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PRAM  model

-  connected by a shared memory with uniform memory access time
-  p  processors,  individual program control,  but common clock signal
-  Parallel  Random  Access  Machine

......
p-10 1 2 3P P P P

Network

Shared   Memory

-  sequential memory consistency  (no caches)

P

0M M1 M2 M3 p-1M

CLOCK

[Fortune / Wyllie ’78]
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PRAM  model

-  connected by a shared memory with uniform memory access time
-  p  processors,  individual program control,  but common clock signal
-  Parallel  Random  Access  Machine

......
p-10 1 2 3P P P P

Network

Shared   Memory

-  sequential memory consistency  (no caches)

P

0M M1 M2 M3 p-1M

CLOCK

Memory access conflict resolution variants:

EREW  =  exclusive read,  exclusive write
CREW  =  concurrent read, exclusive write
CRCW  =  concurrent read, concurrent write

Arbitrary CRCW
Priority CRCW
Combining CRCW   (global sum, max, etc.)
......

a

*a=0; *a=1; nop; *a=0;

?

t:
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PRAM  model

-  connected by a shared memory with uniform memory access time
-  p  processors,  individual program control,  but common clock signal
-  Parallel  Random  Access  Machine

......
p-10 1 2 3P P P P

Network

Shared   Memory

-  sequential memory consistency  (no caches)

P

0M M1 M2 M3 p-1M

CLOCK

Memory access conflict resolution variants:

EREW  =  exclusive read,  exclusive write
CREW  =  concurrent read, exclusive write
CRCW  =  concurrent read, concurrent write

Arbitrary CRCW
Priority CRCW
Combining CRCW   (global sum, max, etc.)
......

a

*a=0; *a=1; nop; *a=0;

?

t:

sh int a = 0;

if (mybit == 1)   a = 1;

CRCW is stronger than CREW.

(else do nothing)

Example:  Computing logical OR of p bits on a CRCW PRAM in constant time:
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PRAM  model

-  connected by a shared memory with uniform memory access time
-  p  processors,  individual program control,  but common clock signal
-  Parallel  Random  Access  Machine

......
p-10 1 2 3P P P P

Network

Shared   Memory

-  sequential memory consistency  (no caches)

P

0M M1 M2 M3 p-1M

CLOCK

Memory access conflict resolution variants:

EREW  =  exclusive read,  exclusive write
CREW  =  concurrent read, exclusive write
CRCW  =  concurrent read, concurrent write

Arbitrary CRCW
Priority CRCW
Combining CRCW   (global sum, max, etc.)
......

-  easy to write programs for
-  but  unrealistic ???

-  easy to understand,  popular in theory

-  easy to compile for
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The PRAM programming language  Fork

.....

.....

.....

HOST

BASE BASE BASE
0P P P

PROGRAM

MEMORY

pc pc pc

.....

SHARED  MEMORY

0 1MM Mp-1

private address subspacesshared address subspace

shared
objects

global
shared objects
group-local

1 p-1

open, read, write, close

CLOCK
extension of C

implementation for SB-PRAM
HOST FILE SYSTEM

MIMD,  SPMD  execution style
(fixed number of processors)

private address subspaces
embedded in shared memory

synchronicity of the PRAM
transparent at expression level

programming model:

language design started in 1994

Fork  =  Fork95 v.2.0    (1999)

Arbitrary  CRCW PRAM  with atomic multiprefix operators

[Kessler / Seidl ’95]
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SPMD style of parallel execution

- no spawn() command

- main() executed by all started
   processors as one group

P0 P1 P2 3
P P4 5P

barrier

seq

parallel

time

- fixed set of processors
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-  sh relates to defining group of processors

-  special shared run-time constant variable:   

-  special private run-time constant variable:

__STARTED_PROCS__

__PROC_NR__

"sharity"

sh int npr = __STARTED_PROCS__;

pprintf("Hello world from P%d\n", __PROC_NR__ );

pr int myreverse = npr - __PROC_NR__ - 1;

-  each variable is classified as either shared or private

pr int prvar, *prptr;

-  pointers:   no specification of pointee’s sharity required

prptr

shptr

      = &     ;         shvar

      = &     ;         prvar

sh int shvar, *shptr;

//  concurrent write!

Shared and private variables

private
subspace
of P0

private
subspace
of P2047

..........

..........

prptr

prvarprvar

prptr
shvar

shptr

SHARED  MEMORY

subspace
shared
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First steps in Fork: ”Hello World”

#include <fork.h>

#include <io.h>

void main( void )

{

if (__PROC_NR__ == 0)

printf("Program executed by %d processors\n",

__STARTED_PROCS__ );

barrier;

pprintf("Hello world from P%d\n",

__PROC_NR__ );

}
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First steps in Fork: ”Hello World”

PRAM P0 = (p0, v0)> g

Program executed by 4 processors

#0000# Hello world from P0

#0001# Hello world from P1

#0002# Hello world from P2

#0003# Hello world from P3

EXIT: vp=#0, pc=$000001fc

EXIT: vp=#1, pc=$000001fc

EXIT: vp=#2, pc=$000001fc

EXIT: vp=#3, pc=$000001fc

Stop nach 11242 Runden, 642.400 kIps

01fc 18137FFF POPNG R6, ffffffff, R1

PRAM P0 = (p0, v0)>
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EXPRESSIONS

Atomic Multiprefix Operators (for integers only)

Assume a set P of processors executes simultaneously

k = mpadd( ps, expression );

Let psi be the location pointed to by the ps expression of processor i P.
Let si be the old contents of psi.
Let Qps P denote the set of processors i with psi ps.
Each processor i P evaluates expression to a value ei.

Then the result returned by mpadd to processor i P is the prefix sum

k si ∑
j Qsi j i

e j

and memory location psi is assigned the sum

psi si ∑
j Qsi

e j
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0xe40:

0xf3c: 4

SHARED MEMORY

0

0xe40,0xf3c,mpadd( mpadd(

1 ); 2 );

Examplempadd

mpadd(

3 );

mpadd(

4 );

0xf3c, mpadd(

5 );

0xe40, 0xe40,

0P P P P P1 2 3 4

returns returns returns returns returns4 0 2 5 5

0xf3c:

0xe40:

SHARED MEMORY

10

9
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mpadd may be used as atomic fetch&add operator.

Example: User-defined consecutive numbering of processors

sh int counter = 0;

pr int me = mpadd( &counter, 1 );

Similarly:
mpmax (multiprefix maximum)
mpand (multiprefix bitwise and)
mpand (multiprefix bitwise or)

mpmax may be used as atomic test&set operator.

Example: pr int oldval = mpmax( &shmloc, 1 );
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Atomic Update Operators:

syncadd(ps, e) atomically add value e to contents of location ps
syncmax atomically update with maximum
syncand atomically update with bitwise and
syncor atomically update with bitwise or

ilog2(k) returns floor of base–2 logarithm of integer k
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     }
}

  }

  A = read_array( &n );

     A = sort( A, n );

{

  if ( n>0 ) {

     return a;

     pr int myrank = compute_rank( a, n );

  }

  else

        return NULL;

        printf("Error: n=%d\n", n);

     a[myrank] = a[__PROC_NR__];

         straight  extern          int compute_rank( int *, int);

async      void main( void )

       asyncextern       int *print_array( int *, int );

       asyncextern       int *read_array( int * );

sh int *A, n;

     farm

  start

          if (n<100) print_array( A, n );     seq

{

{

{

     int *sort( sh int *a, sh int n )sync

}

Synchronous,
straight, and
asynchronous
regions
in a Fork program
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G G

G

G’

G G

GG G

G

(active)
current groupcurrent group

(active)

program

point 2point 1
(active)

program

point 2

point 1

(inactive)

program

point 2

(inactive)

programprogram

current group
(active)

seq

program point 2

   statement;
program point 1

(inactive)

current group

farm

program point 2

   statement;
program point 1

start

program point 2

   statement;
program point 1

(inactive)

point 1

(inactive)

new group
(active)

program

join (...)

   statement;
(see later)

Switching from synchronous to asynchronous mode and vice versa
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Scope of barrier-synchronization  (barrier statement)

Scope of synchronous execution:

P P P0P 2 3

Scope of sharing for function-local variables and formal parameters

1
Group  ID:   @  (set automatically)

Synchronicity invariant   (holds in synchronous regions) :

All processors in the same active group operate synchronously.

Group concept

Group size:   #   or groupsize()

Group  rank:   $$   (automatically ranked from 0 to #-1)

Group-relative processor ID:  $   (saved/restored, set by programmer)

22



if (cond)

         statement_1;

else

         statement_2;

-->  current group of processors must be split into 2 subgroups

T F T T F T F F

Implicit group splitting:  private IF statement

statement_1; statement_2;

cond

(parent) group is deactivated while the subgroups are active

group-relative processor IDs  $  may be locally redefined in a subgroup

group ranks  $$  are renumbered subgroup-wide automatically

shared stack and heap of parent group is divided among child groups

new subgroups get group IDs  @ = 0  and  @ = 1

Private condition may evaluate to different values on different processors

(parent) group is reactivated (implicit barrier) after subgroups have terminated

P0 1 2 3 4 5 6 7PP P P P P P

P0 2 3 5 1 4 6 7P P P P P P P
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-  Processors that evaluate  cond  to TRUE join the subgroup of iterating 

group of iterating processors

parent group

T F T TTT F Fcond

statement;

     statement;

while ( cond ) do

-  statement is executed synchronously by the processors of the iterating group.

-  As soon as cond becomes FALSE,  the processors wait at the end of 

     processors  and remain therein until  cond  becomes FALSE.

      statement for the others  (implicit barrier).

Loops with private exit condition

P2 7PPP0 P3 P4 P5 61P

0 2 3 4 6P P P P P
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@=0 @=2@=1

g-1

@=g-1

210 GGGG(active)
(active)

subgroups (active)

(inactive)

current groupcurrent group

parent group is deactivated while subgroups are active

(implicit barrier)
parent group is reactivated when all subgroups have terminated

...

program point 1

program point 2

program point 2program point 1

subgroup creation subgroup exit

fork ( g; @ = fn($$); $=$$)

   statement;

��first parameter:  current group is split into  g  subgroups
second parameter:  assignment to @,  decides about subgroup to join
third parameter (optional):  possible renumbering of  $  within the subgroups

body statement is executed by each subgroup in parallel

Explicit group splitting:   The  fork()  statement
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                       and of sharing for shared local variables

Hierarchical processor group concept

-  groups control degree of synchronicity   (also barrier scope)  and  sharing

-  group hierarchy forms a logical tree at any time

P P P PPP0 1 2 3 4 5

fork(2)

0

G

G

G

010

0

01

G01

G011
G

00G 00G G01

00G
G

G01

010G G011

G

barrier 0

0time

Group hierarchy tree

-  dynamic group splitting into disjoint subgroups
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degree 3

 if (level >= DEGREE) { //  reach limit of recursion:

    return;

    seq_line( startx, starty,
              stopx, stopy, color, width );

generator pattern:

P0 P1

P2

 }

P4

start stop

start stop

P3

{

void seq_Koch ( int startx, int starty,

    int stopx, int stopy, int level )

degree 1

degree 2

degree 0

initiator pattern:

Example:  Drawing Koch curves

 int x[5], y[5], dx, dy;

 int i;

 dx = stopx - startx;      dy = stopy - starty;

 x[0] = startx;            y[0] = starty;

 x[1] = startx + (dx/3);   y[1] = starty + (dy/3);

 x[2] = startx + dx/2 - (int)(factor * (float)dy); 

 y[2] = starty + dy/2 + (int)(factor * (float)dx);

 x[3] = startx + (2*dx/3); y[3] = starty + (2*dy/3);

 x[4] = stopx;             y[4] = stopy;

 for ( i=0; i<4; i++ )

    seq_Koch( x[i], y[i], x[i+1], y[i+1], level + 1 );
 }

//  compute x and y coordinates of interpolation points  P0, P1, P2, P3, P4:

//   4  recursive calls

recursive replacement strategy:

28



{

sync void Koch ( sh int startx, sh int starty,

Example:  Drawing Koch curves in parallel

pr int i;

   int x[5], y[5], dx, dy;

 seq {
    dx = stopx - startx;      dy = stopy - starty;
    x[0] = startx;            y[0] = starty;
    x[1] = startx + (dx/3);   y[1] = starty + (dy/3);
    x[2] = startx + dx/2 - (int)(factor * (float)dy); 
    y[2] = starty + dy/2 + (int)(factor * (float)dx);
    x[3] = startx + (2*dx/3); y[3] = starty + (2*dy/3);
    x[4] = stopx;             y[4] = stopy;
 }

       Koch( x[@], y[@], x[@+1], y[@+1], level + 1 );

 else

 if (# < 4)

//  parallel divide-and-conquer step

//  partially parallel divide-and-conquer step
// not enough processors in the group?

 if (level >= DEGREE) {

 }

    line( startx, starty, stopx, stopy, color, width );

    return;

//  terminate recursion:

//  linear interpolation:

    for ( i=$$; i<4; i+=# )

                 sh int stopx,  sh int stopy,  sh int level )

}

sh

            seq_Koch( x[i], y[i], x[i+1], y[i+1], level + 1 );       farm

    fork ( 4; @ = $$ % 4; )

29



Drawing Koch curves
 traced time period: 266 msecs
5161 sh-loads,    1521 sh-stores
82 mpadd,    0 mpmax,    0 mpand,     0 mpor

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

8 barriers,       73 msecs = 27.4% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 406 sh loads,  96 sh stores,   7 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       41 msecs = 15.4% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       42 msecs = 16.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       73 msecs = 27.4% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       46 msecs = 17.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       18 msecs = 7.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,        2 msecs = 1.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       45 msecs = 17.2% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       45 msecs = 17.0% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,        1 msecs = 0.5% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       12 msecs = 4.7% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       46 msecs = 17.6% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       70 msecs = 26.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       40 msecs = 15.3% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       41 msecs = 15.4% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

8 barriers,       73 msecs = 27.5% spent spinning on barriers    0 lockups,        0 msecs = 0.0% spent spinning on locks 317 sh loads,  95 sh stores,   5 mpadd,  0 mpmax,  0 mpand,  0 mpor

Fork95
trv

Program trace visualization with the  trv  tool

-T:  instrument the target code to write events to a trace file.  Can be processed with trv to FIG image
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read 0.0
add 1.0
store 1.0

read 0.0

store 1.0
add 1.0

Asynchronous mode:   Critical sections and locks

Asynchronous concurrent read + write access to shared data objects
constitutes a
(danger of  race conditions,  visibility of inconsistent states,  nondeterminism)

critical section

Example:
sh float var = 0.0;

var = var + 1.0;

farm {

....

....

....
}

time
P1P0

....

....

....

....

....

....

Access to var must be atomic.

Atomic execution can be achieved by sequentialization   (mutual exclusion).
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lock = 1;
while (lock > 0) ;

read 0.0
add 1.0
store 1.0

add 1.0
store 1.0

read 0.0

Asynchronous mode:   Critical sections and locks

Asynchronous concurrent read + write access to shared data objects
constitutes a
(danger of  race conditions,  visibility of inconsistent states,  nondeterminism)

critical section

Example:

sh int lock = 0;

sh float var = 0.0;

lock = 0;

/* wait */

var = var + 1.0;

....

....

....
}

time

....

........

Access to var must be atomic.

Atomic execution can be achieved by sequentialization   (mutual exclusion).

Access to the lock variable must be atomic as well:    fetch&add   or   test&set

....

.... ....

lock = 0 lock = 0

lock == 0 lock == 0
lock = 1 lock = 1

farm {

!!NOT ATOMIC!!

/* mutex var. */

P0 P1

var = 0.0 var = 0.0
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read 0.0
add 1.0
store 1.0

Asynchronous concurrent read + write access to shared data objects
constitutes a
(danger of  race conditions,  visibility of inconsistent states,  nondeterminism)

critical section

Example:

sh int lock = 0;

sh float var = 0.0;

while (mpmax(&lock, 1)) ;

var = var + 1.0;
lock = 0;

farm {

....

....

....
}

time

....

Access to var must be atomic.

Atomic execution can be achieved by sequentialization   (mutual exclusion).

Access to the lock variable must be atomic as well:    fetch&add   or   test&set

in Fork:   use  the  mpadd  /  mpmax  /  mpand  /  mpor  operators

.... ....

....

.... ....
lock = 0lock = 0

mpmax: 0mpmax: 1

/* wait */

lock = 0

/* wait */

Asynchronous mode:   Critical sections and locks

read 1.0
add 1.0
store 2.0

P0 P1
var = 0.0 var = 0.0

mpmax: 0
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read 0.0
add 1.0
store 1.0

Asynchronous mode:   Critical sections and locks

Asynchronous concurrent read + write access to shared data objects
constitutes a
(danger of  race conditions,  visibility of inconsistent states,  nondeterminism)

critical section

Example:
sh float var = 0.0;

var = var + 1.0;
simple_unlock( sl );

farm {
....

....
}

time

....

Access to var must be atomic.

Atomic execution can be achieved by sequentialization   (mutual exclusion).

Access to the lock variable must be atomic as well:    fetch&add   or   test&set

.... ....

....

.... ....
lock = 0lock = 0

mpmax: 0mpmax: 1

/* wait */

lock = 0

/* wait */

in Fork:   alternatively:  use predefined lock data types and routines

simple_lockup( sl );

sh SimpleLock sl;
seq sl = new_SimpleLock();
....

P0 P1

read 1.0
add 1.0
store 2.0

var = 0.0 var = 0.0

mpmax: 0
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Predefined  lock  data types  and  routines  in  Fork

SimpleLock new_SimpleLock ( void );
void simple_lock_init ( SimpleLock s );
void simple_lockup ( SimpleLock s );
void simple_unlock ( SimpleLock s );

FairLock new_FairLock ( void );
void fair_lock_init ( FairLock f );
void fair_lockup ( FairLock f );
void fair_unlock ( FairLock f );

RWLock new_RWLock ( void );
void rw_lock_init ( RWLock r );
void rw_lockup ( RWLock r, int mode );
void rw_unlock ( RWLock r, int mode, int wait );

(a)   Simple lock

(b)   Fair lock        (FIFO order of access guaranteed)

RWDLock new_RWDLock ( void );
void rwd_lock_init ( RWDLock d );
int  rwd_lockup ( RWDLock d, int mode );
void rwd_unlock ( RWDLock d, int mode, int wait );

(c)   Readers/Writers lock       (multiple readers OR single writer)

(d)   Readers/Writers/Deletors lock     (lockup fails if lock is being deleted)

mode in { RW_READ, RW_WRITE, RW_DELETE }

mode in { RW_READ, RW_WRITE }
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22

28

26} fair_lock, *FairLock;
   int active;
   int ticket;

23

23

27

get your

HERE
ticket

24
25

active:

struct {

Implementation of the  fair lock  in Fork

Analogy:  booking office management system

2 counters:

void fair_unlock ( FairLock fl )
{
  syncadd( &(fl->active), 1 );
}

/*wait*/

{
  int myticket = mpadd( &(fl->ticket), 1);

  while (myticket > fl->active) ;
}

/*atomic increment*/

/*atomic fetch&add*/

void fair_lockup ( FairLock fl )
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KED
LOC

KED
LOC

->  simultaneous entry of more than one processor

->  deterministic parallel access by executing a synchronous parallel algorithm

->  at most one group of processors inside at any point of time

->  sequentialization of concurrent accesses to a shared object / resource

synchronous parallel critical section

sequential critical section

40



KED
LOC

Entry conditions?

When to terminate the entry procedure?

?

What happens with processors

not allowed to enter?

!
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KED
LOC

!? ?

Need a synchronous parallel algorithm

in order to guarantee deterministic execution!
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   =>  sequentialization of accesses

- after termination of the parallel critical section,

sequential critical sections  (e.g.  Dijkstra’68):

   guarded by a semaphore  (lock)
   must be mutually exclusive:

   by applying a suitable synchronous (PRAM) algorithm

   a new bunch of processors is allowed to enter

   access to shared object / resource by asynchr. processes

SYNCHRONOUS  PARALLEL  CRITICAL  SECTIONS

Idea:

- deterministic parallel execution of the  critical section

=>  sequential critical section = special case of parallel critical section

synchronous parallel critical section

- allow simultaneous entry of more than one processor
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- execute  else part:

- break in else part:  continue with next activity  (join exit point)

- continue in else part:  jump back to bus stop  (join entry point)

missedStatement;

The  join()  statement:    The excursion bus analogy

    missedStatement;

Bus gone?

    busTourStatement;

join ( SMsize; delayCond; stayInsideCond )

else

Line  1

BUS
STOP

?
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Line 1
BUS

The  join()  statement:    The excursion bus analogy

    missedStatement;

    busTourStatement;

join ( SMsize; delayCond; stayInsideCond )

else

Tic
ket

join the Fork95 bus tours!

Line  1

BUS
STOP

Bus waiting: - get a ticket and enter

- ticket number is 0?  ->  driver!
driver initializes shared memory (SMsize) for the bus group
driver then waits for some event:
driver then switches off the ticket automaton

delayCond
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spring off and continue with else partstayInsideCond- if not

Line 1
BUS

The  join()  statement:    The excursion bus analogy

    missedStatement;

    busTourStatement;

join ( SMsize; delayCond; stayInsideCond )

else

Tic
ket

join the Fork95 bus tours!

Line  1

BUS
STOP

Bus waiting: - get a ticket and enter

- ticket number is 0?  ->  driver!
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The  join()  statement:    The excursion bus analogy

    missedStatement;

    busTourStatement;

join ( SMsize; delayCond; stayInsideCond )

else

Line  1

BUS
STOP

Bus waiting: - get a ticket and enter

- ticket number is 0?  ->  driver!

- otherwise:  form a group, execute

- if not stayInsideCond spring off and continue with else part

busTourStatement

synchronously

join the Fork95 bus tours!

Line 1
BUS

Tic
ket
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Line 1
BUS

The  join()  statement:    The excursion bus analogy

    missedStatement;

    busTourStatement;

join ( SMsize; delayCond; stayInsideCond )

else

Tic
ket

join the Fork95 bus tours!

Line  1

BUS
STOP

Bus waiting: - get a ticket and enter

- ticket number is 0?  ->  driver!

- otherwise:  form a group, execute

- if not stayInsideCond spring off and continue with else part

- at return:  leave the bus,  re-open ticket automaton
and continue with next activity

busTourStatement
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time P                   1

Example:   parallel shared heap memory allocation

shfree(40)

shfree(4)

shmalloc(40)
shmalloc(20)

shfree(100)

0P                   3P                   . . . . . .

shfree(56)

shfree(50)

shfree(12)

shmalloc(50)

shmalloc(17)

shmalloc(300)

shmalloc(17)

shmalloc(40)shmalloc(4)

2P                   2047P                   

shmalloc(400)
shfree(10)

shmalloc(30) shmalloc(300)

shfree(128)

shfree(500)

shmalloc(4)

Idea: -  use a synchronous parallel algorithm  for  shared heap administration

-  collect  multiple  queries  to  shmalloc() / shfree()   with  join()
and  process  them  as  a  whole  in  parallel!

Does  this  really  pay  off  in practice? Question:
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EXPERIMENT

Simple block–oriented parallel shared heap memory allocator

First variant: sequential critical section, using a simple lock

Second variant: parallel critical section, using join

p asynchronous using join
1 5390 cc (21 ms) 6608 cc (25 ms)
2 5390 cc (21 ms) 7076 cc (27 ms)
4 5420 cc (21 ms) 8764 cc (34 ms)
8 5666 cc (22 ms) 9522 cc (37 ms)

16 5698 cc (22 ms) 10034 cc (39 ms)
32 7368 cc (28 ms) 11538 cc (45 ms)
64 7712 cc (30 ms) 11678 cc (45 ms)

128 11216 cc (43 ms) 11462 cc (44 ms)
256 20332 cc (79 ms) 11432 cc (44 ms)
512 38406 cc (150 ms) 11556 cc (45 ms)

1024 75410 cc (294 ms) 11636 cc (45 ms)
2048 149300 cc (583 ms) 11736 cc (45 ms)
4096 300500 cc (1173 ms) 13380 cc (52 ms)

0

50000

100000

150000

200000

250000

300000

0 500 1000 1500 2000 2500 3000 3500 4000

P
R

A
M

 c
yc

le
s

number of processors

asynchronous
using join
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    into large parallel software packages

-  allows to run different hierarchies of relaxed synchronicity concurrently
        (group hierarchy tree becomes a forest)

-  flexible way to switch from asynchronous to
    synchronous mode of execution

-  allows to embed existing synchronous Fork95 routines

-  pays off for high access rates
    (e.g., due to large number of processors,  bursts of accesses)

-  requires a synchronous parallel (PRAM) algorithm

-  examples for use:  shared heap memory allocator,  parallel block merging,

-  semantics:  see excursion bus analogy

The join construct for synchronous parallel critical sections

synchronous parallel output  (e.g., N-Queens boards)

-  use for synchronous parallel critical sections:
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Heaps for dynamic memory allocation

void *malloc( unsigned int k );

Global, shared heap

void *shmalloc( unsigned int k );

Group heap

sync void *shalloc( unsigned int k );

on P0

on P1
ptr

on P0
ptr

on P1
ptr

on P0
ptr

ptr
on P1

private heap

of P1

global shared heap

group heap

of P0
ptr

void free( void *ptr );

void shfree( void *ptr );

sync void shallfree();

Private heap:

53



ForkLight  language design and implementation

Fork compilation issues

NestStep  language concepts

Fork language

SB-PRAM

PRAM modelTALK
OUTLINE

   -  example (Koch curves),  graphical trace file visualization

   -  declaration of sharity,  first steps

   -  programming model,  SPMD execution

   -  expressions   (multiprefix operators)

   -  synchronicity declaration,  group concept

   -  synchronous parallel critical sections; the join construct

   -  heaps

   -  programming parallel loops

   -  applicability,  projects,  history

   -  related work

   -  asynchronous computations:  critical sections and locks

54



forall( i, 0, N, # )

for ( i=$$; i<N; i+=# )    

int i;

     statement( i );

int i;

     statement( i );

P2

i=0 i=1 i=2 i=3

i=4 i=5 i=6 i=7

i=8 i=9 --- ---

P0 P1 P3Example:

#=4
N=10,

Statically scheduled parallel loop

(applicable in synchronous or asynchronous regions)

predefined macros in <fork.h>
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ct&ct:

Dynamically scheduled parallel loop

    

predefined macros in <fork.h>

sh int ct;

int i;

sh int ct;

for ( ct=0, barrier, i=mpadd(&ct,1);

      i<N;  i=mpadd(&ct,1))

     statement( i );

............

......

FORALL( i, &ct, 0, N, 1 )

     statement( i );

int i;

(useful in asynchronous regions with varying execution time of iterations)

on SB-PRAM:  low overhead
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-  play with parallelism
-  ideal as a first parallel language

-  simulator -  supports many (all?)
     parallel algorithmic paradigms

     for practical relevance
-  to test (new) PRAM algorithms

Parallel Algorithm DesignTeaching Parallel Programming

-  common programming language

Parallel Software Engineering with Fork

-  allows to build large parallel software packages

      nearly without any syntactical change

      as basis  (upgrade to C++ would be desirable)

      -> MPI core implementation
      -> APPEND library  (asynchronous parallel data structures)
      -> PAD library  (synchronous parallel algorithms and data structures, by J. Träff)

      -> Skeleton functions  (also nestable)

-  major applications already implemented:  FView (by J. Keller),  N-body simulation

-  existing sequential C sources can be reused

Applicability  of  Fork
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with all sources, example programs and documentation

Visit the Fork WWW homepage!

Fork compiler package  (version 2.0  from Nov. 1999)

http://www.informatik.uni-trier.de/~kessler/fork95/

Also:  SB-PRAM simulator and system tools

http://www.informatik.uni-trier.de/~kessler/fork95/tf.ps

The slides of this presentation are available at

System requirements:   SunOS / Solaris  or  HP-UX    (not Linux, sorry)
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