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File-System Interface
n File Concept
n Access Methods
n Directory Structure
n File-System Mounting
n File Sharing
n Protection

How the file system 
looks to the user 
and to application 

programs
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File Concept
n Primary memory is volatile
l need secondary storage for long-term storage

n For now: A disk is a linear sequence of numbered blocks
l With 2 operations: write block b, read block b
l Low level of abstraction, 

n Portability across different storage devices  

n Solution: OS provides the file abstraction
l Smallest allotment of secondary storage known to the user
l Attributes   (Name, id, size, …)
l Typically, contiguous logical address space
l Organized in a directory of files
l API  (operations on files and directories)
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File Structure

n None - sequence of words, bytes
l Most common – used by Unix, DOS, Windows, ...
l Programs give meaning/structure to the byte sequence
l Minimal requirement: 

The OS must understand its own executable format

n Simple record structure
l Lines 
l Fixed length
l Variable length

n Complex Structures
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File Attributes
n Name – the only information kept in human-readable form
n Identifier – unique tag (number) identifies file within file system
n Type – needed for systems that support different types
n Location – pointer to file location on device
n Size – current file size
n Protection – controls who can read, write, execute
n Time, date, and user identification – data for protection, 

security, and usage monitoring

Such information about files (i.e., meta-data)
is kept in a directory structure, 
which is maintained on the disk.

Stored in a File Control Block (FCB) data structure for each file
6.6TDIU11, C. Kessler, IDA, Linköpings universitet.

File Operations  (API)
n File is an abstract data type, with operations
l Create
l Write
l Read
l Reposition within file
l Delete
l ...
l Open(Fi) – search the directory structure on disk for entry 

Fi, and move the content of that entry to memory
l Close (Fi) – move the content of entry Fi in memory to 

directory structure on disk

Unix / C example:

open ( ”filename”, ”mode” )
returns a file descriptor / handle
= index into a per-process       à

table of open files (part of PCB)
(or an error code)
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File descriptors and open file tables
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open() syscall
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descriptor =
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stderr are 
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Open Files
n Data needed to manage open files:
l Disk location of the file  (and other metadata from FCB)
l File-open count: count number of times a file is opened –

to allow removal of data from open-file table when last 
process closes it
4shared by all processes that opened the file

l File pointer (seekpos):  pointer to next read/write location
4one for every open system call (process)

n Collected in a system-wide table of open files
and process-local open file tables (part of PCB)
l process-local open file table entries point to system-wide

open file table entries
l Semantics of fork()? 
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Open File Locking

n Provided by some operating systems and file systems
l Similar to reader-writer locks   (à TDIU16)
l Shared lock similar to reader lock – several 

processes can acquire concurrently

l Exclusive lock similar to writer lock
n Mediates access to a file
n Mandatory or advisory:
l Mandatory – access is denied depending on locks 

held and requested (usually adopted by windows) 
l Advisory – processes can find status of locks and 

decide what to do (usually adopted by unix)
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Access Methods

n Sequential Access
read next block
write next block
reset (rewind)

n Direct Access
read block n
write block n
position to n

read next block
write next block

n = relative block number from beginning of file)
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Directory Structure

n Files in a system must be organized in some way.
n Directory: 

A collection of nodes containing information about all files
n API:
l Search for a file
l Create a file
l Delete a file
l List a directory
l Rename a file
l Traverse the file system

n Both the directory structure and the files reside on disk.

F 1 F 2 F 3 F 4
F n

Directory

Files
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A Typical File-system Organization
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Organize the Directory (Logically) to Obtain …

n Efficiency – locating a file quickly
n Naming – convenient to users
l Two users can use the same name for different files
l The same file can have several different names

n Grouping – logical grouping of files by properties 
l e.g., all Java programs, all games, … 
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Single-Level Directory

n A single directory for all users

Very simple
Naming problem
Grouping problem
Still used on simple devices, embedded systems, Pintos
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Two-Level Directory
n Separate directory for each user

n Path name:   username / filename
n Can have the same file name for different user
n Efficient searching
n No grouping capability
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Tree-Structured Directories

Directories have subdirectories
n Efficient searching
n Grouping Capability
n Current directory (working directory)
l cd /spell/mail/prog;  type list;
l Absolute vs. relative file names
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Tree-Structured Directories (Cont)

n Absolute or relative path name
n Creating a new file is done in current directory

touch <file-name>
n Delete a file in current working directory

rm <file-name>
n Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example:  if in current directory   /mail

mkdir count mail

prog copy prt exp count
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Acyclic-Graph Directories
n Have shared subdirectories and files
n Done with links à
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Acyclic-Graph Directories (Cont.)
n Two different names (aliasing)

n If dict deletes list ⇒ dangling pointer
Solutions:
l Backpointers, so we can delete all pointers

Variable size records a problem
l Backpointers using a daisy chain organization
l Entry-hold-count solution

n New directory entry type
l Link – another name (pointer) to an existing file
l Resolve the link – follow pointer to locate the file
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Hard links vs. Soft links  (1)
n Example directory:

Name Location

myfile 371

file2 524

…

mylink_hard 371

…

mylink_soft ./myfile

…
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Hard links vs. Soft links  (2)
n Hard links
l direct pointer (block address) to a directory or file
l cannot span partition boundaries
l need be updated when file moves to different place on disk
l Unix:  ln <filename> <linkname>

Name Location
myfile 371
file2 524
…
mylink_hard 371
…
mylink_soft ./myfile
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Hard links vs. Soft links  (3)
n Soft links (symbolic links, ”shortcut”, ”alias”)
l files containing the actual (full) file name
l still valid if file moves on disk
l no longer valid if file name (or path) changes
l Not as efficient as hard links

4one extra block read
l Unix:  ln –s <filename> <linkname>

Name Location
myfile 371
file2 524
…
mylink_hard 371
…
mylink_soft ./myfile
…
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Hard Links  - Remarks
n If the entry in the directory contains size information,

what happens if the file grows?
l All directory entries pointing to this file

must be updated… L
l The Unix solution: 

The directory entries point to an inode (à) 
which contains file information
4If the inode changes, see the change from all directories

n Hard links can cause (true) cycles in the file system

n Removal of hard links (including the original parent) can
create disconnected subareas
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General Graph Directory

n How do we guarantee no cycles?
l Every time a new hard link is added, use a cycle detection

algorithm to determine whether it is OK     (not for soft links)
l Allow only links to files, not to directories
l Garbage collection – mark all reachable files, delete the rest
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File System Mounting
n A file system must be mounted before it can be accessed
n Mounting combines multiple file systems in one namespace
n An unmounted file system is mounted at a mount point
n In Windows, mount points are given names C:, D:, …

Existing 
file system

Unmounted volume 
residing on /device/dsk

Mount point:
Mounted /device/dsk 
over /users
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File Sharing
n Sharing of files on multi-user systems is desirable

n Sharing may be done through a protection scheme

n On distributed systems, files may be shared across a network
l Network File System (NFS) is a common 

distributed file-sharing method
l SMB (Windows shares) is another

n In order to have a protection scheme, the system should have
l User IDs - identify users, 

allowing permissions and protections to be per-user
l Group IDs - allow users to be in groups, 

permitting group access rights
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Protection
n File owner/creator should be able to control:
l what can be done
l by whom

n Types of access
l Read
l Write
l Execute
l Append
l Delete
l List
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Access Lists and Groups
n 3 modes of access:  read, write, execute
n 3 classes of users:

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

n Ask manager to create a group (unique name), say G, 
and add some users to the group.

n For a particular file (say game) or subdirectory, 
define an appropriate access. owner group public

chmod 761 game
Attach a group to a file:

chgrp G    game
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A Sample UNIX Directory Listing

> ls -l owner group name


