
FORK

A High�Level Language for PRAM s

T� Hagerup� A� Schmitt� H� Seidl�

April ��� ����

�������

ABSTRACT

We present a new programming language designed to allow the convenient expression of
algorithms for a parallel random access machine �PRAM�� The language attempts to satisfy
two potentially con�icting goals� On the one hand� it should be simple and clear enough to
serve as a vehicle for human�to�human communication of algorithmic ideas� On the other
hand� it should be automatically translatable to e	cient machine �i�e�� PRAM� code� and it
should allow precise statements to be made about the amount of resources �primarily time�
consumed by a given program� In the sequential setting� both objectives are reasonably well
met by the Algol�like languages� e�g�� with the RAM as the underlying machine model� but
we are not aware of any language that allows a satisfactory expression of typical PRAM
algorithms� Our contribution should be seen as a modest attempt to
ll this gap�

Fachbereich ��
Universit�at des Saarlandes
Im Stadtwald
���� Saarbr�ucken

�Supported by the Deutsche Forschungsgemeinschaft� SFB ���� TP B�

�Supported by the Deutsche Forschungsgemeinschaft� SFB ���� TP C�

� INTRODUCTION �

� Introduction

A PRAM is a parallel machine whose main components are a set of processors and a
global memory� Although every real machine is �nite� we consider an ideal PRAM to
have a countably in�nite number of both processors and global memory cells� of which
only a �nite number is used in any �nite computation� Both the processors and the global
memory cells are numbered consecutively starting at �� the number of a processor is called
its processor number or its index� and the number of a memory cell is� as usual� also
known as its address� Each processor has an in�nite local memory and a local program
counter� All processors are controlled by the same global clock and execute precisely one
instruction in each clock cycle� A PRAM may hence also be characterized as a synchronous
shared	memory MIMD
multiple�instruction multiple�data� machine�
The set of instructions available to each processor is a superset of those found in a

standard RAM
see� e�g��
���� The additional instructions not present in a RAM are an
instruction LOADINDEX to load the index of the executing processor into a cell in its
local memory and instructions READ and WRITE to copy the contents of a given global
memory cell to a given cell in the local memory of the executing processor� and vice versa�
All processors can access a global memory cell in the same step� with some restrictions
concerning concurrent access by several processors to the same cell
see Section �����
Among researchers working on the development of concrete algorithms� the PRAM is

one of the most popular models of parallel computation� and the number of published
PRAM algorithms is large and steadily growing� This is due mainly to the convenient and
very powerful mechanism for inter�processor communication provided by the global mem�
ory� Curiously� there is no standard PRAM programming language� and each researcher�
in so far as he wants to provide a formal description of his algorithms� develops his own
notation from scratch� The disadvantages of this are evident�

�� At least potentially� di�culties of communication are aggravated by the lack of a
common language�

�� The same or very similar de�nitions are repeated again and again� resulting in a
waste of human time and journal space�

�� Since the designer of an algorithm is more interested in the algorithm than in the
notation used to describe it� any language fragments that he may introduce are not
likely to be up to current standards in programming language design�

In the wider area of parallel computing in general� much e�ort has gone into the
development of adequate programming languages� Most of these languages� however� are
intended to be used with loosely coupled multiprocessor systems consisting of autonomous
computers� each with its own clock� that run mainly independently� but occasionally ex�
change messages� The facilities provided for inter�processor communication and synchro�
nization are therefore based on concepts such as message exchange
Ada
���� OCCAM

���� Concurrent C
���� or protected shared variables
Concurrent Pascal
����� In par�
ticular� a global memory simultaneously accessible to all processors is not supported by
such languages� and it can be simulated only with an unacceptably high overhead� While
such languages may be excellent tools in the area of distributed computing� they are not
suited to the description of PRAM algorithms�
Before we go on to discuss other languages more similar in spirit to ours� we describe

what we consider to be important features of such languages� Most obviously� they must

� INTRODUCTION �

o�er a way to state that certain operations can be executed in parallel� Secondly� we want
to write programs for a shared	memory machine� Therefore� the language should distin�
guish between shared variables� which exist only once and can be accessed by a certain
group of processors� and private variables� of which there might be several instances� each
residing in a di�erent processor�s private memory and possibly having a di�erent value�
Also� the machine facilities of synchronous access to shared data� should be re�ected in

the language� Finally� program constructs like recursion� which are well suited for writing
clear and well structured sequential programs� should be allowed to be freely combined
with parallelism� Recursion is characterized by a subdivision of a given problem into a set
of subproblems that can be solved independently and possibly in parallel� Each subprob�
lem may again be worked on by several processors� Therefore� the programming language
should provide the programmer with a means of generating independently working sub�
groups of synchronously running processors� Since the e�ciency of many algorithms relies
on a subtle distribution of processors over tasks� an explicit method should be available
to assign processors to newly created subgroups�
A frequently used tool for indicating parallelly executable program sections is a for

loop where all loop iterations are supposed to be executed in parallel� Such a construct is�
e�g�� used in extensions of sequential imperative languages like force
��� and ParC
���
Also textbooks about PRAM algorithms� e�g�
�� ���� usually employ some Algol	style
notation together with a statement like for i��� to n pardo ��� endpardo �
A di�erent approach is taken in the language gatt
��� In gatt all processors are

started simultaneously at the beginning� During procedure calls subgroups can be formed
to solve designated subproblems� However� since gatt is designed for describing e�cient
algorithms on processor networks� gatt lacks the concept of shared variables� Instead�
every variable has to reside in the private memory of one of the processors�
For PRAMs� there are various examples of descriptions of recursive algorithms using

an informal group concept� e�g�� see
�� sect� ������ p� �����
�� ��� An attempt to formulate
a recursive PRAM algorithmmore precisely is made in
��� Corresponding to the machine�
level fork instruction of
��� a fork statement is introduced� which allows a given group of
synchronously working processors to be divided into subgroups� This fork statement gave
the name to our language�
The present paper embeds the fork statement suggested in
�� into a complete pro�

gramming language� In detail� the contributions of FORK are the following�

� It adds a start construct� which allows a set of new processors with indices in a
speci�ed range to be started�

� It makes precise the extent to which the semantics guarantees synchronous program
execution
and hence synchronous data access��

� Besides the implicit synchronization at the beginning of every statement� as proposed
in
��� it introduces implicit splitting into subgroups at every branching point of the
program where the branch taken by a processor depends on its private variables�

It is argued that the available program constructs can be freely nested� In particular�
iteration and recursion are compatible both with the starting of new processors and the
forking of subprocesses�
The paper is organized as follows� In Section � we explain the mechanism of synchro�

nism of FORK together with the new constructs in FORK for maintaining parallelism�
Moreover� we introduce the three basic concepts of FORK � namely the concepts of a

� AN OVERVIEW ON THE PROGRAMMING LANGUAGE FORK �

�logical processor�� of a �group� of logical processors and of �synchronous program exe�
cution�� These basic concepts are used in Section �� which presents a description of the
syntax of FORK together with an informal description of its semantics� Section � con�
cludes with some hints on how programs of the proposed language can be compiled to
e�ciently running PRAM machine code�
It should be emphasized that although our language design aims to satisfy the needs

of theoreticians� we want to provide a practical language� The language FORK was
developed in close connection with a research project at the Saarbr�ucken Computer Science
Department that in detail explores the possibilities of constructing a PRAM
�� and is
going to build a prototype� We plan to write a compiler for our language that produces
code for this physical machine�
Both a formal semantics of FORK and a more precise description of a compiler for

FORK are in preparation�

� An overview on the programming language FORK

Parallelism in FORK is controlled by two orthogonal instructions� namely
start
�expr����expr�� and fork
�expr����expr��� The start instruction can be used
to readjust the group of processors available to the PRAM for program execution� whereas
the fork instruction leaves the number of processors unchanged� but creates independently
operating subgroups for distinct subtasks and allows for a precise distribution of the avail�
able processors among them� The e�ect of these instructions together with FORK �s con�
cept of synchronous program execution will be explained by the examples below�

��� Creating new processors� The start statement

A basic concept of FORK is a logical processor� Logical processors are meant to be mapped
onto the physical processors provided by the hardware architecture� However� the number
of actually working logical processors may vary during program execution� also� the number
of logical processors may exceed the number of physically available processors� Therefore�
these two kinds of processors should not be confused� In the sequel� if we loosely speak of
�processors� we always mean �logical processors�� If we mean physical processors we will
state so explicitly�
Every
logical� processor p owns a distinguished integer constant � whose value is

referred to as the processor number of p� Also� it may have other private constants�
private types� and private variables which are only accessible by itself� Objects declared
as shared by a group of processors can be accessed by all processors of the given group�
As a �rst example consider the following problem� Assume that we are given a forest

F with nodes �� � � � � N � F is described by an array A of N integers� where A
i� � i if i is
a root of F � and A
i� contains the father of i otherwise� For an integer constant N � the
following program computes an array R of N integers such that R
i� contains the root of
the tree to which i belongs in F �
As in pascal� the integer constant N � the loop variable t� and the arrays A and Rmust

be declared in the surrounding context� in FORK this declaration indicates whether vari�
ables are shared
as in the example� or private and hence only accessible to the individual
processor itself�

� AN OVERVIEW ON THE PROGRAMMING LANGUAGE FORK �

� � �
��
shared const N � � � ��
��
shared var t � integer�
��
shared var A � array
� �� N� of integer�
��
shared var R � array
� �� N� of integer�
��
� � �
��
start
���N�
��
R
�� �� A
�� �
��
for t �� � to log
N� do
��
�� log
N� denotes ��nlceilnlog �
N�nrceil�� ��
���
R
�� �� R
R
���
���

enddo
���
endstart
���
� � �
���

Initially there is just one processor with processor number �� The instruction start
���N� in
line
�� starts processors with processor numbers �� � � � � N � The corresponding instruction
endstart stops these processors again and reestablishes the former processors� Hence the
sequence of an instruction start
���N� immediately followed by an instruction start
���M�
does not start NM processors but only M processors� An occurrence of endstart �nishes
the phase whereM processors were running and again there are N processors with numbers
�� � � � � N �
At the machine level every instruction consumes exactly one time unit� However� the

semantics of a high�level program should be independent of the special features of the
translation schemes� Therefore� it should be left unspeci�ed how many time units are
precisely consumed by� e�g�� an assignment statement of FORK �
For this reason a notion of synchronous program execution is needed which only de�

pends on the program text itself� Again� the semantic notion of �synchronous program
execution� should not be confused with the notion of a global clock of a physical PRAM �
For example� the underlying hardware may allow di�erent processors to execute di�erent
instructions within the same clock cycle� whereas our notion of synchronism does not allow
for a synchronous execution of di�erent statements� Being synchronous is a property of a
set of processors� It implies that all processors within this set are at the same program
point� This means that they not only execute the same statement within the same loop
within the same procedure� It also means that the �history� of the recursive call to that
procedure and the number of iterations within the same loop agree� There is no explicit
synchronization mechanism in FORK � Implicit synchronization in FORK is done state�
ment by statement� At the end of each statement there is an
implicit� synchronization
point� This means that if a set of processors synchronously executes a statement sequence

�statement����statement��

the processors of this set �rst synchronously execute �statement��� When all proces�
sors of this set have �nished the execution of �statement�� they synchronously execute
�statement��� Note that within the execution of �statement�� di�erent processors may
reach di�erent program points� Thus they may become asynchronous in between�

FORK is well structured� there are no gotos� Hence implicit synchronization points
cannot be circumvened� Nontermination caused by in�nite waiting for deviating processors
is therefore not possible�

� AN OVERVIEW ON THE PROGRAMMING LANGUAGE FORK �

In the given example all the processors execute the same code� According to our con�
vention they execute statement by statement synchronously� Hence� �rst every processor
copies the value of A
�� to R
��� Recall that the constant � is distinct for every processor�
Then all processors assign � to the variable t� followed by the execution of line
���� Then
they assign � to t� and so forth� Since the upper bound for t depends on shared data only

namely on N �� all processors �nish the for loop at the same time�
Observe here that the synchronous execution of an assignment statement is subdivided

into three synchronously executed steps� �rst� the right�hand side is evaluated� secondly�
the variable corresponding to the left�hand side is determined� �nally� the value of the
right hand side is assigned to the variable described by the left�hand side�
In our example� in line
���� �rst the value of R
R
��� is computed in parallel for every

processor� secondly� the variable R
�� is determined� which receives its new value in step
three�

��� Forming groups of processors� The fork statement

FORK allows free combination of parallelism and recursion� This gives rise to the sec�
ond basic concept of FORK � a group� Groups are formed by a
possibly empty� set of
processors� Shared variables are always shared relative to a group of processors� meaning
that they can be accessed by processors within this group but not by processors from the
outside�
Groups can be divided into subgroups� This is done by the fork construct of FORK �

The most recently established groups are called leaf groups� Leaf groups play a special
role in FORK � As a minimum� the processors within one leaf group work synchronously�
Also� if new shared objects are declared� they are established as shared relative to the leaf
group executing this declaration�
Every group has a group number� The group number of the most recently created

group can be accessed by its members through the distinguished private integer constant
�� Clearly� the values of � are equal throughout that group� Initially� there is just one
group with group number � which consists of the processor with processor number ��
As an example� consider the following generic divide�and�conquer algorithm DC� DC

has a recursion parameter N describing the maximal number of processors available to
solve the given problem and additional parameters containing the necessary data� which
for simplicity are indicated by � � � � Assuming that the problem size is reduced to its square
root at every recursion step� DC may be programmed as follows�

procedure DC
shared const N� integer� � � � ��
��
� � �
��
if trivial
N�
��

then conquer
 � � � �
��
else
��

fork
� �� sqrt
N����
��
� � � div sqrt
N� �
��
� � � mod sqrt
N� �
��
DC
sqrt
N�� � � � � �� sqrt
N� denotes ��nlceilnsqrt Nnrceil�� ��

��
endfork�
���
combine
 � � � �
���

endif�
���

� AN OVERVIEW ON THE PROGRAMMING LANGUAGE FORK �

� � �
���

When a leaf group reaches the fork instruction in line
��� a set of subgroups with
group numbers �� � � � � sqrt
N �� � is created� These newly created groups are leaf groups
during the execution of the rest of the fork statement� which� in the example� consists of
line
��� Observe that procedure calls inside a fork may allocate distinct instances of the
same shared variable for each of the new leaf groups�
Executing the right	hand side of line
��� every processor determines the leaf group to

which it will belong�
In order to make the call to a recursive procedure simpler it may be reasonable for a

processor to receive a new processor number w�r�t� the chosen leaf group� In the example
this new number is computed in line
���
When the new leaf groups have been formed� the existing processors have been distrib�

uted among these groups� and the processor numbers have been rede�ned� the leaf groups
independently execute the statement list inside the fork construct� In the example this
consists just of a recursive call to DC� Clearly� the parameters of this recursive call which
contain the speci�cation of the subproblem in general depend on the value of the constant
� of its associated leaf group�
When the statements inside a fork statement are �nished the leaf groups disappear

in the example at line
���� The original group is reestablished as a leaf group� and all
the processors continue to synchronously execute the next statement
����

��� Why no pardo statement�

There is no pardo statement in FORK � This choice was motivated by the observation that
in general pardo is used simply in the sense of our start� A di�erence occurs for nested
pardos� Consider the program segment

for i �� � to n pardo
��
for j �� � to m pardo
��
op
i�j�
��

endpardo
��
endpardo
��

Using a similar semantics as for the start instruction in FORK � the second pardo simply
would overwrite the �rst one� which means that on the whole only m processors execute
line
��� moreover� the value of i in line
�� would no longer be de�ned� This is not the
intended meaning�
Instead� two nested pardos as in lines
�� and
�� are meant to start nm processors

indexed by pairs
i� j�� Precisely� a pardo statement of the form

for i �� �expr�
�
to �expr�

�
pardo �statement� endpardo

where the expressions �expr�
�
and �expr�

�
and the statement �statement� do not use

any private objects� can be simulated as follows�

begin
��
�� declare two new auxiliary constants in order
��
to avoid double evaluation of the
��
expressions ��nNTfexprg ��� and ��nNTfexprg ���
��

��
��

� AN OVERVIEW ON THE PROGRAMMING LANGUAGE FORK �

shared const a� � ��nNTfexprg ����
��
shared const a� � ��nNTfexprg ����
��

�� start a��a�!� new processors ��nldots�� ��
��
start
a� �� a��
��
����nldots�� and distribute them among a��a�!� new groups ��
���
fork
a� �� a��
���
� � ��
���
� � ��
���
�� each leaf group creates a new variable i and
���
initilizes it with the group number
���

��
���
begin
���

shared var i � integer�
���

i �� ��
���
�nNTfstatementg�
���

end
���
endfork
���

endstart
���
end �� of the pardo simulation ��
���

In order to avoid redundancies we decided not to include the pardo construct in FORK �
On the other hand one may argue that the fork construct as provided by FORK is

overly complicated� Using the very simple pardo would su�ce in every relevant situation�
Using pardo a generic divide�and�conquer algorithm may look as follows�

procedure DC
shared const N� integer� � � � ��
��
� � �
��
if trivial
N�
��

then conquer
 � � � �
��
else
��

for i �� � to sqrt
N� pardo
��
DC
sqrt
N�� � � � �
��

endpardo�
��
combine
 � � � �
��

endif�
���
� � �
���

In the pardo version of DC beginning with one processor� successively more and more
processors are started� In particular� every subtask is always supplied with one processor
to solve it� Opposed to that� in the fork version the leaf group of processors is succes�
sively subdivided and distributed among the subtasks� The leaf group calling DC does
not necessarily form a contiguous interval� Hence there might be subtasks which receive
an empty set of processors and thus are not executed at all� In fact� this capability is
essentially exploited in the order�chaining algorithm of
��� This algorithm is not easily
expressible using pardos� This was one of the reasons for introducing the fork construct�

� AN OVERVIEW ON THE PROGRAMMING LANGUAGE FORK �

��� Forming subgroups implicitly� The if statement

So far we have not explained what happens if the processors of a given leaf group synchro�
nously arrive at a conditional branching point within the program� As an example� assume
that for some algorithm the processors �� � � � � N are conceptually organized in the form of
a tree of height log
N �� At time t� a processor should execute a procedure op�
�� if its
height in the tree is at most t� and another procedure op�
�� otherwise� The corresponding
piece of program may look like�

shared var t � integer�
��
� � �
��
for t �� � to log
N� do
��

if height
�� �� t
��
then op�
��
��
else op�
��
��

endif
��
enddo
��
� � �
��

For every t the condition of line
�� may evaluate to true for some processors� and to
false for others� Moreover� the evaluation of both op�
�� and op�
�� may introduce local
shared variables� which are distinct even if they have the same names� Therefore� every
if�then�else statement whose condition depends on private variables implicitly introduces
two new leaf groups of processors� namely those that evaluate the condition to true and
those that evaluate it to false� Both groups receive the group number of their father group�
i�e� the private constants � are not rede�ned�
Clearly� within each new leaf group every processor is at the same program point�

Hence� they in fact can work synchronously as demanded by FORK �s group concept� As
soon as the two leaf groups have �nished the then and the else parts� respectively�
i�e�� at
the instruction endif� the original leaf group is reestablished and the synchronous execution
proceeds with the next statement� Case statements and loops are treated analogously�
In the above example the condition of the for loop in line
�� depends only on the

shared variable t� Therefore� the present leaf group is not subdivided into subgroups after
line
��� However� this subdivision occurs after line
��� The two groups for the then and
the else parts execute lines
�� and
�� in parallel� each group internally synchronously but
asynchronously w�r�t� the processors of the other group� Line
�� reestablishes the original
leaf group� which in return synchronously executes the next round of the loop� and so on�
The fact that we implicitly form subgroups at branching points whose conditions de�

pend on private data allows for an unrestricted nesting of if s� loops� procedure calls and
forks�
Observe that at every program point the system of groups and subgroups containing a

given processor forms a hierarchy� Corresponding to that hierarchy� the shared variables
can be organized in a tree	like fashion� Each node corresponds to a group in the hierarchy
and contains the shared variables relative to that group� For a processor of a leaf group
all those variables are relevant that are situated on the path from this leaf group to the
root� Along this path� the ordinary scoping rules hold�
For returning results at the end of a fork or for exchanging data between di�erent leaf

groups of processors it is necessary also to have at least in some cases a synchronous access
to data shared between di�erent subgroups of processors�

� AN OVERVIEW ON THE PROGRAMMING LANGUAGE FORK �

Consider the following example�

� � �
��
shared var A � array
���N��� of integer�
��
shared var i � integer�
��
� � �
��
fork
���N���
��
� � � � � �
��
� � � � � �
��

for i �� � to N�� do
��
A

�!�� mod N � �� result
i���A�
��

enddo
���
endfork
���
� � �
���

In this example the array A is used as a mail box for communication between the groups
�� � � � � N � The loop index i and the limits of the for loop of lines
�� and
�� are shared
not only by the processors within every leaf group� but also between all groups generated
in line
��� If
as in the example� the loop condition depends only on variables shared
by all the existing groups� the semantics of FORK guarantees that the loop is executed
synchronously throughout those groups�
Hence� the results computed in round i are available to all groups in round i! �� The

general rule by which every processor
and hence also the programmer� can determine
the largest surrounding group within which it runs synchronously is described in detail in
Section ������

��� How to solve read and write con�icts

So far we have explained the activation of processors and the generation of subgroups� We
left open what happens when several processors access the same shared variable synchro�
nously� In this case� failure or success and the e�ect of the succeeding access is determined
according to an initially �xed regime for solving access con�icts� Most PRAM models
allow common read operations� However� we do not restrict ourselves to such a model�
The semantics of a FORK program also may be determined� e�g�� w�r�t� an exclusive read
regime where synchronous read accesses of more than one processor to the same shared
variable leads to program abortion� Also� several regimes for solving write con�icts are
possible� For example� we may �x a regime where common writes are allowed provided
all processors assign the same value to the shared variable� In this case� the for loop
in the example above is executed successfully� whereas if we �x a regime where common
writes are forbidden� a for loop with a shared loop parameter causes a failure of program
execution�
As another example consider a regime where common writes are allowed� and the

result is determined according to the processor numbers of the involved processors� e�g��
the processor with the smallest number wins� This regime works �ne if the processors
only access shared data within the present leaf group� If processors synchronously write
to variables declared in a larger group g they may solve the write con�ict according to
their processor numbers relative to that group g� Consider the following example�

� SYNTAX AND SEMANTICS OF FORK ��

� � �
��
shared var A � array
� �� N��� of integer�
��
� � �
��
start
� �� ��N���
��

fork
� �� ��
��
� � � div N�
��
� � � mod N�
��
A
�� �� result
A�����
��
endfork
��

endstart
���
� � �
���

The shared variable A is declared for some group g having after line
�� processors num�
bered �� � � � � ��N��� For n � f�� � � � � N��g there are processors pn�� and pn�� of processor
number n in the �rst and the second leaf group� respectively� that want to assign a value
to A
n� in line
��� This con�ict is solved according to the processor numbers of pn�� and
pn�� relative to group g� i�e� n and N ! n� respectively� Hence� in line
��� the result of
processor pn�� is stored in A
n��
Observe that this scheme fails if another start occurs inside the fork statement be�

cause the original processor numbers can no longer be determined� In this case program
execution fails�
In any case� the semantics of a FORK program is determined by the regime for solving

read and write con�icts� Hence� FORK is intended to give the syntax and a scheme for
the semantics of FORK programs�

��	 Input
Output in FORK

There are at least two natural choices for designing input and output facilities for FORK �
First� one may provide shared input"output facilities� These can be realized by
one	way
in�nite� shared arrays� Within this framework� synchronous I"O is realized by synchronous
access to the corresponding array where con�icts are solved according to the same regime
as with other accesses to shared variables
see Section �����
As a second possibility one may provide private input"output facilities� These can be

realized by equipping every logical processor with private input streams from which it can
read� and private output streams to which it can write� The latter is the straightforward
extension of pascal�s I"O mechanism to the case of several logical processors�
Which of these choices is more suitable depends on the computing environment� e�g��

the available hardware� the capabilities of an operating system and the applications�
Therefore� input functions and output procedures are not described in this �rst draft
on FORK �

� Syntax and semantics of FORK

In this section we give a description of the PRAM language FORK by a contextfree
grammar� We introduce the context conditions
i�e� correct type of variables� using only
variables that are declared� � � �� as well as the semantics of the language in an informal
way� We assume the reader to be familiar with pascal or any similar language�

� SYNTAX AND SEMANTICS OF FORK ��

As usual� nonterminals are enclosed into angled brackets� and we use them also for
denoting arbitrary elements of the corresponding syntactical category� e�g�� an arbitrary
statement may be addressed by �statement�� The empty word is denoted by ��
Programs are executed by processors which are organized in a group hierarchy� For

each construct of FORK we have to explain how the execution of this construct a�ects
the group hierarchy� the synchronism among the processors� and the scopes of objects�
We use the following terminology� A group hierarchy H is a �nite rooted tree whose

nodes are labeled by sets of processors� A node of H is called a group �in H�� Assume G
is a group� A subgroup of G is a node in the subtree with root G� A leaf group of G is
a leaf of this tree� A processor p is contained in a group G if it is contained in
the label
of� a leaf group of G�
In the sequel we de�ne inductively the actual group hierarchy and the notion of a

maximally synchronous group w�r�t� this hierarchy� According to the inductive de�nition
all processors in a maximally synchronous group are at the same program point� Also�
each leaf group is a subgroup of a maximally synchronous group� A group G is called
synchronous if it is a subgroup of a maximally synchronous group� If we loosely speak of a
synchronous group G executing� e�g�� a statement� we always mean that all the processors
within G synchronously execute this statement�

��� Programs and blocks

A program consists of a program name and a block� This is expressed by the following
rule of the grammar�

�program���program �name� � �block� �

Initially� the group hierarchy H consists just of one group numbered � which contains
a single processor also numbered �� This group is maximally synchronous� At the end of
program execution we again have this hierarchy H�
A block contains the declarations of constants� data types� variables� and procedures

and a sequence of statements that should be executed� These statements may only use
constants� variables� and procedures according to pascal�s scoping rules� A block is given
by the following rule�

�block���begin �decls� �stats� end

A block is syntactically correct if the declarations �decls� and the statements �stats�
are both syntactically correct� Declaration sequences and statement sequences are exe�
cuted by maximally synchronous groups
w�r�t� the actual group hierarchy�� In the sequel
G always denotes such a maximally synchronous group w�r�t� the actual group hierarchy
and H the subtree with root G� The execution of declarations and statements may change
the group hierarchy and the synchronism but only within the subtree H� Therefore�
we only describe these changes�

��� Declarations

A sequence of declarations is either a single declaration or a single declaration followed by
a sequence of declarations� A sequence of declarations is
syntactically� correct if all of its

� SYNTAX AND SEMANTICS OF FORK ��

declarations are correct and inside the sequence no name is declared twice� A sequence of
declarations is constructed according to the following grammar rule�

�decls����
���declaration� �
���declaration� � �decls�

Assume G executes a declaration sequence

�declaration� � �decls� �

Then G �rst executes the declaration �declaration�� During the execution of
�declaration� the synchronism among the executing processors and the group hierar�
chy with root G may change� However� at the end of �declaration�� H is reestablished�
and G is maximally synchronous again w�r�t� the actual group hierarchy� Now G starts
executing �decls�� In contrast to pascal� declaration sequences have to be executed
since the declared objects cannot be determined before program execution
see �e�g�� Sec�
tion ������� A declaration is either empty or it is a constant declaration� a type declaration�
a variable declaration� a procedure declaration� or a function declaration�
Constant and variable declarations also determine whether the newly created objects

are private or shared� For this we have the grammar rule�

�access���private

��shared

If an object is declared private� a distinct instance of this object is created for every
processor executing the declaration� If an object is declared shared� each leaf group exe�
cuting this declaration receives a distinct instance of the object� which is accessible by all
the processors of this leaf group�

����� Constant declarations

A constant declaration is of the form

�declaration����access� const �name� � �expr�

Thus a constant declaration speci�es the name of the constant to be declared and its
value� Moreover it speci�es whether this constant should be treated as a private or as a
shared constant� The type of the constant �name� is the type of the expression �expr��
Contrary to constant declarations in pascal� it is not
always� possible to determine

the value of a constant at compile time� The di�erence to variables� however� is that the
value of constants once determined cannot be changed any more� Therefore� constants are
typically used for declaring types� e�g� for index ranges of arrays�
A constant declaration is syntactically correct if the expression �expr� on the right�

hand side is a syntactically correct expression�
The way in which the value of a constant is determined is analogous to the method of

determining the value which a variable receives during an assignment
see Section �������

� SYNTAX AND SEMANTICS OF FORK ��

����� Type declarations

A type declaration is of the form

�declaration���type �name� � �type expr�

Here �type expr� is either a basic type
such as integer� real� boolean or char�� a name
denoting a type
i�e�� this name has been previously declared as a type� or an �expression�
for de�ning array and record types� The precise form of a type expression �type expr�
and its semantics will be described in Section ����
A type declaration is syntactically correct if the type expression �type expr� is� If

�type expr� depends on private data
such as the processor number � or names that are
declared as private constants� or private types then we treat the new type �name� as
private� This has the e�ect that we are not allowed to declare any shared variable of type
�name�� If the �type expr� does not involve any private data or types� then the new
type �name� is treated as a shared type� In this case we are allowed to declare both
shared and private variables of type �name��
The semantics of a type declaration is similar to that of a constant declaration� If

�type expr� denotes a private type then all processors of G evaluate �type expr� to a
type value describing the access to the components of an object of this type� These type
values may be di�erent for di�erent processors� Now each processor associates the type
name �name� with its type value and a �ag marking this type name as a private type�
If �type expr� does not depend on any private data or types� then all processors

of G evaluate �type expr� to a type value that may depend only on the leaf group to
which the processor belongs� This means that all processors inside the same leaf group
evaluate �type expr� to the same type value� Now each leaf group associates the type
name �name� with its type value and marks it as a shared type of this leaf group�
Note that it is possible to check statically
i�e�� before the run of the program� whether

a type used by the program is private or shared� But usually it is impossible to evaluate
a type expression before running the program because type expressions can depend on
input data� This enables the use of dynamic arrays�

����� Variable declaration

A variable declaration is of the form

�declaration����access� var �name� � �type expr�

A private variable declaration is syntactically correct if �type expr� is a syntactically
correct type expression� Every processor p of G creates a new distinct instance of this
variable and marks it as private w�r�t� p�
A shared variable declaration is syntactically correct if �type expr� is a syntactically

correct shared type expression� This means that �type expr� may not involve any private
data or types� In this case� each leaf group g of G creates a new distinct instance of this
variable and marks it as shared relative to group g� Note that in the case of a shared
variable declaration� all processors inside the same leaf group evaluate �type expr� to
the same type value�

� SYNTAX AND SEMANTICS OF FORK ��

����� Procedure and function declarations

Procedure and function declarations are very similar to pascal�s procedure and function
declarations� They are constructed according to the following grammar rule�

�declaration���forward procedure �name�
�formal par list��
��forward �access� function �name�

�formal par list����simple type�
��procedure �name�
�formal par list��� �block�
���access� function �name�

�formal par list����simple type�� �block�
��procedure �name�� �block�
��function �name�� �block�

Forward declarations are used to construct mutually recursive functions or procedures�
If there is a forward declaration of the form

forward procedure �name�
�formal par list��

then the declaration sequence must contain the explicit declaration of procedure �name��
This means there has to be a declaration of the form

procedure �name�� �block�

Note that we do not repeat the list of formal parameters in the explicit declaration of a
procedure that has been declared forward previously�
If a declaration sequence contains a declaration of the form

procedure �name�� �block�

then this procedure declaration must be preceded by a forward declaration of name
�name� as a procedure� Forward function declarations are treated analogously�
The remaining context conditions of procedure and function declarations are the same

as for procedure and function declarations in pascal� Only the formal parameters and
the return values of functions are treated di�erently�

� Our language uses const parameters instead of pascal�s value parameters�

� Every formal parameter has to be declared as private or as shared�

� In a function declaration we have to specify whether the return value should be
treated as a private or as a shared value� If it is declared shared then it is shared
relative to the leaf group which called the function�

A formal parameter is of the form�

�formal par����access� const �name� � �simple type�
���access� var �name� � �simple type�

where �simple type� is either a basic type or the name of a previously declared type�
A formal parameter list is of the form�

�formal par list����
���formal par�
���formal par list� � �formal par�

Inside a formal parameter list no name may be declared twice�

� SYNTAX AND SEMANTICS OF FORK ��

��� Type expressions

Type expressions are similar to pascal�s type expressions� A type expression is a basic
type
such as integer� real� � � ��� a type name� or an array or record type� This is expressed
by the following grammar rules�

�basic type� ��integer j real j boolean j char

�simple type����basic type� j �name�

Here �name� is the name of a previously de�ned type�

�type expr� ���simple type�
��array
�range list�� of �type expr�
��record �record list� end

�range list� ���const range�
���range list� � �const range�

�const range����expr� �� �expr�

Here both expressions �expr� are constant expressions of type integer� This means that
they may not involve any variables or user	de�ned functions�

�record list� ���record item�
���record list� � �record item�

�record item����name� � �type expr�

The semantics of type expressions is the straightforward extension of pascal�s seman�
tics of type expressions� Observe that in contrast to pascal we are able to declare dynamic
arrays� Also� � and � are allowed in type expressions�

��� Statements

Our language supports � kinds of statements�

�� assignments

�� branching statements
if and case statement�

�� loop statements
while� repeat and for statement�

�� procedure calls

�� blocks

�� activation of new processors
start statement�

�� splitting of groups into subgroups
fork statement�

The statements of types � � are similar to their counterparts in pascal� But due to the
fact that there are usually several processors executing such a statement synchronously
there are some di�erences in the semantics�
The start statement allows the activation of new processors by need� If an algorithm

needs a certain number of processors these processors are activated via start� When
the algorithm has terminated� the new processors are deactivated and the computation
continues with the processors that were active before the start�

� SYNTAX AND SEMANTICS OF FORK ��

The fork statement does not change the number of active processors� but re�nes their
division into subgroups�
A sequence of statements is constructed according to the grammar rule

�stats����statement�
���statement� � �stats�

Assume G is a maximally synchronous group executing a statement sequence

�statement� � �stats� �

Then G �rst executes the statement �statement�� During the execution of �statement�
the synchronism among the executing processors and the group hierarchy H with root G
may change� However� at the end of �statement�� H is reestablished� and G is maximally
synchronous again w�r�t� the actual group hierarchy� Then G starts executing �stats��
We now give the syntax and semantics of statements�

����� The empty statement

The empty statement is of the form

�statement����

It has no e�ect on the semantics of a program�

����� The assignment statement

The assignment statement is of the form

�statement����expr� �� �expr�

An assignment is syntactically correct if the following conditions hold�

� The expression �expr� on the left	hand side denotes a variable of type t or the
name of a function returning a value of type t� In the latter case the assignment has
to occur in the statement sequence of that function�

� The expression on the right	hand side denotes a value of type t�

First all processors of G synchronously evaluate the two expressions
see Section �����
Each processor of G evaluates the left	hand side expression to a private or shared variable�
Then the processors of G synchronously bind the value of the right	hand side expression
to this variable� The e�ect of this is de�ned as follows�

�� if the variable is private� then after the assignment it contains the value written by
the processor�

�� if the variable is shared� then the regime for solving write con�icts
see Section ����
determines the success or failure of the assignment� and� in case of success� the value
to which the variable is bound�

� SYNTAX AND SEMANTICS OF FORK ��

Example Assume that four processors numbered � � synchronously execute the
assignment

x �� � ! �

where x is a variable of type integer� The value of x after the assignment depends on
whether x is declared as private or as shared� We list some cases below�

�� x is a private variable� In this case there are four distinct incarnations of x� Then
after the assignment x contains for each processor the value of the expression � !
��

�� the four processors form a leaf group and the variable x is shared relative to that
leaf group� In this case the four processors write to the same variable and this write
con�ict is solved according to the regime for solving write con�icts
see Section �����

�� the four processors form two di�erent leaf groups
i�e� processors � and � are in the
�rst one� � and � in the second one�� Each leaf group has a distinct instance of the
variable x� Then processors � and � write to the same variable and so do processors
� and �� The regime for solving write con�icts determines the value of the
two
distinct� variables x after the assignment�

Above we have described the assignment of basic values� Our language supports as�
signment of structured values
e�g�� a �� b� where a and b are arrays of the same type��
which is carried out component by component synchronously�

����� The if statement

The if statement is constructed according to the following grammar rules�

�statement���if �expr� then �stats� �else part�
�else part� ��endif

��else �stats� endif

The if statement is syntactically correct if �expr� denotes an expression of type boolean
and �stats� is a syntactically correct sequence of statements�
All processors of G �rst evaluate the expression �expr� synchronously� Depending on

the result of this evaluation the processors synchronously execute the statements of the
then or of the else part� respectively� Since di�erent processors may evaluate �expr� to
di�erent values� we cannot make sure that all of them continue to work synchronously� The
group hierarchies and the new maximally synchronous groups executing the then and the
else part
if present�� respectively� are determined according to the constants� variables and
functions on which the expression �expr� �depends�� Precisely� we say �expr� depends
on a variable x if x occurs in �expr� outside any actual parameter of a function call� The
case of constants and functions is analogous� We have to treat two cases�

�� the expression does not depend on any private variables� constants� or functions�

In this case we do not change the group hierarchy H� Only the synchronism among
the processors may change� Consider a processor p of G� We choose the maximal
group gp of H which satis�es the following conditions�

� SYNTAX AND SEMANTICS OF FORK ��

� gp is a subgroup
not necessarily a proper one� of G�

� p is contained in gp�

� The condition �expr� does not depend on any shared variables or other shared
data relative to a proper subgroup of gp� Note that the return value of a shared
function is a shared datum only relative to a leaf group
see Section �����

Under these conditions all processors in gp evaluate �expr� to the same value�
Therefore all these processors choose the same branch of the if statement and hence
are at the same program point�

Note that a processor outside of gp runs asynchronously with the processor p even
if it evaluates expression �expr� to the same value�

Example Assume that during program execution we have obtained the following
group hierarchy�

G�

�
�
�
�l

l
l
l

G�

�
�
�T
T
T

G� G�

G�

�
�
�T
T
T

G� G�

and that all processors execute synchronously the if statement

if x � � then S� else S� endif

where an instance of x is a shared variable relative to G�� and another instance
of x is a shared variable relative to G�� Then the processors of group G� work
synchronously with the processors of group G� and the same holds for groups G�

and G�� respectively� The processors of group G� work asynchronously with the
processors of group G� even if the two instances of variable x contain the same
value� �

When a processor of G has �nished the execution of �stats� it waits until the other
processors of G have �nished their statement sequences� When all processors of
G have arrived at the end of the if statement� G becomes maximally synchronous
again� This means that even if two processors of G work asynchronously inside the
if statement they become synchronous again after the if statement�

�� The expression depends on private variables� constants� or functions

In this case we cannot even be certain that all processors inside the same leaf group
evaluate �expr� to the same value� In this case both the group hierarchy H and
the synchronism are changed as follows�

Each leaf group of G generates two new leaf groups� The �rst one contains all proces�
sors of the leaf group that evaluate �expr� to true� and the second one contains
the rest� All new leaf groups obtain the group number of their father group� The
processors inside the same new subgroup work synchronously� while the processors
of di�erent subgroups work asynchronously�

� SYNTAX AND SEMANTICS OF FORK ��

Again� when a processor reaches the end of the if statement� it waits until the
other processors reach this point� When all the newly generated leaf groups have
terminated the execution of the if statement� i�e�� when all processors have reached
endif� the leaf groups are removed� The original group hierarchy H is reestablished
and G is again maximally synchronous�

����� The case statement

A case statement is constructed according to the grammar rules

�statement���case �expr� of �case list� �end case�
�case list� ���case item�

���case list� � �case item�
�end case� ��endcase

��else �stats� endcase

�case item����expr� � �stats�
���range� � �stats�

�range� ���expr� �� �expr�

A case statement is syntactically correct if the expression �expr� is of type integer�
Moreover� in the list �case list� of case items all expressions have to be expressions of
type integer�
The semantics of the case statement is similar to the semantics of pascal�s case state�

ment� The group hierarchy and the synchronism among the processors executing the
di�erent branches of the case statement is determined in the same fashion as for the if
statement
see Section �������

����� The while statement

The while statement is of the form

�statement���while �expr� do �stats� enddo

It is syntactically correct if �expr� is an expression of type boolean and �stats� is a
syntactically correct sequence of statements�
All processors of G �rst evaluate �expr� to a boolean value� Those processors that

evaluate �expr� to true start to execute the statements �stats�� The others wait until
all processors have �nished executing the while statement� The group hierarchy and the
synchronism among the processors executing �stats� is determined in the same way as
for the if statement
see Section ������� When the processors have �nished the execution
of �stats� they again try to execute the while statement� Those that evaluate �expr�
to true will again execute �stats� while the others have terminated the while statement�
Thus the execution of the while statement

while �expr� do �stats� enddo

is semantically equivalent to the execution of

if �expr� then

�stats� �
while �expr� do �stats� enddo

endif

� SYNTAX AND SEMANTICS OF FORK ��

����� The repeat statement

The repeat statement is of the form

�statement���repeat �stats� until �expr�

It is syntactically correct if �stats� is a syntactically correct sequence of statements
and �expr� is an expression of type boolean�
The repeat statement

repeat �stats� until �expr�

is just an abbreviation for the sequence of statements

�stats��
while not
�expr�� do �stats� enddo

����� The for statement

The for statement is of the form

�statement���for �name� �� �expr� to �expr� �step� do

�stats� enddo

�step� ���
��step �expr�

It is syntactically correct if

�� �name� is a variable of type integer�

�� the expressions �expr� are of type integer�

�� inside �stats� there are no assignments to �name�� nor is �name� used as a
var parameter in procedure and function calls� This means that inside �stats��
�name� is treated like a constant of type integer�

We give the semantics of the for statement by reducing a for statement to a while loop�
or more precisely� we rewrite a program that uses n � � for statements into a program
that contains only n � � � � for statements� By iterating this process we are able to
eliminate all for loops� Observe that� in contrast with the simulation of for by while in a
sequential context� we have to be careful about where auxiliary variables are declared�

�� The statement

for �name� �� �expr�
�
to �expr�

�
do

�stats�
enddo

is an abbreviation for

�name� �� �expr�
�
�

�name�� �� �expr�
�
�

while �name� �� �name�� do

�stats� �
�name� �� �name�! �

enddo

� SYNTAX AND SEMANTICS OF FORK ��

�� The statement

for �name� �� �expr�
�
to �expr�

�
step �expr�

�
do

�stats�
enddo

is an abbreviation for

�name� �� �expr�
�
�

�name�� �� �expr�
�
�

�name�� �� �expr�
�
�

if �name�� � � then
while �name� �� �name�� do

�stats� �
�name� �� �name�!�name��

enddo

else

while �name� �� �name�� do

�stats� �
�name� �� �name�!�name��

enddo

endif

Here �name�� and �name�� denote variables of type integer such that the following
holds�

� The names are new� i�e� these names are not used anywhere in the program containing
the for statement�

� In the simulating program these names are declared in the same declaration sequence
as the index �name��

� If �name� is declared to be private
shared�� then �name�� and �name�� are
declared private
shared��

����� Procedure calls

Syntax and semantics of procedure calls are similar to those of pascal� There are some
slight di�erences due to the fact that processors can access two di�erent kinds of objects�
shared and private objects� This imposes some restrictions on the actual parameters of a
procedure call�
The syntax of a procedure call is given by the following grammar rules�

�statement����name�
 �expr list� �
�expr list� ���

���expr�
���expr list� � �expr�

A procedure call is syntactically correct if the following conditions hold�

� �name� has to be the name of a procedure declared previously�

� the list of actual parameters
�expr list�� and the list of formal parameters have to
match� i�e��

� SYNTAX AND SEMANTICS OF FORK ��

�� Both lists have the same length�

�� Corresponding actual and formal parameters are of the same type�

�� If a formal parameter is a shared	var	parameter then the corresponding actual
parameter has to be a variable which does not depend on any private object�
e�g�� ar
�� is not allowed as an actual shared var parameter even if ar is a shared
array�

�� If a formal parameter is a private	var	parameter then the corresponding actual
parameter can be a private or a shared variable�

�� If a formal parameter is a shared	const	parameter then the corresponding ac�
tual parameter may denote a private or a shared value�

�� If a formal parameter is a private	const	paramenter then the corresponding
actual parameter may denote a private or a shared value�

The case where a formal shared	var	parameter is bound to a private variable is explicitly
excluded since it allows some processor to modify the contents of this private variable�
which may belong to a di�erent processor� In contrast� in the case of a formal shared	
const	parameter the value of that formal parameter during the execution of the procedure
is determined by the regime for solving write con�icts� This is done in the same way as
when determining the value of a shared variable after the assignment of a private value

see Section �������
Assume the maximally synchronous group G executes a procedure call

�name�
�expr�
�
� � � � � �expr�

n
� �

First the actual parameters �expr�
�
� � � � � �expr�

n
are synchronously evaluated and

bound to the corresponding formal parameters synchronously from left to right� Then
G synchronously executes the procedure block� i�e� the declarations and the statements of
that procedure�

����	 Blocks as statements

�statement����block�

A statement which is a block enables the declaration of new objects that are valid only
inside �block��

�����
 The start statement

The start statement is used for activating new processors� The syntax is given by the rule�

�statement���start
�range�� �stats� endstart

The start statement is syntactically correct if the expressions of �range� are of type
integer and do not depend on any private data� Moreover �stats� may not use any pri�
vate types� variables or constants� except � and �� that are declared outside the start
statement�
When the processors of G execute the statement

start
�expr�
�
���expr�

�
� �stats� endstart

� SYNTAX AND SEMANTICS OF FORK ��

they �rst evaluate the range �expr�
�
�� �expr�

�
� Since this range does not depend on

any private data this gives for all processors in the same leaf group g the same range
vg��� � � � � vg��� At every leaf group g of G a new leaf group is added which contains vg�� �
vg��!� new processors numbered with the elements of fvg��� � � � � vg��g� The group numbers
of the new leaf groups are the same as for their father groups� G remains maximally
synchronous� Now G executes �stats�� which means that the new processors of the new
leaf groups execute �stats� synchronously� When G reaches endstart� the leaf groups are
removed� i�e� the original hierarchy H is reestablished�

������ The fork statement

The fork statement is used to generate several new leaf groups explicitly� The new leaf
groups obtain new group numbers and the processors inside the new leaf groups are renum�
bered�
The syntax of the fork statement is given by the following grammar rules�

�statement� ��fork
�range�� �new values� � �stats� endfork

�new values����new group� � �new proc�
���new proc� � �new group�

�new group���� � �expr�
�new proc� ��� � �expr�

The fork statement is syntactically correct if the expressions �expr� are of type inte�
ger and the expressions of �range� do not depend on any private data�
Assume the processors of G execute the statement

fork
�expr�
�
�� �expr�

�
�

� � �expr�
�
�

� � �expr�
�
�

�stats�
endfork

First each processor p of G evaluates the expressions �expr�
�
� � � � � �expr�

�
� Since the

expressions �expr�
�
and �expr�

�
do not depend on any private data� all processors

within the same leaf group g of G evaluate �expr�
�
and �expr�

�
to the same values

vg�� and vg�� respectively� At every leaf group g of G vg�� � vg�� ! � new leaf groups are
added which are numbered with the elements of fvg��� � � � � vg��g� The new leaf group with
number i is labeled by the subset of those processors of g which evaluate �expr�

�
to i�

Each of these processors obtains the value of �expr�
�
as its new processor number� G

remains maximally synchronous and executes �stats�� When G reaches endfork� the new
leaf groups are removed� i�e�� the original group hierarchy is reestablished�

��� Expressions

Syntax and semantics of expressions are similar to those of pascal� There are just two new
prede�ned constants� the processor number � and the group number �� which both are
private constants of type integer� The context conditions for function calls are analogous to
those for procedure calls
see Section ������� Every processor of the maximally synchronous
group G evaluates the expression and returns a value� The return value of a shared function
is determined according to the choosen regime for solving write con�icts seperately for each

� IMPLEMENTATION ��

leaf group of G and is treated as a shared object of this leaf group� Note that the evaluation
of expressions may cause read con�icts� which are solved according to the choosen regime
for solving read con�icts�

Example

� � �
shared var a� array
� �� ��� of integer�
� � �
� � � �� a
��!�
� � �

Determining the variables corresponding to the subexpression a
�� does not cause a read
con�ict� whereas determining the values of these variables may cause read con�icts� �

� Implementation

In this section we sketch some ideas showing that programs of FORK can not only be
translated to semantically equivalent PRAM code� but also to code that runs e�ciently�
These considerations are supposed to be useful both to theoreticians and to compiler writ�
ers� who may have di�erent realizations of PRAMs available� possibly without powerful
operating systems for memory management and processor allocation�
Our basic idea for compiling FORK is to extend the usual stack�based implementation

of recursive procedure calls of� e�g�� the P�machine
��� by a corresponding regime for the
shared data structures� a synchronization mechanism� and a management of group and
processor numbers� Hence� here we address only the following issues�

� creating new subgroups�

� synchronization�

� starting new processors with start�

��� Creating new subgroups

The variables which are shared relative to some group have to be placed into some por�
tion of the shared memory of the PRAM � which is reserved for this group� Therefore�
the crucial point in creating new subgroups is the question of how the subgroups obtain
distinct portions of shared memory� There are
at least� two ways to do this with little
computational overhead�

�� by address arithmetic� as suggested in
���

�� taking into account that in practice the available shared memory always is �nite� by
equally subdividing the remaining free space among the newly created subgroups�

The �rst method corresponds to an addressing scheme where the remaining storage is
viewed as a two	dimensional matrix� Its rows are indexed by the group numbers� whereas
the column index gives the address of a storage cell relative to a given group� For the
second method the role of rows and columns are simply exchanged� In both cases splitting
into subgroups can be executed in constant time� Also� the addresses in the physical
shared memory can be computed from the
virtual� addresses corresponding to the shared

� IMPLEMENTATION ��

memory of a subgroup in constant time� This memory allocation scheme is well suited to
group hierarchies with balanced space requirements� It may lead to an exponential waste
of space in other cases� Consider the following while loop� whose condition depends on
private variables�

while cond
�� do
��
work
��
��

enddo
��

Whenever the group of synchronously working processors executes line
��� it is sub�
divided into two groups� one consisting of the processors that no longer satisfy cond
���
and one consisting of the remaining processors� Hence� the �rst group needs no shared
memory space
besides perhaps some constant amount for organizational reasons�� a fair
subdivision into two equal portions would unnecessarily halve the space available to the
second group to execute work
�� of line
���
However� there is an immediate optimization to the above storage distribution scheme�

we attach only a �xed constant amount of space to groups of which it is known at compile
time that they do not need new shared memory space� and subdivide the remaining space
equally among the other subgroups�
This optimization clearly can be performed automatically for loops as in the given

example� but also for one�sided if s� or if s where one alternative does not involve blocks
with a non	empty declaration part�

��� Synchronization

In order to reestablish a group g� the runtime system has to determine when all the sub�
groups of group g have �nished� This is the termination detection problem for subgroups�
If all processors run synchronously� no explicit synchronization is necessary� In the

general case where the subgroups of group g run asynchronously� there are the following
possibilities for implementing termination detection�

�� Use of special hardware support such as a unit	time fetch�add operation which
allows the processors within a group to simultaneously add an integer to a shared
variable�

�� Static analysis
possibly assisted by user annotation�� most of the PRAM algorithms
published in the literature are of such a simple and regular structure that the relative
times of execution sequences can be determined in this way�

�� Use of a termination detection algorithm at runtime� The latter is always possible�
however� complicated programs cheating a static analyzer will be punished by an
extra loss of e�ciency�

��� Starting new processors

The following method which is analogous to the storage distribution scheme works only for
concurrent	read machines with a �nite number of processors� Before running the program�
all processors are started� all of them with processor number � � �� If in a subsequent start
statement of the program fewer processors are started than what are physically available
in the leaf group executing this statement� then several physical processors may remain
�identical�� i�e�� receive the same new processor number� These identical processors elect

� IMPLEMENTATION ��

a �leader�� All of them execute the program but only the leader is allowed to perform
write operations to shared variables� Consider the following example� Assume that we are
given ��� physical processors�

start
� �� ����
��
if � � �� then
��

start
� �� ����
��
compute
����
��

endstart
��
endif
��

endstart
��

Before line
��� all the ��� physical processors are started� After line
��� there are always
four processors having the same processor number �� Having executed the condition of
line
�� all the processors whose processor number is less than �� enter the then part� these
are ���� All of them are available for the start instruction of line
��� where they receive
the new numbers �� � � � � ���� Two physical processors are assigned to each of the �rst
�� logical processors whereas one physical processor is assigned to each of the remaining
��� logical processors� The original processor identities are put onto the private system
stack� When the endstart in line
�� is reached� the processors reestablish their former
processor numbers�
If more processors are started than physially available in the present group� then every

processor within that group has to simulate an appropriate subset of the newly started
processors�
In both cases start can be executed in constant time by every leaf group consisting of a

contiguous interval of processors� this is the case� e�g�� for starts occuring in the statement
sequence of the toplevel block� Thus� a programming style is encouraged where the logical
processors necessary for program execution are either started at the beginning� i�e�� before
splitting the initial group into subgroups� or are started in a balanced way by contiguous
groups�
To maximally exploit the resources of the given PRAM architecture� a programmer

may wish to write programs which use di�erent algorithms for di�erent numbers of physi�
cally available processors� Therefore� a
shared� system constant of type integer should be
provided� whose value is the number of physical processors available on the given PRAM �
This allows programs to adopt themselves to the underlying hardware�

References

�� F� Abolhassan� J� Keller� and W�J� Paul� �Uberblick �uber PRAM	Simulationen und
ihre Realisierbarkeit� In Proceedings der Tagung der SFBs ��� und ��� in Dagstuhl�
Sept� ����� Informatik Fachberichte� Springer Verlag� to appear�

�� A�V� Aho� J�E� Hopcroft� and J�D� Ullman� The Design and Analysis of Computer
Algorithms� Addison	Wesley� Reading Massachusetts� �����

�� S�G� Akl� The Design and Analysis of Parallel Algorithms� Prentice Hall� �����

�� Y� Ben	Asher� D�G� Feitelson� and L� Rudolph� ParC an extension of C for Shared
Memory Parallel Processing� Technical report� The Hebrew University of Jerusalem�
�����

�� P�C�P� Bhatt� K� Diks� T� Hagerup� V�C� Prasad� S� Saxena� and T� Radzik� Improved
deterministic parallel integer sorting� Information and Computation� to appear�

�� A� Borodin and J�E� Hopcroft� Routing� merging and sorting on parallel models of
computation� J� Comp� Sys� Sci� ��� pages ��� 	 ���� �����

�� M� Dietzfelbinger and F� Meyer auf der Heide
ed��� Das GATT�Manual� In� Analyse
paralleler Algorithmen unter dem Aspekt der Implementierbarkeit auf verschiedenen
parallelen Rechenmodellen� Technical report� Universit�at Dortmund� �����

�� F�E� Fich� P� Ragde� and A�Widgerson� Simulations among concurrent�write PRAMs�
Algorithmica �� pages �� 	 ��� �����

�� S� Fortune and J� Wyllie� Parallelism in random access machines� In ��th ACM
Symposium on Theory of Computing� pages ���	���� �����

��� N�H� Gehani and W�D� Roome� Concurrent C� In N�H� Gehani and A�D� McGettric�
editors� Concurrent Programming� pages ���	���� Addison Wesley� �����

��� A� Gibbons and W� Rytter� E	cient Parallel Algorithms� Cambridge University
Press� �����

��� P�B� Hansen� The programming language Concurrent Pascal� IEEE Transactions on
Software Engeneering �
��� pages ���	���� June �����

��� H�F� Jordan� Structuring parallel algorithms in a MIMD� shared memory environ�
ment� Parallel Comp� �� pages ��	���� �����

��� Inmos Ltd� OCCAM Programming Manual� Prentice Hall� New Jersey� �����

��� United States Department of Defense� Reference manual for the Ada programming
language� ANSI"MIL�STD�����A������

��� St� Pemberton and M� Daniels� Pascal implementation� The P� compiler� Ellis
Horwood� �����

