TDIU11
Operating Systems

File-System Interface

[SGG7/8/9] Chapter 10

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9™ edition, 2013 by Silberschatz, Galvin and Gagne.

Christoph Kessler, IDA,
Linkdpings universitet.

Iz
File-System Interface

o
File Concept O O
How the file system
looks to the user
and to application
programs

Access Methods
Directory Structure

]
]
]
m File-System Mounting
m File Sharing

]

Protection

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.2

| [T

File Concept
® Primary memory is volatile

e need secondary storage for long-term storage
m For now: A disk is a linear sequence of numbered blocks

e With 2 operations: write block b, read block b

e Low level of abstraction,
m Portability across different storage devices

m Solution: OS provides the file abstraction
e Smallest allotment of secondary storage known to the user
e Attributes (Name, id, size, ...)
e Typically, contiguous logical address space
e Organized in a directory of files
e API (operations on files and directories)

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.3

| TR
File Structure

® None - sequence of words, bytes
e Most common — used by Unix, DOS, Windows, ...
e Programs give meaning/structure to the byte sequence

e Minimal requirement:
The OS must understand its own executable format

m Simple record structure
e Lines
e Fixed length
e Variable length

m Complex Structures

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.4

LINKOPING
| [T

File Attributes

m Name - the only information kept in human-readable form

m |dentifier — unique tag (number) identifies file within file systen
m Type — needed for systems that support different types

m Location — pointer to file location on device

m Size — current file size

m Protection — controls who can read, write, execute

m Time, date, and user identification — data for protection,

security, and usage monitoring

Such information about files (i.e., meta-data)
is kept in a directory structure,
which is maintained on the disk.

woored in aFile Control Block (FCB) data structure for each file

dpings Universitet.

LINKOPING
| [T

File Operations (API)

m File is an abstract data type, with operations

e Create Unix / C example:
o Write open ("filename”, "mode”)
e Read returns a file descriptor / handle

= index into a per-process >
table of open files (part of PCB)
__ (or an error code)

e Reposition within file
e Delete

e Open(F,) — search the directory structure on disk for entry
F;, and move the content of that entry to memory

e Close (F;) — move the content of entry F; in memory to
directory structure on disk

| [T
File descriptors and open file tables
Process 1 KERNEL MEMORY SPACE stdin, stdout,
Logical Process-local stderr are
Address open file table opened upon
Space 0 | stdin (pos, .. System-wide process start
1| stdout (pos, .= open file table
FILE data 2 | stderr (pos,..o Console input]| ‘
structure Console output
{...fd, ..} Disk
——] newfile(pos, ..~}
P returned by n
fopen() C newfile (loc.,- F——
library call FCB contents | FCB
Process 2 Process-local File
Logical + data
Address or:z.n file table
Space 0 | stdin (pos, ...) open() syscall
1| stdout (pos, ... returns a file
2 | stderr (pos,...) descriptor =
index in local
TDIUTT, C. Kessler, IDA, RO E-tmveTSTOT =7 open file table

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.6

LINKOPING
| [T

Open Files

m Data needed to manage open files:
e Disk location of the file (and other metadata from FCB)

e File-open count: count number of times a file is opened —
to allow removal of data from open-file table when last
process closes it

» shared by all processes that opened the file
e File pointer (seekpos): pointer to next read/write location
» one for every open system call (process)

m Collected in a system-wide table of open files
and process-local open file tables (part of PCB)

e process-local open file table entries point to system-wide
open file table entries

e Semantics of fork()?

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.8

| [T
Open File Locking
®m Provided by some operating systems and file systems

e Similar to reader-writer locks (> TDIU16)

e Shared lock similar to reader lock — several
processes can acquire concurrently

e Exclusive lock similar to writer lock
m Mediates access to a file
® Mandatory or advisory:

e Mandatory — access is denied depending on locks
held and requested (usually adopted by windows)

e Advisory — processes can find status of locks and
decide what to do (usually adopted by unix)

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.9

Access Methods

beginning

m Sequential Access

TDIU11, C. Kessler, IDA, Linkdpings universitet.

current position

LINKOPING
| [T

eng

rewind

read next

block

write next block
reset (rewind)

read block n
write block n
position to n

read next block
write next block

——read or write =>

n = relative block number from beginning of file)

6.10

| [T
Directory Structure

m Files in a system must be organized in some way.

m Directory:
A collection of nodes containing information about all files

m API:
e Search for a file
e Create a file
e Delete a file
e List a directory
e Rename a file

e Traverse the file system
m Both the directory structure and the files reside on disk.

TDIU11, C. Kessler, IDA, Linképings universitet. 6.11

| TR
A Typical File-system Organization
(directory b directory h
partition A < flo- > disk 2
L + disk 1
directory partition C < . <
files
partition B 4 i
r disk 3

TDIU11, C. Kessler, IDA, Linkdpings universitet.

6.12

Iz

Organize the Directory (Logically) to Obtain ...
m Efficiency — locating a file quickly
® Naming — convenient to users

e Two users can use the same name for different files

e The same file can have several different names
® Grouping — logical grouping of files by properties

e e.g., all Java programs, all games, ...

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.13

| [T
Two-Level Directory
m Separate directory for each user
mgisrteirtcfjlri ‘ user 1 ‘ user2‘ user 3 ‘ user 4 ‘
user f|Ie cat ‘ bo a ‘ test ‘ ‘ data ‘ ‘ ‘ test ‘ ‘ ‘ data a

SILTTTIT L

m Path name: username / filename

m Can have the same file name for different user
m Efficient searching

® No grouping capability

TDIU11, C. Kessler, IDA, Linkdpings universitet.

6.15

LINKOPING
| [T

Single-Level Directory

m A single directory for all users

directory catl bol I testl datal malll contl hexlrecorcl

BYYSPYSPY

Very simple

Naming problem

Grouping problem

Still used on simple devices, embedded systems, Pintos

TDIU11, C. Kessler, IDA, Linképings universitet. 6.14

| [T
Tree-Structured Directories

root | spell bin |programs|

o [[| [[e o] [[o]

6\ ooob 0o

[roa [oo| e am] [l e L] [o]
N gg

[e o] e T

Directories have subdirectories

é) m Efficient searching

®m Grouping Capability

m Current directory (working directory)
e cd /spell/mail/prog; type list;

TDIU11, C. Kessler, IDA, Linkdpings universitet. .6 1-§AbSOIUte VS- relative file names

| [T
Tree-Structured Directories (Cont)

m Absolute or relative path name

m Creating a new file is done in current directory
touch <file-name>

m Delete a file in current working directory
rm <file-name>

m Creating a new subdirectory is done in current directory
mkdir <dir-name>

Example: if in current directory /mail

mkdir count

‘ prog ‘ copy ‘prt ‘exp‘count‘

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.17

LINKOPING
| [T

Acyclic-Graph Directories (Cont.)

m Two different names (aliasing)

m If dict deletes list = dangling pointer
Solutions:

e Backpointers, so we can delete all pointers
Variable size records a problem

e Backpointers using a daisy chain organization
e Entry-hold-count solution

m New directory entry type
e Link — another name (pointer) to an existing file
e Resolve the link — follow pointer to locate the file

TDIU11, C. Kessler, IDA, Linkdpings universitet. 619

Iz
Acyclic-Graph Directories

® Have shared subdirectories and files
® Done with links > spell

list ‘ all ‘ w ‘count‘ count|words| list

TDIU11, C. Kessler, IDA, Linkdpings universitet.

LINKOPING
| [T

Hard links vs. Soft links (1)

m Example directory:

Name Location
myfile 371

file2 524
mylink_hard 371
mylink_soft Imyfile

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.20

| [T
Hard links vs. Soft links (2)
® Hard links
e direct pointer (block address) to a directory or file
e cannot span partition boundaries
e need be updated when file moves to different place on disk

e Unix: In <filename> <linkname>

Name Location
myfile 371
file2 524

mylink hard | 371

mylink_soft /myfile

TDIU11, C. Kessler, IDA, Linkdpings universitet. 6.21

LINKOPING
| [T

Hard links vs. Soft links (3)

m Soft links (symbolic links, "shortcut”, "alias”)
o files containing the actual (full) file name
e still valid if file moves on disk
e no longer valid if file name (or path) changes
e Not as efficient as hard links
» one extra block read

e Unix: In —s <filename> <linkname>

Name Location
myfile 371
file2 524

mylink hard 371

mylink_soft JImyfile

TDIU11, C. Kessler, IDA, Linképings universitet. 6.22

| [T
Hard Links - Remarks

m [f the entry in the directory contains size information,
what happens if the file grows?

e All directory entries pointing to this file
must be updated... ®

e The Unix solution:
The directory entries point to an inode ()
which contains file information

» If the inode changes, see the change from all directories

®m Hard links can cause (true) cycles in the file system

® Removal of hard links (including the original parent) can

create disconnected subareas

TDIU1, c Kessler, IDA, Linkopings universitet.

| [T
General Graph Directory
O

’ text ’ mail |count| book‘ ‘book’ mail |unhe>% hyp ‘

d o

| avi count| unhex hex

® How do we guarantee no cycles?

e Every time a new hard link is added, use a cycle detection
algorithm to determine whether itis OK (not for soft links)

e Allow only links to files, not to directories
e Garbage collection — mark all reachable files, delete the res

TDIU11, C. Kessler, IDA, Linkdpings universitet. 624

Iz
File System Mounting
m A file system must be mounted before it can be accessed
® Mounting combines multiple file systems in one nhamespace
B An unmounted file system is mounted at a mount point

® In Windows, mount points are given names C:, D, ...
/
/

users

sue Jane sue jane
B F—\
y N yF—N
doc doc
prog prog
@ ®]
Existing Unmounted volume mount ZO'/gt- Coldek
file system residing on /device/dsk ounted /device/ds
over /users
TDIU11, C. Kessler, IDA, Linképings universitet. 6.25

LINKOPING
| [T

File Sharing
m Sharing of files on multi-user systems is desirable
m Sharing may be done through a protection scheme

m On distributed systems, files may be shared across a network

e Network File System (NFS) is a common
distributed file-sharing method

e SMB (Windows shares) is another

m In order to have a protection scheme, the system should have

e User IDs - identify users,
allowing permissions and protections to be per-user

e Group IDs - allow users to be in groups,

ermitting group access 6rlzghts

TDIU11, C. Kessler, IDA, Linkoping:

| T
Protection
m File owner/creator should be able to control:
e what can be done
e by whom

m Types of access
e Read
o Write
e Execute
e Append
e Delete
o List

TDIU11, C. Kessler, IDA, Linképings universitet. 6.27

| TR

Access Lists and Groups

m 3 modes of access: read, write, execute

m 3 classes of users:

RWX
a) owner access 7 = 111
RWX
b) group access 6 = 110
RWX
c) public access 1 = 001

® Ask manager to create a group (unique name), say G,
and add some users to the group.

m For a particular file (say game) or subdirectory, o
define an appropriate access. N goe e
Attach a group to a file: chmed et game

chgrp G game
TDIU11, C. Kessler, IDA, Linképings universitet. 6.28

A Sample UNIX Directory Listing

> s -| owjner
Tw-rw-1-- | pbg
drwx------ 5pbg
drwxrwxr-x 2 pbg
drwxrwx--- 2 pbg
TW-I--[-- 1 pbg
TWXI-Xr-x | pbg
drwx--x--x 4 pbg
drwx------ 3 pbg

drwxrwxrwx 3 pbg

TDIU11, C. Kessler, IDA, Linkdpings universitet.

;roup
staff 31200
staff 512
staff 512
student 512
staff 9423
staff 20471
faculty 512
staff 1024
staff 512

6.29

Sep 3 08:30
Jul 8 09.33
Jul 8 09:35
Aug 3 14:13
Feb 24 2003
Feb 24 2003
Jul 31 10:31
Aug 29 06:52
Jul 8 09:35

LINKOPING
| [T

name

intro.ps
private/
doc/
student-proj/
program.c
program

lib/

mail/

test/

