
1

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet

TDIU11

Operating Systems

CPU Scheduling

[SGG7/8/9] Chapter 5.1-5.4

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book
“Operating System Concepts”, 9th edition, 2013 by Silberschatz, Galvin and Gagne.

3.2TDIU11, C. Kessler, IDA, Linköpings universitet.

Overview: CPU Scheduling

n CPU bursts and I/O bursts
n CPU Scheduling Criteria
n CPU Scheduling Algorithms

Optional additional material:
n Appendix: Multiprocessor Scheduling
n Appendix: Towards Real-Time Scheduling

3.3TDIU11, C. Kessler, IDA, Linköpings universitet.

Basic Concepts

n Maximum CPU utilization obtained with multiprogramming
n CPU–I/O Burst Cycle –

Process execution consists of
a sequence of alternating
CPU execution and I/O wait
l CPU burst followed by I/O burst

n CPU burst distribution histogram

3.4TDIU11, C. Kessler, IDA, Linköpings universitet.

CPU Scheduler
n Selects from among the processes in memory that are ready

to execute, and allocates the CPU to one of them
n CPU scheduling decisions may take place when a process:

0. Is admitted
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting

to ready state
4. Terminates

n Scheduling under 1 and 4 only is nonpreemptive
n All other scheduling is preemptive

2

1
3

40

2

3.5TDIU11, C. Kessler, IDA, Linköpings universitet.

Dispatcher

n Dispatcher module gives control of the CPU
to the process selected by the (short-term) CPU scheduler;
this involves:
l switching context
l switching to user mode
l jumping to the proper location in the user program to

restart that program

n Dispatch latency – time it takes for the dispatcher to stop
one process and start another running

3.6TDIU11, C. Kessler, IDA, Linköpings universitet.

Scheduling Criteria

n CPU utilization –
keep the CPU as busy as possible

n Throughput –
of processes that complete their execution per time unit

n Turnaround time –
amount of time to execute a particular process

n Waiting time –
amount of time a process has been waiting in the ready queue

n Response time –
amount of time it takes from when a request was submitted
until the first response is produced,
not including output (for time-sharing environment)

n Deadlines met? – in real-time systems (later)

3.7TDIU11, C. Kessler, IDA, Linköpings universitet.

Optimization Criteria

n Max CPU utilization
n Max throughput
n Min turnaround time
n Min waiting time
n Min response time

3.8TDIU11, C. Kessler, IDA, Linköpings universitet.

First-Come, First-Served (FCFS, FIFO)
Scheduling

Process Burst Time
P1 24
P2 3
P3 3

n Suppose that the processes arrive in the order: P1 , P2 , P3

n The Gantt Chart for the schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27

n Average waiting time: (0 + 24 + 27) / 3 = 17

P1 P2 P3

24 27 300

FCFS normally used for
non-preemptive batch
scheduling, e.g. printer
queues (i.e., burst time
= job size)

Waiting time Pi = start time Pi – time of arrival for Pi

3

3.9TDIU11, C. Kessler, IDA, Linköpings universitet.

FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0, P3 = 3
n Average waiting time: (6 + 0 + 3)/3 = 3 - much better!

n Convoy effect – short process behind long process
l Idea: shortest job first?

P1P3P2

63 300

3.10TDIU11, C. Kessler, IDA, Linköpings universitet.

Shortest-Job-First (SJF) Scheduling

n Associate with each process the length of its next CPU burst.
n Use these lengths to schedule the shortest ready process
n Two schemes:

l nonpreemptive SJF – once CPU given to the process, it cannot
be preempted until it completes its CPU burst

l preemptive SJF – preempt if a new process arrives with CPU
burst length less than remaining time of current executing
process.
4Also known as Shortest-Remaining-Time-First (SRTF)

n SJF is optimal –
l gives minimum average waiting time

for a given set of processes

n The difficulty is knowing the length of the next CPU request
l Could ask the user, or predict from observations of the past

3.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n with non-preemptive SJF:

n Average waiting time = (0 + 6 + 3 + 7) / 4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

3.12TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of Preemptive SJF
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n with preemptive SJF (= SRTF):

n Average waiting time = (9 + 1 + 0 +2) / 4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

4

3.13TDIU11, C. Kessler, IDA, Linköpings universitet.

Predicting Length of Next CPU Burst

n Can only estimate the length
n Based on length of previous CPU bursts,

using exponential averaging:

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

1

≤≤

=
=

+

αα
τ n

th
n nt

() .1 1 nnn t ταατ −+==+

3.14TDIU11, C. Kessler, IDA, Linköpings universitet.

Examples of Exponential Averaging
n Extreme cases:

l α =0
4 τn+1 = τn

4 Recent history does not count
l α =1

4 τn+1 = α tn
4 Only the latest CPU burst counts

n Otherwise: Expand the formula:
τn+1 = α tn + (1 - α)α tn-1 + …

+(1 - α)j α tn-j + …
+(1 - α)n +1 τ0

l Since both α and (1 - α) are less than 1,
each successive term has less weight than its predecessor

3.15TDIU11, C. Kessler, IDA, Linköpings universitet.

Priority Scheduling
n A priority value (integer) is associated with each process
n The CPU is allocated to the process with the highest priority

(smallest integer ≡ highest priority)
l preemptive
l nonpreemptive

n SJF is a priority scheduling where priority is the predicted next
CPU burst time

n Problem:
Starvation – low-priority processes may never execute

n Solution:
Aging – as time progresses increase the priority of the process

3.16TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of Priority Scheduling

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

n Priority scheduling Gantt Chart

n Average waiting time = 8.2

1
P

2
P 5

P 3P
4

P

10 6 16 18 19

Convention here:
1 = highest priority,
5 = lowest priority

5

3.17TDIU11, C. Kessler, IDA, Linköpings universitet.

Round Robin (RR)
n Each process gets a small unit of CPU time:
l time quantum, usually 10-100 milliseconds.

n After this time has elapsed, the process is preempted
and added to the end of the ready queue.

n Given n processes in the ready queue and time quantum q,
each process gets 1/n of the CPU time
in chunks of at most q time units at once.
No process waits more than (n-1)q time units.

n Performance
l q very large ⇒ FCFS
l q very small ⇒ many context switches
l q must be large w.r.t. context switch time,

otherwise too high overhead

3.18TDIU11, C. Kessler, IDA, Linköpings universitet.

Example: RR with Time Quantum q = 20
Process Burst Time

P1 53
P2 17
P3 68
P4 24

n The Gantt chart is:

n Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

3.19TDIU11, C. Kessler, IDA, Linköpings universitet.

Time Quantum and Context Switches

Smaller time quantum ⇒ more context switches

3.20TDIU11, C. Kessler, IDA, Linköpings universitet.

RR: Turnaround Time Varies With Time Quantum

The average
turnaround time can
be improved if most

processes finish their
next CPU burst in a

single time quantum.

P1
P2
P3
P4

5 10 15

Time Quantum = 1

3

3

9

+ 9

15

+ 15

17

+ 17
4

=11

6

3.21TDIU11, C. Kessler, IDA, Linköpings universitet.

RR: Turnaround Time Varies With Time Quantum

The average
turnaround time can
be improved if most

processes finish their
next CPU burst in a

single time quantum.

P1
P2
P3
P4

5 10 15

Time Quantum = 2

5

5

10

+10

14

+ 14

17

+ 17
4

=11.5

3.22TDIU11, C. Kessler, IDA, Linköpings universitet.

RR: Turnaround Time Varies With Time Quantum

3.23TDIU11, C. Kessler, IDA, Linköpings universitet.

Problems with RR and Priority Schedulers

n Priority based scheduling may cause starvation
for some processes.

n Round robin based schedulers are maybe too ”fair”...
we sometimes want to prioritize some processes.

n Solution: Multilevel queue scheduling ...?

3.24TDIU11, C. Kessler, IDA, Linköpings universitet.

Multilevel Queue
n Ready queue is partitioned into separate queues, e.g.:

l foreground (interactive)
l background (batch)

n Each queue has its own scheduling algorithm
l foreground – RR
l background – FCFS

n Scheduling must be done also between the queues:
l Fixed priority scheduling

4 Serve all from foreground queue, then from background queue.
4 Possibility of starvation.

l Time slice
4 Each queue gets a certain share of CPU time

which it can schedule amongst its processes
4 Example: 80% to foreground in RR, 20% to background in FCFS

Useful
when processes

are easily
classified into

different groups
with different

characteristica...

7

3.25TDIU11, C. Kessler, IDA, Linköpings universitet.

Multilevel Queue Scheduling

3.26TDIU11, C. Kessler, IDA, Linköpings universitet.

Multilevel Feedback Queue

n A process can move between the various queues
l aging can be implemented this way

n Time-sharing among the queues in priority order
l Processes in lower queues get CPU only if higher

queues are empty

3.27TDIU11, C. Kessler, IDA, Linköpings universitet.

Example of Multilevel Feedback Queue
n Three queues:
l Q0 – RR with q = 8 ms
l Q1 – RR with q = 16 ms
l Q2 – FCFS

n Scheduling:
l A new job enters queue Q0 which is served RR.
l When it gains CPU, the job receives 8 milliseconds.
l If it does not finish in 8 milliseconds, it is moved to Q1.
l At Q1 the job is again served RR

and receives 16 additional milliseconds.
l If it still does not complete, it is preempted and moved to Q2.

high

low
priority

3.28TDIU11, C. Kessler, IDA, Linköpings universitet.

Multilevel Feedback Queue

n Multilevel-feedback-queue scheduler
defined by the following parameters:
l number of queues
l scheduling algorithms for each queue
l method used to determine when to upgrade a process
l method used to determine when to demote a process
l method used to determine which queue a process will

enter when that process needs service
l priority level of each queue

8

3.29TDIU11, C. Kessler, IDA, Linköpings universitet.

Summary: CPU Scheduling

n Goals:
l Enable multiprogramming
l CPU utilization, throughput, ...

n Scheduling Algorithms
l Preemptive vs Non-preemptive scheduling
l RR, FCFS, SJF
l Priority scheduling
l Multilevel queue and Multilevel feedback queue

n Appendix: Multiprocessor Scheduling

n Appendix: Towards Realtime Scheduling

n In the book (Chapter 5): Scheduling in Solaris, Windows, Linux

Copyright Notice: The lecture notes are mainly based on Silberschatz’s, Galvin’s and Gagne’s book (“Operating System
Concepts”, 7th ed., Wiley, 2005). No part of the lecture notes may be reproduced in any form, due to the copyrights
reserved by Wiley. These lecture notes should only be used for internal teaching purposes at the Linköping University.

Christoph Kessler, IDA,
Linköpings universitet

TDIU11

Operating Systems

APPENDIX:
Multiprocessor Scheduling

Optional

3.31TDIU11, C. Kessler, IDA, Linköpings universitet.

Multiprocessor Scheduling
n CPU scheduling more complex if multiple CPUs available
l Multiprocessor (SMP)

4 homogeneous processors, shared memory
l (homogeneous) Multi-core processors

4 cores share L2 cache and memory
l Multithreaded processors

4 HW threads / logical CPUs share
basically everything but register sets

– HW-Contextswitch-on-Load
– Cycle-by-cycle interleaving
– Simultaneous multithreading

n Parallel jobs: Work sharing
l Centralized vs. local task queues, load balancing

n Supercomputing applications often use a fixed-sized process configuration
(“SPMD”, 1 thread per processor) and implement own methods for scheduling
and resource management (goal: load balancing)

CPU CPU CPU

memory

…

P0 P1
L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Intel Xeon
Dualcore(2005)

Main memory

P0 P1
L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Intel Xeon
Dualcore(2005)

Main memory

3.32TDIU11, C. Kessler, IDA, Linköpings universitet.

Multiprocessor Scheduling
Multi-CPU scheduling approaches

for sequential and parallel tasks

n Common ready queue (SMP only) – critical section!
supported by Linux, Solaris, Windows XP, Mac OS X
l Job-blind scheduling (FCFS, SJF, RR – as above)

4 schedule and dispatch one by one as any CPU gets available
l Affinity based scheduling

4 guided by data locality (cache contents, loaded pages)
l Co-Scheduling / Gang scheduling for parallel jobs à

n Processor-local ready queues
l Load balancing by task migration

4 Push migration vs. pull migration (work stealing)
– Linux: Push-load-balancing every 200 ms,

pull-load-balancing whenever local task queue is empty

9

3.33TDIU11, C. Kessler, IDA, Linköpings universitet.

Affinity-based Scheduling
n Cache contains copies of data recently accessed by CPU
n If a process is rescheduled to a different CPU (+cache):
l Old cache contents invalidated by new accesses
l Many cache misses when restarting on new CPU
à much bus traffic and many slow main memory accesses

n Policy: Try to avoid migration to other CPU if possible.
n A process has affinity for the processor on which it is

currently running
l Hard affinity (e.g. Linux):

Migration to other CPU is forbidden
l Soft affinity (e.g. Solaris):

Migration is possible but undesirable

Cache Cache

Main Memory

CPU CPU

3.34TDIU11, C. Kessler, IDA, Linköpings universitet.

Scheduling Communicating Threads
n Frequently communicating threads / processes

(e.g., in a parallel program) should be scheduled
simultaneously on different processors to avoid idle times

CPU 0:

CPU 1:

A0

A1B0 A1

A0

B0

B1 B1 A0

B0

B1

A1

CPU 0:

CPU 1:

A0

A1 B0 A1

A0

B0

B1 B1 A0

B0

B1

A1

Idle…

Idle… Idle…

Idle…

timeTime
quantum

3.35TDIU11, C. Kessler, IDA, Linköpings universitet.

Co-Scheduling / Gang Scheduling
n Tasks can be parallel (have >1 process/thread)
n Global, shared RR ready queue
n Execute processes/threads from the same job simultaneously

rather than maximizing processor affinity
n Example: Undivided Co-scheduling algorithm

l Place threads from same task in adjacent entries in the global queue

l Window on ready queue of size #processors
l All threads within same window execute in parallel for at most 1 time

quantum

☺ RR à fair (no indefinite postponement)
☺ Programs designed to run in parallel profit from multiprocessor env.
L May reduce processor affinity

A1 A2 A3 A4 B1 B2 B3 C1 C2 C3 C4 C5 …

3.36TDIU11, C. Kessler, IDA, Linköpings universitet.

APPENDIX:

Towards
Real-Time Scheduling

(optional, maybe useful for Paper 1)

10

3.37TDIU11, C. Kessler, IDA, Linköpings universitet.

Real-Time Systems
Network access
- Search
- Maintain link
- Talk

Display
- Clock
- Browse web
- …

Camera
- Take photo

Keyboard
- Button pressed
- … Event-driven (e.g. sensor input)

and/or time-driven

Deadlines
3.38TDIU11, C. Kessler, IDA, Linköpings universitet.

Real-Time Scheduling

n Hard real-time systems
l required to complete a critical task within a guaranteed

amount of time
l missing a deadline can have catastrophic consequences

n Soft real-time computing
l requires that critical processes receive priority

over less important ones
l missing a deadline leads to degradation of service

4e.g., lost frames / pixelized images in digital TV

n Often, periodic tasks or reactive computations
l require special scheduling algorithms: RM, EDF, ...

3.39TDIU11, C. Kessler, IDA, Linköpings universitet.

Utility Function
(Value of result relative to time)

utility

time

v(t)

be
ne

fit

ut
ili

ty
 lo

ss

pe
na

lty

ir id

)(tvi

Hard real-time system:

Release time Deadline

3.40TDIU11, C. Kessler, IDA, Linköpings universitet.

Real-Time CPU Scheduling

n Time triggered or event triggered (e.g., sensor measurement)
n Periodic tasks
l Each task i has a periodicity pi, a (relative) deadline di

and a computation time ti
4CPU utilization of task i: ti / pi

n Sporadic tasks (no period, but relative deadline)
n Aperiodic tasks (no period, no deadline)

11

3.41TDIU11, C. Kessler, IDA, Linköpings universitet.

Real-Time Scheduling Algorithms

Fundamental algorithms for real-time scheduling of periodic
tasks include:
n Rate-Monotonic Scheduling (RM)
l Fixed priorities

n Earliest-Deadline First (EDF)
l Dynamically updated priorities
l A variant of preemptive SJF (SRTF)

n Details in Paper 1

Chang Liu and James W. Layland: "Scheduling Algorithms for Multiprogramming in
a Hard-Real-Time Environment". Journal of the ACM Volume 20 (1973): 46-61.

3.42TDIU11, C. Kessler, IDA, Linköpings universitet.

Minimizing Latency
n Event latency is the amount of time from when an event

occurs to when it is serviced
n Interrupt latency + Dispatch latency

3.43TDIU11, C. Kessler, IDA, Linköpings universitet.

Interrupt Latency
n Interrupt latency is the period of time from when an interrupt

arrives at the CPU to when it is serviced.

ISR

continued

3.44TDIU11, C. Kessler, IDA, Linköpings universitet.

Dispatch Latency
n Dispatch latency is the amount of time required for the

scheduler to stop one process and start another.

Period of conflict, e.g.,
priority inversion

