the
locality of code and data transfers. By optimizations to decrease the amount of copying and
proper parallelization of code, they manage to get within a few percent of hand-tuned code
or even outperform the alternatives.

Ohara et al. [10] propose a new programming model for Cell based on MPI, called MPI
microtask. This programming model allows to partition the code into fragments where each
fragment is small enough to �t into the local memory of the SPE. This abstracts the local
store away from the programmer and makes it easier to program for the Cell processor.

IBM has also implemented OpenMP on Cell, see Eichenberger et al. [1], in the IBM xlc
compiler. Code that ought to be run in parallel on both the PPE and the SPEs is compiled
for each processor type. They implement a software cache on the SPEs, optimized by SIMD
instructions and compile-time analysis, and set up the environment so that the PPE and
the SPEs can work together as a gang.

6 Conclusions and Future Work

The goal of this research was to see how well the NestStep programming model suits the Cell
processor. We have shown that it is possible to get good performance on our test programs
using this programming model. We have developed a stable run-time system library that
supports the basic NestStep functionality. The library indeed makes it easier to write SPMD
programs for Cell. Our test programs scale very well. At least for the test programs, the
degraded performance due to general purpose computing on the SPEs did not matter too
much, as was shown in the distribution diagrams in the evaluation when compared against
the core calculations. This might however not be a valid assumption for all kinds of programs.
Even if it is easier to write this kind of programs with our library, it is not an easy task.
Explicit multi-bu�ering makes an algorithm as simple as the dot product climb to over 200
lines of code, and the constraints on data transfer sizes and o�sets of data transfers increases
the burden for the programmer. However, if these problems can be overcome, then using
this library on Cell is indeed a viable way to get programs that perform well.

There are a few issues for future work that could increase the usefulness of the library.
A Cell-aware NestStep front end would allow the programmer to write programs with a less
cumbersome syntax, as shown in Section 2. The nesting of supersteps de�ned in NestStep [7]
is not implemented yet for Cell. Using several PPE threads for parallelizing the combining
work, as well as using SIMD instructions in combining, could speed up that part of the
program by a factor of up to 8 for single precision �oating point variables; this would
make the implementation more suited for Cell con�gurations with more than eight SPEs.
In a current project we are working towards a library for numerical and non-numerical
computations and parallel skeletons linkable from NestStep-Cell, which will encapsulate
all double bu�ering and SIMDization, enabling concise, hardware-independent NestStep
programming as illustrated in Section 2 even for Cell. Another possibility for future work is
to extend the implementation to hybrid parallel systems containing more than a single Cell.

Acknowledgments. This research was funded by Ceniit 01.06 at Linköpings universitet; by
Vetenskapsrådet (VR); by SSF RISE; by Vinnova SafeModSim; and by the CUGS graduate
school. � We also thank Inge Gutheil and Willi Homberg from Forschungszentrum Jülich
for giving us access to their Cell cluster Juice.

References

1. A. Eichenberger et al.: Using advanced compiler technology to exploit the performance
of the Cell Broadband EngineTM architecture. IBM Systems Journal 45(1):59�84, 2006.

2. K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. Reiter Horn, L. Leem, J. Y.
Park, M. Ren, A. Aiken, W. J. Dally, P. Hanrahan. Sequoia: Programming the memory
hierarchy. In Proc. ACM/IEEE Conf. on Supercomputing, 2006.

3. IBM Corp.: Cell BE development environment. www.alphaworks.ibm.com/
tech/cellsw/download (2006)

4. IBM Corp.: Cell Broadband EngineTM processor-based systems White Paper. IBM,
www.ibm.com, Sep. 2006

5. IBM Corp.: IBM to Build World's First Cell Broadband Engine Based Supercomputer.
Press release, www-03.ibm.com/ press/us/en/ pressrelease/20210.wss, 6 sep. 2006

6. D. Johansson: Porting the NestStep run-time system to the IBM CELL processor. Mas-
ter thesis, Linköping university, Dept. of computer and information science, to appear
(2007).

7. C. W. Keÿler. NestStep: Nested Parallelism and Virtual Shared Memory for the BSP
Model. The Journal of Supercomputing, 17(3):245�262, Nov. 2000.

8. C. W. Kessler: Managing Distributed Shared Arrays in a Bulk-Synchronous Parallel En-
vironment. Concurrency and Computation: Practice and Experience 16:133-153, Wiley,
2004.

9. T. J. Knight, J. Y. Park, M. Ren, M. Houston, M. Erez, K. Fatahalian, A. Aiken, W. J.
Dally, Pat Hanrahan. Compilation for explicitly managed memory hierarchies. In Proc.
12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP'07), pp. 226�236, New York, NY, USA, 2007.

10. M. Ohara, H. Inoue, Y. Sohda, H. Komatsu, and T. Nakatani. MPI microtask for
programming the CELL Broadband Engine processor. IBM Syst. J., 45(1):85�102, 2006.

11. J. Sohl: A scalable run-time system for NestStep on cluster supercomputers. Master
thesis, LITH-IDA-EX-06/011-SE, Linköping university, Sweden, 2006.

12. L. G. Valiant: A Bridging Model for Parallel Computation. Communications of the
ACM 33(8), 1990.

