Yvy

- Fork
Quick Reference Card
Christoph W. Kessler

Universitat Trier
FB IV - Informatik, 54286 Trier, Germany

kessler@psi.uni-trier.de
http://www.informatik.uni-trier.de/ kessler

November 1999

Fork is the short name for Fork95 version 2.0 [1]. Fork95
[2] is an imperative parallel programming language based
on the Arbitrary CRCW PRAM model. It is an extension
of ANSI-C and supports a rich variety of parallel algorith-
mic paradigms and programming techniques. A compiler
is available for the SB-PRAM [1], a scalable hardware real-
ization of a Multiprefix Priority CRCW PRAM with 2048
processors at the University of Saarbriicken, Germany; a
pre-prototype with 512 processors is already operational.
A software simulator and other system software of the
SB-PRAM is publically available.

This reference card gives a short overview of Fork. For
further informationplease look at the Fork homepage:
www.informatik.uni-trier.de/ kessler/fork95

What Fork adds to C

e SPMD Execution Each processor has a copy of the
program. The number of processors remains fixed dur-
ing execution.

e __STARTED_PROCS__ Global run—time constant holding
the number of available PRAM processors.

e _PROCNR__ Global processor ID variable, read—only,
consecutively ranging from 0 to __STARTED_PROCS__—1.

e Shared and Private Address Subspaces The
PRAM's shared memory is partitioned into a shared and
__STARTED_PROCS__ private address subspaces.

e Shared Variables declared (only in —synchronous
program regions) by storage class qualifier sh. The
scope of sharing is the group active at the declaration.

e Private Variables declared by storage class qualifier
pr (optional), reside once in each processor's private
memory subspace.

e Concurrent Write conflict resolution scheme (Arbi-
trary CRCW) is inherited from the underlying hardware.

With the SB-PRAM, the processor with highest hard-
ware D succeeds (Priority CW).

Asynchronous Function declared by type qualifier
async (default, i.e. optional)

Synchronous Function declared by type qualifier
sync. Only synchronous functions can have shared for-
mal parameters.

Straight Function declared by qualifier straight.

Asynchronous Program Regions Asynchronous
functions or farm bodies, excluding start and join
bodies inside. An asynchronous or straight call to a
synchronous function is forbidden.

Synchronous Program Regions Synchronous func-
tions and start or join bodies, excluding farm state-
ments inside. A synchronous or straight call to an asyn-
chronous function is automatically casted to an asyn-
chronous region.

Straight Program Regions Straight functions, ex-
cluding farm, start, or join statements inside. No
private branch conditions. Callable from any region.

Asynchronous Mode of Execution applicable to
asynchronous and straight program regions. The cur-
rent group is inactive (no shared variables or group heap
objects declarable, no implicit synchronization points).
All processors of the current group are continuously
available, thus barrier and locks can be used as usual.

Synchronous Mode of Execution applicable to syn-
chronous and straight program regions. Maintains the
Synchronicity Invariant (SI): All processors in the
same (active) group work synchronously, i.e. their pro-
gram counters are equal at any time (—Group concept).

The farm statement switches from synchronous to
asynchronous mode for execution of its body. Implicit
group-wide (exact) barrier at the end of the body.

The join statement collects asynchronously operat-
ing processors and switches to synchronous mode for
the execution of its synchronous body.

join (SMsize; delayCond; stayInsideCond)

bodyStatement;
else missedStatement;

Only one group can operate on the body of a join
statement at any time [3]. The first processor arriving
at the join allocates SMsize words of shared mem-
ory for the new group’s shared stack and group heap.
While delayCond evaluates to a nonzero value for this
first processor, other processors are allowed to join the
new group. After the wait phase, processors that evalu-
ate stayInsideCond to zero leave the new group and
execute missedStatement, while the others synchro-
nize and execute body in synchronous mode. While

this group operates on the body, other arriving pro-
cessors execute missedStatement. A continue in
missedStatement jumps back to the join entry, a
break leaves the join statement.

e The start statement switches from asynchronous
to synchronous mode for all processors of a group.

e Group Concept At program start, all processors be-
long to the same group. In —synchronous mode, the
—Sl is maintained automatically for each active group.
Active groups may allocate shared variables and objects.

e Group Hierarchy Tree In —synchronous mode, active
groups can be —split into subgroups. Hence the groups
form a tree-like hierarchy, where the active groups are
the leaves.

e Group size accessible in synchronous regions as the
shared run—time constant #.

e Group rank of a processor, ranging from 0 to #-1, ac-
cessible in the private run—time constant $$. Automatic
re-ranking at each group activation or reactivation.

e Group ID denoted by the shared variable @. Set
at group splitting constructs, saved/restored automati-
cally.

¢ Group-—relative Processor ID denoted by the private
variable $. Set by start, join, and by the programmer
($=...;), saved/restored automatically.

e Automatic Group Splitting Potential divergence of
control flow at if statements or loops with a private
branch condition causes the current group to become
inactive and split into child groups, one for each branch
target. To these the Sl applies only internally. The
former group is reactivated when control flow reunifies
again (implicit group—wide exact barrier).

e The fork statement (only in synchronous regions)
fork(expl; Q@=exp2; $=exp3) body;
with g as value of shared expression expl: deactivates
the current group and splits it into g subgroups num-
bered 0,...,g — 1. Each processor evaluates the private
expression exp2 to a value j and joins the subgroup
with ID j to execute the body. If j < 0 or j > g,
the processor skips the body. $=exp3 (optional) may
renumber the processor ID's within the subgroups. The
Sl (see synchronous mode) applies to each subgroup in-
ternally. The subgroups execute body concurrently. At
the end of body, the former group is reactivated (im-
plicit group—wide barrier).

e The barrier statement performs an explicit group—
wide (exact) barrier synchronization.

e Multiprefix Operators are atomic integer expression
operators (not functions). Relative order of execution
within the same PRAM step according to machine—
specific (SB-PRAM) multiprefix rank.
k=mpadd (&shvar,expr) multiprefix addition,
k=mpmax (&shvar,expr) multiprefix maximum,
k=mpand (&shvar,expr) multiprefix bitwise and,
k=mpor (&shvar,expr) multiprefix bitwise or.

e Atomic Update Functions similar, no return value:
void syncadd(&shvar,expr) atomic increment, etc.

e Group Heap A shared memory block of size k words
shared by the current group is allocated by
sync char *shalloc(sh unsigned int k)
and lives as long as the group that allocated it.
sync void shallfree() frees all objects shalloced
so far in the current function.

e Private Heap As in C, private memory is dynamically
allocated by malloc() and freed explicitly by free().

¢ Global Shared Heap A shared memory block of size
k allocated by a processor executing
async void *shmalloc(pr unsigned int k)
and lives until freed explicitly by shfree().

Programming Techniques and Libraries

e Statically scheduled parallel loop
int 1i;
forall (i, 1b, ub, #) stmt(i);
where the forall macro expands to
for (i=1b+$$; i<ub; i+=#) stmt(i);
Similar: Forall (for stride > 1), forall2 (two-
dimensional flattened loop), Forall2 (for strides > 1).
e Dynamically scheduled parallel loop
int i;
sh int ct = 0;
for (i=mpadd(&ct,1);i<N;i=mpadd(&ct,1))
stmt (i) ;
or, using the FORALL macro,
FORALL(i, &ct, 0, N, 1);
¢ Parallel Divide-and-Conquer
sync sometype DC(sh int n; ...)
{ sh int d; pr int i;
if (trivial(n)) return conquer(n, ...);
if (#==1) return seqDC(n, ...);
d = divide(n, ...);
if (#<d)
farm forall(i,0,d,#) seqDC(n/d,...[1i]);
else
fork(d; ©=$$ % 4;)
DC(n/d, ...[@]);
return combine(n, d, ...);

e Synchronous and Asynchronous Pipelining along
a graph, MPIl Message passing (see util directory),
asynchronous Task Queue, ... see [1].

e Skeleton functions for all these paradigms see [1].

e APPEND Library of asynchronous parallel data struc-
tures like parallel hashtables, parallel randomized search
tree, parallel skip list, parallel priority queue: contained
in the util directory of the Fork package, see [1].

e PAD library of synchronous PRAM algorithms and
data structures by J. Traff [1,4] covers searching, merg-
ing, sorting etc., parallel dictionaries, lists, trees, graphs.

Important Standard Library Routines

e straight int groupsize() size of my current group

e sh SimpleLock ! = new_SimpleLock(); create and
initialize a simple lock object [

e void simple lock_init(SimpleLock [); re—
initialize an allocated shared SimpleLock object 1

e void simple_lockup(SimpleLock [); lock (
e int simple unlock(SimpleLock [); unlock !

e sh FairLock [= new FairLock(); create and ini-
tialize a fair lock object [

void fair_lock_init(FairLock [); initializes [
void fair_ lockup(FairLock [); lock [
int fair_unlock(FairLock [); unlock [

sh RWLock | = new RWLock(); create and initialize
a readers—writers lock object [

void rw_lock_init (RWLock [) re—initialize [
void rw_lockup(RWLock [), int m) m-lock [
void rw_unlock(RWLock [, int m, int w);

sh RWDLock [= new_RWLock() ; create and initialize
a readers—writers—deletors lock object [

e void rwd_lock_init (RWDLock [); re—initialize [

e int rwd lockup(RWDLock [), int m); m-lock [

e void rwd_unlock (RWDLock !/, int m, int w);
m-unlock [. m € Am.e,‘uw.mbcv RW_WRITE, w.sucmhmﬂmw

e int getct() returns the current value of the clock
cycle counter (1 cc = 4 us on the SB-PRAM).

e initTracing(k) ; initialize trace buffer of size k

e startTracing() ; start logging events (-7)
e stopTracing(); stop logging events (-7)
[]

writeTraceFile(filename, comment) ; for trv

Special Include Files

e fork.h (group heaps, locks, parallel loop macros)

e stdlib.h (shmalloc/shfree, gsort, ...)
e io.h input/output routines (on SB-PRAM host)
e syscall.h interface to PRAMOS / simulator OS

Important Compiler Options

-A emits more warnings, —A -A even more

-c suppresses linking

-g, —gl, -g2 generate various levels of debug code
-Ipath specifies path for include files

-m align shared memory accesses with modulo flag to
avoid simultaneous reading and writing to same cell
(usually necessary)

e -0 name renames the output file (default: a.out)
e -S suppresses deletion of the assembler file
e -T (also for linking) generates tracing code (for trv)

Graphical Trace File Visualizer

trv filename.trv creates filename.fig, a graphical vi-
sualization in FIG format. Gantt chart, statistics for
shared memory accesses, idle times at barriers and locks.

fig2dev -Lps filename.fig > filename.ps can be
used to generate postscript images, xfig for editing.

trvc is a variant of trv for color graphics devices.

Online Software and Documentation

by anonymous ftp, either via the web homepage or
directly at ftp.informatik.uni-trier.de in direc-
tory /pub/users/Kessler. Includes documentation, all
sources, and example programs. There is also a distri-
bution of the SB-PRAM system software tools including
assembler, linker, loader and simulator.

Introductory Literature on Fork

[1] J. Keller, C. W. Kessler, J. L. Traff. Practical PRAM Pro-
gramming. Textbook, 550 p., Wiley, to appear in 2000.
[2] C. W. Kessler, H. Seidl. The Fork95 programming lan-
guage: Design, Implementation, Application. Int. Journal
on Parallel Programming, 25(1), pp. 17-50, Plenum Press,

1997.

[3] C. W. Kessler, H. Seidl. Language Support for Synchronous
Parallel Critical Sections. Proc. APDC'97 Int. Conf. on
Advances in Par. and Distr. Computing, Shanghai, March
19-21, IEEE CS press, 1997.

[4] C. W. Kessler, J. L. Traff. Language and Library Support
for Practical PRAM Programming. Parallel Computing
25(2) pp. 105-135, Elsevier, 1999.

