
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet.

TDIU11

Operating Systems

File-System Interface

[SGG7/8/9] Chapter 10

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

6.2TDIU11, C. Kessler, IDA, Linköpings universitet.

File-System Interface
n File Concept
n Access Methods
n Directory Structure
n File-System Mounting
n File Sharing
n Protection

How the file system
looks to the user
and to application

programs

6.3TDIU11, C. Kessler, IDA, Linköpings universitet.

File Concept
n Primary memory is volatile
l need secondary storage for long-term storage

n For now: A disk is a linear sequence of numbered blocks
l With 2 operations: write block b, read block b
l Low level of abstraction,

n Portability across different storage devices

n Solution: OS provides the file abstraction
l Smallest allotment of secondary storage known to the user
l Attributes (Name, id, size, …)
l Typically, contiguous logical address space
l Organized in a directory of files
l API (operations on files and directories)

6.4TDIU11, C. Kessler, IDA, Linköpings universitet.

File Structure

n None - sequence of words, bytes
l Most common – used by Unix, DOS, Windows, ...
l Programs give meaning/structure to the byte sequence
l Minimal requirement:

The OS must understand its own executable format

n Simple record structure
l Lines
l Fixed length
l Variable length

n Complex Structures

2

6.5TDIU11, C. Kessler, IDA, Linköpings universitet.

File Attributes
n Name – the only information kept in human-readable form
n Identifier – unique tag (number) identifies file within file system
n Type – needed for systems that support different types
n Location – pointer to file location on device
n Size – current file size
n Protection – controls who can read, write, execute
n Time, date, and user identification – data for protection,

security, and usage monitoring

Such information about files (i.e., meta-data)
is kept in a directory structure,
which is maintained on the disk.

Stored in a File Control Block (FCB) data structure for each file
6.6TDIU11, C. Kessler, IDA, Linköpings universitet.

File Operations (API)
n File is an abstract data type, with operations
l Create
l Write
l Read
l Reposition within file
l Delete
l ...
l Open(Fi) – search the directory structure on disk for entry

Fi, and move the content of that entry to memory
l Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

Unix / C example:

open (”filename”, ”mode”)
returns a file descriptor / handle
= index into a per-process à

table of open files (part of PCB)
(or an error code)

6.7TDIU11, C. Kessler, IDA, Linköpings universitet.

File descriptors and open file tables

FCB

stdin (pos, …)
stdout (pos, …)
stderr (pos,…)

newfile(pos,…)

Console input
Console output

newfile (loc.,…)
FCB contents

System-wide
open file table

Process-local
open file table

Process-local
open file table

KERNEL MEMORY SPACE

stdin (pos, …)
stdout (pos, …)
stderr (pos,…)

0

d

1
2

0
1
2

Process 1
Logical
Address
Space

Process 2
Logical
Address
Space

Disk

File
data

FILE data
structure
{…, fd, …}

open() syscall
returns a file
descriptor =
index in local
open file table

stdin, stdout,
stderr are
opened upon
process start

returned by
fopen() C
library call

fp

6.8TDIU11, C. Kessler, IDA, Linköpings universitet.

Open Files
n Data needed to manage open files:
l Disk location of the file (and other metadata from FCB)
l File-open count: count number of times a file is opened –

to allow removal of data from open-file table when last
process closes it
4shared by all processes that opened the file

l File pointer (seekpos): pointer to next read/write location
4one for every open system call (process)

n Collected in a system-wide table of open files
and process-local open file tables (part of PCB)
l process-local open file table entries point to system-wide

open file table entries
l Semantics of fork()?

3

6.9TDIU11, C. Kessler, IDA, Linköpings universitet.

Open File Locking

n Provided by some operating systems and file systems
l Similar to reader-writer locks (à TDIU16)
l Shared lock similar to reader lock – several

processes can acquire concurrently

l Exclusive lock similar to writer lock
n Mediates access to a file
n Mandatory or advisory:
l Mandatory – access is denied depending on locks

held and requested (usually adopted by windows)
l Advisory – processes can find status of locks and

decide what to do (usually adopted by unix)

6.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Access Methods

n Sequential Access
read next block
write next block
reset (rewind)

n Direct Access
read block n
write block n
position to n

read next block
write next block

n = relative block number from beginning of file)

6.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Directory Structure

n Files in a system must be organized in some way.
n Directory:

A collection of nodes containing information about all files
n API:
l Search for a file
l Create a file
l Delete a file
l List a directory
l Rename a file
l Traverse the file system

n Both the directory structure and the files reside on disk.

F 1 F 2 F 3 F 4
F n

Directory

Files

6.12TDIU11, C. Kessler, IDA, Linköpings universitet.

A Typical File-system Organization

4

6.13TDIU11, C. Kessler, IDA, Linköpings universitet.

Organize the Directory (Logically) to Obtain …

n Efficiency – locating a file quickly
n Naming – convenient to users
l Two users can use the same name for different files
l The same file can have several different names

n Grouping – logical grouping of files by properties
l e.g., all Java programs, all games, …

6.14TDIU11, C. Kessler, IDA, Linköpings universitet.

Single-Level Directory

n A single directory for all users

Very simple
Naming problem
Grouping problem
Still used on simple devices, embedded systems, Pintos

6.15TDIU11, C. Kessler, IDA, Linköpings universitet.

Two-Level Directory
n Separate directory for each user

n Path name: username / filename
n Can have the same file name for different user
n Efficient searching
n No grouping capability

6.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Tree-Structured Directories

Directories have subdirectories
n Efficient searching
n Grouping Capability
n Current directory (working directory)
l cd /spell/mail/prog; type list;
l Absolute vs. relative file names

5

6.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Tree-Structured Directories (Cont)

n Absolute or relative path name
n Creating a new file is done in current directory

touch <file-name>
n Delete a file in current working directory

rm <file-name>
n Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail

mkdir count mail

prog copy prt exp count

6.18TDIU11, C. Kessler, IDA, Linköpings universitet.

Acyclic-Graph Directories
n Have shared subdirectories and files
n Done with links à

6.19TDIU11, C. Kessler, IDA, Linköpings universitet.

Acyclic-Graph Directories (Cont.)
n Two different names (aliasing)

n If dict deletes list ⇒ dangling pointer
Solutions:
l Backpointers, so we can delete all pointers

Variable size records a problem
l Backpointers using a daisy chain organization
l Entry-hold-count solution

n New directory entry type
l Link – another name (pointer) to an existing file
l Resolve the link – follow pointer to locate the file

6.20TDIU11, C. Kessler, IDA, Linköpings universitet.

Hard links vs. Soft links (1)
n Example directory:

Name Location

myfile 371

file2 524

…

mylink_hard 371

…

mylink_soft ./myfile

…

6

6.21TDIU11, C. Kessler, IDA, Linköpings universitet.

Hard links vs. Soft links (2)
n Hard links
l direct pointer (block address) to a directory or file
l cannot span partition boundaries
l need be updated when file moves to different place on disk
l Unix: ln <filename> <linkname>

Name Location
myfile 371
file2 524
…
mylink_hard 371
…
mylink_soft ./myfile
… 6.22TDIU11, C. Kessler, IDA, Linköpings universitet.

Hard links vs. Soft links (3)
n Soft links (symbolic links, ”shortcut”, ”alias”)
l files containing the actual (full) file name
l still valid if file moves on disk
l no longer valid if file name (or path) changes
l Not as efficient as hard links

4one extra block read
l Unix: ln –s <filename> <linkname>

Name Location
myfile 371
file2 524
…
mylink_hard 371
…
mylink_soft ./myfile
…

6.23TDIU11, C. Kessler, IDA, Linköpings universitet.

Hard Links - Remarks
n If the entry in the directory contains size information,

what happens if the file grows?
l All directory entries pointing to this file

must be updated… L
l The Unix solution:

The directory entries point to an inode (à)
which contains file information
4If the inode changes, see the change from all directories

n Hard links can cause (true) cycles in the file system

n Removal of hard links (including the original parent) can
create disconnected subareas

6.24TDIU11, C. Kessler, IDA, Linköpings universitet.

General Graph Directory

n How do we guarantee no cycles?
l Every time a new hard link is added, use a cycle detection

algorithm to determine whether it is OK (not for soft links)
l Allow only links to files, not to directories
l Garbage collection – mark all reachable files, delete the rest

7

6.25TDIU11, C. Kessler, IDA, Linköpings universitet.

File System Mounting
n A file system must be mounted before it can be accessed
n Mounting combines multiple file systems in one namespace
n An unmounted file system is mounted at a mount point
n In Windows, mount points are given names C:, D:, …

Existing
file system

Unmounted volume
residing on /device/dsk

Mount point:
Mounted /device/dsk
over /users

6.26TDIU11, C. Kessler, IDA, Linköpings universitet.

File Sharing
n Sharing of files on multi-user systems is desirable

n Sharing may be done through a protection scheme

n On distributed systems, files may be shared across a network
l Network File System (NFS) is a common

distributed file-sharing method
l SMB (Windows shares) is another

n In order to have a protection scheme, the system should have
l User IDs - identify users,

allowing permissions and protections to be per-user
l Group IDs - allow users to be in groups,

permitting group access rights

6.27TDIU11, C. Kessler, IDA, Linköpings universitet.

Protection
n File owner/creator should be able to control:
l what can be done
l by whom

n Types of access
l Read
l Write
l Execute
l Append
l Delete
l List

6.28TDIU11, C. Kessler, IDA, Linköpings universitet.

Access Lists and Groups
n 3 modes of access: read, write, execute
n 3 classes of users:

RWX
a) owner access 7 ⇒ 1 1 1

RWX
b) group access 6 ⇒ 1 1 0

RWX
c) public access 1 ⇒ 0 0 1

n Ask manager to create a group (unique name), say G,
and add some users to the group.

n For a particular file (say game) or subdirectory,
define an appropriate access. owner group public

chmod 761 game
Attach a group to a file:

chgrp G game

8

6.29TDIU11, C. Kessler, IDA, Linköpings universitet.

A Sample UNIX Directory Listing

> ls -l owner group name

