
Language Support for Synchronous Parallel Critical Sections

Christoph W� Ke�ler Helmut Seidl

Fachbereich IV � Informatik� Universit�at Trier

D������ Trier� Germany

e�mail� kessler�psi�uni�trier�de

Abstract

We introduce a new parallel programming paradigm�
namely synchronous parallel critical sections� Such
parallel critical sections must be seen in the context
of switching between synchronous and asynchronous
modes of computation� Thread farming allows to gen�
erate bunches of threads to solve independent subprob�
lems asynchronously and in parallel� Opposed to that�
synchronous parallel critical sections allow to organize
bunches of asynchronous parallel threads to execute cer�
tain tasks jointly and synchronously� We show how the
PRAM language Fork�� can be extended by a construct
join supporting parallel critical sections� We explain
its semantics and implementation� and discuss possible
applications�

�� Introduction

In a parallel environment� critical sections �for a sur�
vey� see e�g� ���� are segments of code accessing data
which are visible to more than one parallel thread�
Their implementation is one of the key problems� e�g��
of global resource management or consistency in par�
allel databases� Classically� semaphores are used to
avoid more than one thread at a time to execute the
critical section� The remaining threads also aiming to
enter the section are kept in a �priority� queue where
they wait until the presently executing thread has left
the critical section� In the sequel� we will call such a
mechanism sequential critical section�
The performance of sequential critical sections is ac�

ceptable as long as the critical section is short and the
frequency by which threads demand to enter is low� In
a massively parallel surroundings� however� with sev�
eral thousand processors a sequential critical section
can very soon become the bottleneck for the overall
performance of the system�
One solution to this problem is given by synchronous

parallel critical sections� In a synchronous parallel crit�
ical section �PCS for short� several threads are allowed
to enter simultaneously� Inside the critical section
and as soon as the entering phase has been �nished

they jointly execute a synchronous parallel algorithm�
Having terminated� the threads return to their origi�
nal mode of computation� the critical section gets un�
locked� and a new bunch of threads is allowed to enter�
To make this idea work� several questions have to be

answered	 What are possible conditions under which
threads are allowed to enter
 When should the enter
procedure be terminated
 What happens with threads
not allowed to enter
 Should they be blocked
 Should
they be allowed to continue

In order to investigate possible answers to these

questions and to study its implications on the seman�
tics and e�ciency of programs we extend the parallel
language Fork�
 by a new language construct join�
Fork�
 is an experimental parallel programming lan�

guage which has been designed to write elegant and e��
cient programs for synchronous shared memory MIMD
machines �also known as PRAM�s�� PRAM�s are
particularly well suited for the implementation of ir�
regular numerical computations� non�numerical algo�
rithms� and database applications� One such machine
currently under construction at Saarbr�ucken University
is the SB�PRAM ��� ��� The SB�PRAM is a lock�step�
synchronous� massively parallel multiprocessor with up
to ���� RISC�style processing elements and with a
�from the programmer�s view� physically shared mem�
ory of up to �GByte with uniform memory access time�
In Fork�
� processors are organized in groups�

Groups may be temporarily subdivided into subgroups�
this may also be applied recursively� Thus� at any point
of program execution� the groups form a tree�like hi�
erarchy� with the group consisting of all started pro�
cessors as root� and the leaf groups being currently ac�
tive� A synchronous mode of computation guarantees
exact synchronicity for the leaf groups� Furthermore�
Fork�
 provides the possibility for thread farming� i�e��
for locally switching from synchronous mode into an
asynchronous mode of computation where desired by
the programmer� This facility is crucial when tuning
programs for e�ciency� In some respect� the new con�
struct join turns out to be complementary of farming�
The rest of the paper is organized as follows� The

next section gives a short overview over the language
Fork�
 as it is� Section � presents the join construct
together with its semantics� Section � explains how



this construct can be implemented e�ciently� Section

 contains some examples together with explications of
areas of possible applications� Section � contains mea�
surements� Section � discusses further generalizations
and concludes�

�� A short introduction to Fork��

For reasons of selfcontainment let us brie�y re�
call the basic concepts of the programming language
Fork�
� A more detailed description can be found e�g�
in ���� or ���� Fork�
 is a redesign of the PRAM lan�
guage FORK ���� In order to enable reuse of existing
C code� Fork�
 is based on ANSI C ���� Addition�
ally� it o�ers constructs that manage shared and pri�
vate address subspaces� control synchronicity� and hi�
erarchically divide groups of processors into subgroups�
Fork�
 makes the instruction�level synchronicity of the
underlying hardware available to the programmer� It
further enables direct access to hardware�supplied mul�
tipre�x operations�

���� Shared and private variables

The entire shared memory of the PRAM is parti�
tioned into private address subspaces �one for each pro�
cessor� and a shared address subspace� Accordingly�
variables are classi�ed as either private �pr� this is the
default� or shared �sh�� where �shared� always relates
to the processor group that de�ned that variable�

There is a special private variable � meant to hold
the current group�relative processor ID which is ini�
tially set to the physical processor ID ��PROC�NR���
The special shared variable � is meant to hold the cur�
rent leaf group ID� � and � are automatically saved and
restored when subgroups are entered resp� left� How�
ever� the user is responsible to assign reasonable values
to them �e�g�� at the fork�� instruction��

We consider an expression to be private if it is not
guaranteed to evaluate to the same value on each pro�
cessor� e�g� if a private variable occurs in it�

Fork�
 inherits the concurrent write con�ict reso�
lution scheme from the target hardware� On the SB�
PRAM� if several processors write the same �shared�
memory location in the same cycle� the processor
with maximal ��PROC�NR�� will win and write its
value �Priority�CRCW�Pram�� However� as sev�
eral other write con�ict resolution schemes �like Ar�
bitrary� are also used in theory� meaningful Fork�

programs should not be dependent on such speci�c con�
�ict resolution schemes� there are better language ele�
ments �multipre�x instructions� see below� that cover
practically relevant applications for concurrent write�

���� Synchronous and asynchronous mode

Fork�
 o�ers two modes of program execution that
are statically associated with program regions� In syn�
chronous mode� Fork�
 maintains at each point of pro�
gram execution the synchronicity invariant �SI� which
says that all processors belonging to the same leaf
group are operating strictly synchronously� i�e�� they
follow the same path of control �ow and execute the
same instruction at the same time� Also� all processors
within the same group have access to a common shared
address subspace� Thus� newly allocated �shared� ob�
jects exist once for each group allocating them� �
In asynchronous mode the SI is not preserved� and no
shared variables can be allocated� The processors start
the main�� program in asynchronous mode�
Switching to synchronous mode of execution for any

�statement� could be simply expressed by

start �statement�

where all processors form� after exact barrier synchro�
nization ����� one single processor group and execute
�statement� in synchronous mode� Up to now� start
�its name is due to historical reasons� is only supported
at the top level of program control� and nesting �also
dynamic� of start statements is forbidden� a weakness
of the language that we would like to overcome� Pro�
viding a more general construct to switch from asyn�
chronous to synchronous mode is the main issue of this
paper�
Switching to asynchronous mode for a �statement�

is done by

farm �statement�

Within �statement� any synchronization is sus�
pended� at the end of �statement� the processors syn�
chronize explicitly within their current leaf group�
Functions are declared to be either synchronous

�sync� or asynchronous �async�� Synchronous regions�
namely sync functions �except from farm bodies� and
start bodies� are executed in synchronous mode� while
asynchronous regions� i�e� async functions �except from
start bodies� and farm bodies� are executed in asyn�
chronous mode� In order to obtain this static classi��
cation of code� from asynchronous regions only async
functions can be called� A call to an async function
from a synchronous region is automatically casted to a
farm body� Using farm within asynchronous mode is
super�uous and will be ignored�
The importance of being synchronous� The
synchronous mode overcomes the need for protecting
shared variables by locks because they are accessed in
a deterministic way	 The programmer can rely on a
�xed execution time for each operation which is the
same for all processors at any time during program



execution� Thus no special care has to be taken to
avoid race conditions�
This is only possible because there is no virtual pro�

cessing in Fork�
� Consider e�g� the following program
fragment

sync void foo� sh int x� a �
� ��� if ���	
� a � x�

else y � a� ��� 


By the semantics of synchronous mode all processors
of the else part must read the same value of a� In order
to guarantee this in the presence of virtual processing�
it would be required to keep a group lock� for each
shared variable� Due to the presence of pointers and
weak typing in C� a lock would be required for each
shared memory cell�

Pipelining through an arbitrary graph can be im�
plemented in synchronous mode in a rather straightfor�
ward manner� as we have shown in ���� This both covers
pipelining through multidimensional arrays as used by
systolic algorithms and all sorts of trees as needed in
certain combinatorial algorithms� We summarize that
Fork�
�s synchronous mode saves the time and space
overhead for locking and unlocking but incurs some
overhead to maintain the SI during synchronous pro�
gram execution�
The importance of being asynchronous� In asyn�
chronous program regions there are no implicit syn�
chronization points� Maintaining the SI requires a sig�
ni�cant overhead also for the cases where each group
consists of only one processor� or when the SI is not
required for consistency because of the absence of data
dependencies� Hence marking such regions as asyn�
chronous can lead to substantial savings� In our exper�
imental work� we found considerate usage of the farm
statement and asynchronous functions to pay o� in
signi�cant performance improvements �execution time
was reduced by up to 
� percent��

���� Hierarchical group concept

In synchronous mode� the synchronicity invariant
permits to relax synchronicity in two ways	 either by
using farm as described above �and thus leaving syn�
chronous mode�� or by splitting a group into subgroups
and maintaining the invariant only within each of the
subgroups� This has to be taken into consideration if
control �ow may diverge due to private branching con�
ditions� Shared if or loop conditions do not a�ect the
synchronicity� as the branch taken is the same for all
processors executing it� At an if statement� a pri�
vate condition causes the current processor group to
be split into two subgroups	 the processors for which

�This would partially sequentialize the then with the else
group w�r�t� accessing variable a�

the condition evaluates to nonzero form the �rst sub�
group and execute the then part while the remaining
processors execute the else part� The available shared
address space of the parent group is subdivided among
the new subgroups� When both subgroups have �n�
ished the execution of their branch� they are released�
and the parent group is reactivated by exact synchro�
nization of all its processors� � A similar subgroup
construction is required also at loops with private exit
condition� All processors that will execute the �rst it�
eration of the loop enter the subgroup and stay therein
as long as they iterate� Processors that leave the loop
body are just waiting at the end of the loop for the last
processors of their �parent� group�
Subgroup construction can also be done explicitly�

Executing
fork � e�� ��e�� ��e� � �statement�

means the following	 First� the shared expression e�
is evaluated to the number of subgroups to be cre�
ated� Then the current leaf group is split into that
many subgroups� Evaluating e�� every processor deter�
mines the number of the newly created leaf group it
will be a member of� Finally� by evaluating e�� each
processor may renumber its group�local processor ID
within the new leaf group� Note that empty subgroups
�with no processors� are possible� an empty subgroup�s
work is immediately �nished� though� Continuing� we
partition the parent group�s shared memory subspace
into that many equally�sized slices and assign each of
them to one subgroup� such that each subgroup has its
own shared memory space� Now� each subgroup ex�
ecutes �statement�� the processors within each sub�
group work synchronously� but di�erent subgroups can
choose di�erent control �ow paths� After �statement�
has been completed� the processors of all subgroups are
synchronized� the subgroups and their shared memory
subspaces are released� and the parent group is reacti�
vated as the current leaf group�
Clearly� if a leaf group consists of only one processor�

the e�ect is the same as working in asynchronous mode�
However� the latter avoids the expensive time penalty
of continued subgroup formation and throttling of com�
putation by continued shared memory space fragmen�
tation�

���� Pointers and heaps

The usage of pointers in Fork�
 is as �exible as in C�
since all private address subspaces have been embedded
into the global shared memory of the SB�PRAM� Thus�
shared pointer variables may point to private objects�
and vice versa� The programmer is responsible for such
assignments making sense�
Up to now� Fork�
 supplies two kinds of heaps	 one

automatic shared heap for each group� and one private
heap for each processor� While space on the private



heaps can be allocated by the asynchronous malloc
function known from C� space on the automatic shared
heap is allocated using the synchronous shalloc func�
tion� The live range of objects allocated by shalloc
is limited to the live range of the group by which that
shalloc was executed� Thus� such objects are auto�
matically removed if the group allocating them is re�
leased� Supplying a third variant for a global� �perma�
nent� shared heap is addressed later in this paper�
Pointers to functions are also supported� For e��

ciency reasons� calls to functions via private pointers
automatically switch to the asynchronous mode if they
are located in synchronous regions� Private pointers
may thus only point to async functions�

���� Multipre�x instructions

The SB�PRAM o�ers built�in multipre�x instruc�
tions which allow the computation of multipre�x in�
teger addition� maximization� and and or for up to
���� processors within � CPU cycles� Fork�
 makes
these powerful instructions available as Fork�
 opera�
tors �atomic expression operators� not functions�� For
instance� consider

k � mpadd� 	shvar
 expression ��

All m processors executing this statement at the
same clock cycle and with the same shared address
	shvar as �rst parameter� let them be indexed j �
�� ����m � � in the order of increasing ��PROC�NR���
evaluate �rst their private expression locally into a
private integer value ej � Then� processor j assigns its
private integer variable k the value s e� e� � � � ej��

where s denotes the previous value of the shared integer
variable shvar� Immediately after the execution of the
mpadd instruction� shvar contains� as a side e�ect� the
global sum s 

P
j ej of all participating expressions�

�� Semantics of join� The bus analogy

A useful analogy to understand the behaviour of the
new join operator is a bus stop� Imagine a city with
several excursion bus lines� One excursion bus circu�
lates on each bus line� At the door of each bus there
is a ticket automaton that sells tickets when the bus
is waiting� Tickets are numbered consecutively from
� upwards� All passengers inside a bus form a group
and behave synchronously� They can be distinguished
by an ID number � which is initialized to their ticket
number� Each bus has a bus driver� namely the pas�
senger that obtained ticket number zero�
What happens at the bus stop
 Passengers come by

asynchronously and look for the bus to join the excur�
sion� If the bus is gone� they have the choice to either
retry and wait for the next bus of this line �if there is

one�� perhaps by doing some other useful work mean�
while� or to resign and continue with the next state�
ment� If the bus is not gone� it is waiting and its door
is not locked� thus the passenger can get a ticket at
the ticket automaton and enter� If a passenger in spe
happens to be the �rst at the bus stop �which means
that he receives ticket number ��� he becomes the bus
driver and does some initialization work at the bus�
He waits according to a certain delay strategy� Then
he signals that he will start the bus and switches o�
the ticket automaton � thus no one can enter this bus
any more� At this point� some passengers inside are
still allowed to immediately spring o� the starting bus
if they desire� After that� the door is de�nitely locked�
The passengers inside form a group and behave syn�
chronously for the time of the bus tour� During the
tour� they can allocate shared objects that are acces�
sible to all bus passengers during the tour� After the
tour� all passengers leave the bus at the bus stop and
continue� again asynchronously� with their next work�
What does this mean in the context of parallel pro�

gramming
 The behaviour described in the bus anal�
ogy is supplied in Fork�
 by a language construct

join � delaystmt� springoffcond� SMalloc �
statement

else useful�work

The passengers are the processors� Each join in�
struction installs a unique bus line with a bus stop�
delaystmt speci�es a statement that is executed by
the bus driver and models a time interval or a condi�
tion that must be met to start the bus� The spring�o�
condition springoffcond is a boolean expression sup�
plied by the programmer� it may be di�erent for di�er�
ent processors�� SMalloc is a statement executed by
the bus driver to install a new shared stack and heap
for the bus� Its speci�cation is optional� The bus tour
corresponds to the proper body of the join instruction
and must be a synchronous statement�
The else part is optional and speci�es an asyn�

chronous statement useful work that is executed by
processors that miss the bus and by those that spring
o�� A retry statement occurring inside useful work
causes the processor go back to the bus stop and try
again to get the bus� similar to continue in loops�
Note that a bus cannot have more than one entry

point �join instructions� within the program� If this
is desired by the programmer� he can encapsulate the
join into a function and call that function from several
sites�
Internally� there is for each bus a lock gone� i�e��

a shared variable that guards access to the ticket au�

�If the consecutive numbering of the � ID�s is destroyed by
some processors springing o�� the programmer can re�install this
by simply recomputing � with a multipre�x incrementation at
the beginning of the bus tour�



tomaton� which� in turn� is a shared variable that is
accessed by a multipre�x increment operation�

Buses of di�erent bus lines can be nested� Recursion
�directly or indirectly� to the same bus line will gener�
ally introduce a deadlock because that processor waits
for a bus whose return he is blocking by his waiting�

Note that the passengers inside a bus will generally
have their origin in di�erent former leaf groups� The
old group structure� as well as all locally de�ned shared
objects of that old group structure� are not visible dur�
ing the bus tour� Global shared objects are always
visible�

�� Implementation

���� Shared memory allocation

One possibility to allocate a new shared stack and
heap for the group of processors in the bus is� of course�
a call to the permanent shared malloc routine� a se�
quential asynchronous Fork�
 function� This� how�
ever� is too simple because we just want to use the
join construct to implement such parallel storage al�
location frameworks� Another possibility would be to
let the compiler allocate a statically �xed quantum of
shared memory for every bus� This has the drawback
that it excludes reuse of this memory for other pur�
poses while no bus is running� Therefore� we o�er a
di�erent solution	 The bus driver sacri�ces a memory
block from his private heap for the new shared stack of
the new bus� The size of this memory block could be
chosen dynamically such that� for instance� half of the
bus driver�s currently free portion of its private heap
might be nationalized��

���� Data structures

For each join instruction encountered in the code�
the following global variables are allocated to imple�
ment the bus concept �given as C pseudocode to fa�
cilitate the description� The implementation has been
coded in SB�PRAM assembler�	

sh char �SM�
sh int gone�
sh int ticket�

gone and ticket are statically initialized by zero at
the beginning of each Fork�
 program�

�To compute this quantity� we provide an asynchronous li�
brary function int pravail�� which returns the number of free
private storage cells�

���� Translation of the join instruction

The join instruction is only admissible in asyn�
chronous mode� delaystmt is optional� it should be
chosen appropriately to delay the departure of the bus
as desired� Variable ticket can be used as a parame�
ter in delaystmt� springoffcond should evaluate to a
nonzero value if a processor that entered the bus should
leave immediately when starting� SMallocmust return
a pointer to a block of memory which will install the
bus�s shared memory�
The instruction

join � delaystmt� springoffcond� SMalloc �
statement

else useful�work

is translated as follows �again described as Fork�
 pseu�
docode�

save the old value of ��
if ��gone� � �� I am allowed to enter the bus� ��

� � mpadd� �ticket� 	 �� �� get a ticket ��
if ����
� �

�� I am the bus driver and set up its ��
SM � SMalloc� �� shared memory ��
save the old shared group pointer� build the
private group frame� compute the new shared
group� stack� and heap pointer from SM�
allocate a new shared group frame in SM block�
delaystmt�
gone � 	�
wait two cycles� Now the value of the ticket
variable remains unchanged� it is equal to
the exact number of passengers�
Write it into the new synchronization cell�



else �

�� I am not the bus driver� ��
save old shared group pointer and
build my private group frame�
�� Then I have to wait until the driver

has set up shared memory SM for me� ��
while ��gone� ��wait���
�� now the value in SM is valid�

I can adjust my shared pointers� ��
compute the new shared group� stack� and
heap pointer from SM�
Now the new synchronization cell contains
the group size�



�� departure of the bus ��
if �springoffcond� �

�� I decide to spring off� My membership
in the bus group must be cancelled� ��

mpadd � �synccell� �	 ��
remove the private group frame and
restore the stack pointers�
goto NO�BUS�TOUR�



else �

�� I ride� synchronize and take off ��
call the synchronization routine



using the new synchronization cell�
beginsync � �� enter synchronous region ��

statement�

� �� leave synchronous region ��
�� Bus has returned� The processors

inside are still synchronous� ��
ticket � 
�
gone � 
� �� re�open ticket automaton�

leave the bus ��
remove the group frames and
restore the stack pointers�
restore the old value of ��


 

else � �� The bus is not waiting� ��
NO�BUS�TOUR�

restore the old value of ��
useful�work �� if specified�

a retry therein redoes the join ��

 �� end of join� ��

�� Examples

���� Parallel memory allocation

As an example let us consider a simple storage al�
location scheme where all memory is divided into N

equally sized blocks� Pointers to free blocks are main�
tained by a queue avail� The queue is implemented
by a shared array together with two integers low and
high� Integer low � N points at the �rst occupied cell
in avail whereas integer high � N points to the �rst
free cell�

sh char �avail�N�� ��array of N pointers��
sh int high� low�

To implement operations void free�char �p� and
char �balloc�� we introduce an auxiliary function
char �pcs�char �ptr
 int mode� with an extra ar�
gument mode to distinguish between the two usages�

�� modes of pcs� ��
�define ALLOC 	
�define FREE 


void free�char �p� �
pcs�p� FREE��



char � balloc�� �

return pcs�NULL� ALLOC��



Now� function pcs�� is implemented using the join
construct� Essentially� it consists in applying an
mpadd�operation to variable high �in case mode ��
FREE� resp� to variable low� It only has to be taken
care of that no block can be delivered from an empty
queue�

char �pcs� pr char �ptr� pr int mode � �
pr int t� my�index� h� �result�

procs asynchronous variant sync� variant using join
� �	
� cc � 
� msec ���� cc � 
� msec

 �	
� cc � 
� msec ���� cc � 
� msec
� ��
� cc � 
� msec ���� cc � 	� msec
� ���� cc � 

 msec 
�

 cc � 	� msec
�� ��
� cc � 

 msec ���	� cc � 	
 msec
	
 �	�� cc � 
� msec ���	� cc � �� msec
�� ���
 cc � 	� msec ����� cc � �� msec
�
� ��
�� cc � �	 msec ����
 cc � �� msec

�� 
�		
 cc � �
 msec ���	
 cc � �� msec
��
 	���� cc � ��� msec ����� cc � �� msec

��
� ����� cc � 

� msec ���	� cc � �� msec

��� ��
	�� cc � ��	 msec ���	� cc � �� msec
��
� 	����� cc � ���	 msec �		�� cc � �
 msec

Figure 1. Timings for the parallel shared heap
memory allocator� using locks �second column� and
join �third column�� The measurements are taken
on the SBPRAM simulator�

result � NULL�

join�for�t�
�t���t���� 
� malloc�	

�� �
if �mode �� FREE� �

my�index � mpadd� �high� 	 ��
avail�my�index � N� � ptr�
��insert ptr into queue of free blocks��



if �mode �� ALLOC� �

my�index � mpadd� �low� 	�
if �my�index �� high� �

��sorry� cannot get block from queue��
result � NULL�
mpadd� �low� �	 ��
��value of low must be corrected���



else result � avail�my�index � N��


 

else retry�
return result�




This implementation should be contrasted to a con�
ventional one protecting access to variables low and
high by means of locks� The run time �gures for a
varying number of processors are given in Fig� �� The
break�even point is approximately at ��� processors�
For p � ��� the run time for the asynchronous run
time begins to grow linearly in the number of proces�
sors since the sequentialization due to the sequential
critical section dominates the execution time�

���� Parallel critical sections

A �sequential� critical section� as known from many
concurrent programming platforms and operating sys�
tems� is a block of statements that can be executed
by only one processor at a time� �In our analogy� this
corresponds to a bus with only one passenger��
Our construct join allows the implementation of a

generalization of this concept� namely parallel critical



sections� Using join� blocks of statements can be exe�
cuted in parallel and synchronously by a set of proces�
sors that has been speci�ed by the programmer� The
programmer may specify an exact number of passen�
gers or only a maximum or minimum number for these
� or some other shared criterion esteemed relevant	 any
desirable constellation can easily be programmed using
delaystmt and springoffcond appropriately� The im�
plementation of the bus guarantees that no other pro�
cessor can join a bus tour as long as the door is locked�
They have to wait �at least� until the processors inside
the bus have �nished their excursion� i�e� have left the
parallel critical section�
We conjecture that this concept of a parallel criti�

cal section is an important step towards the usability
of Fork�
 for programming not only for nice �stand�
alone� parallel algorithms but also of realistic and crit�
ical applications such as parallel operating system ker�
nels�

���� Encapsulating existing synchronous
Fork�� code

A second advantage is that now existing syn�
chronous Fork�
 code can be re�used much easier than
before � it just has to be encapsulated into an ap�
propriate join instruction� Since now several joins
can be nested� it is possible to construct more complex
Fork�
 software packages ����

�� Sequential versus Parallel Critical Sec	
tions

To compare the runtime behavior of sequential crit�
ical sections versus parallel critical sections� we have
implemented a test suite with the following parame�
ters	 The asynchronous variant using usual sequential
critical sections of length Dcrit clock cycles �excluding
overhead for locking!unlocking and the time to wait for
the lock to become free�� and further executingDnoncrit

cycles in a noncritical section� The synchronous vari�
ant needs no locks� executes Dnoncrit cycles in a join
statement� excluding the overhead for the current join
implementation� Each processor generates N queries
to access the shared resource� the time T before issu�
ing the next query is modeled using an exponentially
distributed probability function�
The overall simulation is done according to the fol�

lowing pseudocode	

sh simple lock lock�
initlock� lock ��
desynchronize the processors randomly	
for �i�
� i�N� i��� f

generate�y�	
�if JOIN

join � do �
 cycles� 
� malloc�	

� � f

do Dnoncrit cycles
g

�else
lockup� �lock ��
do Dcrit cycles	
unlock� �lock ��
do Dnoncrit cycles	

�endif
g
barrier�

where generate�y� is a delay routine that takes exactly
T � �t steps� with probability �����y��t�����y� Thus
y controls the density of queries�
With Dnoncrit � ��� and the overhead of the current

implementation of join being around �
� cycles �which
is due to programming in high level language and will
be drastically reduced once coded in assembler�� we
obtain the measurements on the SB�PRAM given in
Fig� ��
Three variations of issuing queries to the parallel

resp� sequential critical section have been examined	
The �rst one �y � �� assumes that a processor raises a
new query immediately after the previous one has been
answered� For long critical sections �Dcrit � 
� cycles�
the break�even point is between � and �� processors�
for short critical sections �Dcrit � �
 cycles� it is at
�� processors� y � � models exponentially distributed
query generation with an expected delay of around ���
cycles from the completion of the previous query� The
break�even point for long critical sections is near ��
processors and for short critical sections at ��� pro�
cessors� y � � models exponentially distributed query
generation with an expected delay of around ���� cy�
cles from the completion of the previous query� The
break�even points are here at 
�� and ���� processors�
respectively�
Generally the join construct is pro�table for a high

density of queries to the shared resource which is in�
�uenced by the number of processors as well as the
average density of queries on each processor� It is in�
teresting to observe that at high numbers of processors�
with the density of queries being very high� the query
generation time becomes meaningless because the se�
quentialization by the critical section �and thus� Dcrit�
dominates the execution time�
��� analyzes the average time behaviour of sequential

and parallel critical sections using stochastic models
based on the theory of queuing systems in discrete time�
This work con�rmed our empirical results and provided
an exact prediction of the break�even point for given
model parameters�
In our experiments we assumed that query genera�

tion follows some regular pattern� the modeling pro�
duced expected values for query generation time that

�The numbers that occur here are multiples of � because � is
the length of an empty for loop iteration�



y y � � y � � y � �

Dcrit �� �� �� �� �� ��

procs JOIN asynchronous JOIN asynchronous JOIN asynchronous
� 
��� ���� ���	 ����� �
��� �
��� �

�� ��	
	 �����
� 
�		 ����	 ��	� ����� ���
� ��	�� ��	�� ��	
	 �����

�� ����� �	�	� 
�
	 �
��� ����� ����	 ���


 ����
	 ������
	
 ����� �
��
 ����� 
	�
	 
���	 
��
� �����
 ��
��� ������
�� ����� 	
��� ��
�� 
	�

 	
		� 
��
� 
���	
 
�	
�	 
�	���
�
� ����� ����	 
���	 
��
� ����� 
���� 
�
�
	 
����� 
���
�

�� ����� ����
� ��	�� 
�
�	 ���


 ���

 
����	 
��	�
 
���


��
 ����� 
����
 ����� 
�
�	 
��	�� ��
�
 	�
��� 	����
 	��
�

��
� ����� ����
� ��
��� 	
��	 ���
�
 ��
��	 	����� ����	� 	�����

��� ����� �
	
�	 
����� 	
��� �
��
� 
����� ��
��� �
�
�	 ����
�
��
� �
��� �����	� ����
� 	���� ������� ���	�� ��
��� ������	 ������

Figure 2. Measurements
for the test scenario on
the SBPRAM �the simula�
tor provides exact timings��
given in clock cycles�

were equally resp� exponentially distributed� In real
parallel programs� this may not generally be the case�
Instead� it is more likely that� considering a longer trace
of program execution� there will occur bursts of more
intensive query generation� separated by time intervals
with rather sparse query generation� We believe that
this scenario will even better pro�t from the join state�
ment because it allows to collect also the large amount
of queries in a burst interval and process them immedi�
ately as a whole� while the asynchronous variant would
result in a long queue of processors waiting to enter the
critical section�


� Conclusion

We presented a new language construct for syn�
chronous parallel programming languages� the join�
Complementary to farming� join supports the imple�
mentation of synchronous parallel critical sections� thus
avoiding the bottleneck of sequential critical sections in
a massively parallel programming environment�
An interesting direction of further research is the

extension of Fork�
 with object�oriented features�
Object�oriented programming allows for a di�erent
and surprisingly elegant view on busses	 An individ�
ual bus line� along with its properties common for all
processors� could be interpreted as a special object
equipped with certain data and methods� Especially�
arrays of bus lines could be constructed each of which
may run independently of the others� The idea of en�
capsulating access to shared data structures into some
kind of object has already been proposed for sequential
critical sections in OPUS where they are called shared
data abstractions �
��

The Fork�
 compiler is available by FTP via
ftp
informatik
uni�trier
de�pub�users�Kessler�
This distribution also contains documentation� exam�
ple programs and a preliminary distribution of the
SB�PRAM system software tools including assembler�
linker� loader and simulator� The Fork�
 compiler
and documentation is also available on the WWW�
http���www
informatik
uni�trier
de� �kessler�

fork��
html�

References

��
 F� Abolhassan� R� Drefenstedt� J� Keller� W� Paul� and
D� Scheerer� On the physical design of PRAMs� Com�
puter Journal� �������������� Dec� �����

��
 F� Abolhassan� J� Keller� and W� Paul� On the cost�
e�ectiveness of PRAMs� In Proc� �rd IEEE Symp� on
Parallel and Distr� Processing� pages ���� IEEE� Dec�
�����

��
 ANSI American National Standard Institute� Inc�� New
York� American National Standards for Information
Systems� Programming Language C� ANSI X������
����� ���
�

��
 H� Bal� Programming Distributed Systems� Prentice
Hall� ���
�

��
 B� Chapman� P� Mehrotra� J� V� Rosendale� and
H� Zima� A software architecture for multidisciplinary
applications� Integrating task and data parallelism� In
Proc� CONPAR ��� Linz� Austria� Sept� �����

��
 T� Hagerup� A� Schmitt� and H� Seidl� FORK� A High�
Level Language for PRAMs� Future Generation Com�
puter Systems� ���������� �����

��
 J� Hofmann� N� M�uller� and K� Natarajan� Parallel ver�
sus Sequential Task�Processing� a New Performance
Model in Discrete Time� to appear as a technical re�
port of Dept� of Mathematics and Computer Science�
University of Trier� Germany� Submitted� �����

��
 C� Ke�ler and H� Seidl� Integrating Synchronous and
Asynchronous Paradigms� The Fork�� Parallel Pro�
gramming Language� In W� Giloi� S� J�ahnichen� and
B� Shriver� eds�� Proc� �nd Int� Conf� on Massively Par�
allel Programming Models� pages �������� IEEE CS
Press� Oct� ����� See also� Techn� report ���
�� FB IV
Informatik� Univ� Trier�

��
 C� Ke�ler and J� Tr�a�� A Library of Basic PRAM
Algorithms and its Implementation in FORK� In Proc�
	th Annual ACM Symp� on Parallel Algorithms and
Architectures� pages �������� New York� ACM Press�
June ����� �����

��

 C� W� Ke�ler and H� Seidl� Fork�� Language and
Compiler for the SB�PRAM� In Proc� 
th Workshop
on Compilers for Parallel Computers� pages �
������
Dept� of Computer Architecture� University of Malaga�
Spain� Report UMA�DAC����
�� June ����
 �����


