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Overview:  CPU Scheduling

n CPU bursts and I/O bursts
n CPU Scheduling Criteria 
n CPU Scheduling Algorithms

Optional additional material:
n Appendix: Multiprocessor Scheduling
n Appendix: Towards Real-Time Scheduling
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Basic Concepts

n Maximum CPU utilization obtained with multiprogramming
n CPU–I/O Burst Cycle –

Process execution consists of 
a sequence of alternating
CPU execution and I/O wait
l CPU burst followed by I/O burst

n CPU burst distribution histogram
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CPU Scheduler
n Selects from among the processes in memory that are ready 

to execute, and allocates the CPU to one of them
n CPU scheduling decisions may take place when a process:

0.  Is admitted
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting 

to ready state
4. Terminates

n Scheduling under 1 and 4 only is nonpreemptive
n All other scheduling is preemptive
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Dispatcher

n Dispatcher module gives control of the CPU 
to the process selected by the (short-term) CPU scheduler; 
this involves:
l switching context
l switching to user mode
l jumping to the proper location in the user program to 

restart that program

n Dispatch latency – time it takes for the dispatcher to stop 
one process and start another running
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Scheduling Criteria

n CPU utilization –
keep the CPU as busy as possible

n Throughput –
# of processes that complete their execution per time unit

n Turnaround time –
amount of time to execute a particular process

n Waiting time –
amount of time a process has been waiting in the ready queue

n Response time –
amount of time it takes from when a request was submitted 
until the first response is produced, 
not including output  (for time-sharing environment)

n Deadlines met? – in real-time systems   (later)

3.7TDIU11, C. Kessler, IDA, Linköpings universitet.

Optimization Criteria

n Max CPU utilization
n Max throughput
n Min turnaround time 
n Min waiting time 
n Min response time
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First-Come, First-Served  (FCFS, FIFO) 
Scheduling

Process Burst Time
P1 24
P2 3
P3 3

n Suppose that the processes arrive in the order: P1 , P2 , P3  

n The Gantt Chart for the schedule is:

n Waiting time for P1 = 0;  P2 = 24;  P3 = 27

n Average waiting time:  (0 + 24 + 27) / 3 = 17

P1 P2 P3

24 27 300

FCFS normally used for 
non-preemptive batch 
scheduling, e.g. printer 
queues  (i.e., burst time 
= job size)

Waiting time Pi =  start time Pi  – time of arrival for Pi
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FCFS Scheduling (Cont.)
Suppose that the processes arrive in the order

P2 , P3 , P1

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0,  P3 = 3
n Average waiting time:   (6 + 0 + 3)/3 = 3             - much better!

n Convoy effect – short process behind long process
l Idea: shortest job first?

P1P3P2

63 300
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Shortest-Job-First (SJF) Scheduling

n Associate with each process the length of its next CPU burst.  
n Use these lengths to schedule the shortest ready process 
n Two schemes: 

l nonpreemptive SJF – once CPU given to the process, it cannot 
be preempted until it completes its CPU burst

l preemptive SJF – preempt if a new process arrives with CPU 
burst length less than remaining time of current executing 
process. 
4Also known as Shortest-Remaining-Time-First (SRTF)

n SJF is optimal –
l gives minimum average waiting time 

for a given set of processes

n The difficulty is knowing the length of the next CPU request
l Could ask the user, or predict from observations of the past

3.11TDIU11, C. Kessler, IDA, Linköpings universitet.

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n with non-preemptive SJF:

n Average waiting time = (0 + 6 + 3 + 7) / 4  =  4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12
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Example of Preemptive SJF
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

n with preemptive SJF  (= SRTF):

n Average waiting time = (9 + 1 + 0 +2) / 4  =  3

P1 P3P2

42 110

P4

5 7

P2 P1

16
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Predicting Length of Next CPU Burst

n Can only estimate the length
n Based on length of previous CPU bursts, 

using exponential averaging:
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Examples of Exponential Averaging
n Extreme cases:

l α =0
4 τn+1 = τn

4 Recent history does not count
l α =1

4 τn+1 = α tn
4 Only the latest CPU burst counts

n Otherwise:  Expand the formula:
τn+1 = α tn + (1 - α)α tn-1 + … 

+(1 - α )j α tn-j + …
+(1 - α )n +1 τ0

l Since both α and (1 - α) are less than 1, 
each successive term has less weight than its predecessor
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Priority Scheduling
n A priority value (integer) is associated with each process
n The CPU is allocated to the process with the highest priority 

(smallest integer ≡ highest priority)
l preemptive
l nonpreemptive

n SJF is a priority scheduling where priority is the predicted next 
CPU burst time

n Problem: 
Starvation – low-priority processes may never execute

n Solution:
Aging – as time progresses increase the priority of the process
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Example of Priority Scheduling

ProcessAarri Burst TimeT Priority
P1 10 3
P2 1 1
P3 2 4
P4 1 5
P5 5 2

n Priority scheduling Gantt Chart

n Average waiting time = 8.2 

1
P

2
P 5

P 3P
4

P

10 6 16 18 19

Convention here: 
1 = highest priority, 
5 = lowest priority
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Round Robin (RR)
n Each process gets a small unit of CPU time:
l time quantum,  usually 10-100 milliseconds.  

n After this time has elapsed, the process is preempted 
and added to the end of the ready queue.

n Given n processes in the ready queue and time quantum q, 
each process gets 1/n of the CPU time 
in chunks of at most q time units at once.  
No process waits more than (n-1)q time units.

n Performance
l q very large  ⇒ FCFS
l q very small  ⇒ many context switches
l q must be large w.r.t. context switch time,

otherwise too high overhead
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Example: RR with Time Quantum q = 20
Process Burst Time

P1 53
P2 17
P3 68
P4 24

n The Gantt chart is: 

n Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162
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Time Quantum and Context Switches

Smaller time quantum  ⇒ more context switches
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RR: Turnaround Time Varies With Time Quantum

The average 
turnaround time can 
be improved if most 

processes finish their 
next CPU burst in a 

single time quantum.

P1
P2
P3
P4

5 10 15

Time Quantum = 1

3

3

9

+ 9

15

+ 15

17

+ 17
4

=11
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RR: Turnaround Time Varies With Time Quantum

The average 
turnaround time can 
be improved if most 

processes finish their 
next CPU burst in a 

single time quantum.

P1
P2
P3
P4

5 10 15

Time Quantum = 2

5

5

10

+10

14

+ 14

17

+ 17
4

=11.5
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RR:  Turnaround Time Varies With Time Quantum
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Problems with RR and Priority Schedulers

n Priority based scheduling may cause starvation
for some processes.

n Round robin based schedulers are maybe too ”fair”...
we sometimes want to prioritize some processes.

n Solution: Multilevel queue scheduling ...?
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Multilevel Queue
n Ready queue is partitioned into separate queues, e.g.:

l foreground  (interactive)
l background  (batch)

n Each queue has its own scheduling algorithm
l foreground – RR
l background – FCFS

n Scheduling must be done also between the queues:
l Fixed priority scheduling

4 Serve all from foreground queue, then from background queue.
4 Possibility of starvation.

l Time slice
4 Each queue gets a certain share of CPU time 

which it can schedule amongst its processes
4 Example: 80% to foreground in RR,  20% to background in FCFS 

Useful
when processes 

are easily 
classified into 

different groups 
with different 

characteristica...
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Multilevel Queue Scheduling
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Multilevel Feedback Queue

n A process can move between the various queues
l aging can be implemented this way

n Time-sharing among the queues in priority order
l Processes in lower queues get CPU only if higher 

queues are empty
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Example of Multilevel Feedback Queue
n Three queues: 
l Q0 – RR with q = 8 ms
l Q1 – RR with q = 16 ms
l Q2 – FCFS

n Scheduling:
l A new job enters queue Q0 which is served RR. 
l When it gains CPU, the job receives 8 milliseconds.  
l If it does not finish in 8 milliseconds, it is moved to Q1.
l At Q1 the job is again served RR 

and receives 16 additional milliseconds.  
l If it still does not complete, it is preempted and moved to Q2.

high

low
priority
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Multilevel Feedback Queue

n Multilevel-feedback-queue scheduler
defined by the following parameters:
l number of queues
l scheduling algorithms for each queue
l method used to determine when to upgrade a process
l method used to determine when to demote a process
l method used to determine which queue a process will 

enter when that process needs service
l priority level of each queue
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Summary:  CPU Scheduling

n Goals:
l Enable multiprogramming
l CPU utilization,  throughput,  ...

n Scheduling Algorithms
l Preemptive vs Non-preemptive scheduling
l RR,  FCFS,  SJF
l Priority scheduling
l Multilevel queue and Multilevel feedback queue

n Appendix:  Multiprocessor Scheduling

n Appendix: Towards Realtime Scheduling

n In the book (Chapter 5):   Scheduling in Solaris, Windows, Linux
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APPENDIX:
Multiprocessor Scheduling

Optional
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Multiprocessor Scheduling
n CPU scheduling more complex if multiple CPUs available
l Multiprocessor (SMP) 

4 homogeneous processors, shared memory 
l (homogeneous) Multi-core processors

4 cores share L2 cache and memory
l Multithreaded processors

4 HW threads / logical CPUs share 
basically everything but register sets

– HW-Contextswitch-on-Load
– Cycle-by-cycle interleaving
– Simultaneous multithreading

n Parallel jobs: Work sharing
l Centralized vs. local task queues,  load balancing

n Supercomputing applications often use a fixed-sized process configuration 
(“SPMD”, 1 thread per processor) and implement own methods for scheduling 
and resource management   (goal: load balancing)

CPU CPU CPU

memory

…

P0 P1
L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Intel Xeon
Dualcore(2005)

Main memory

P0 P1
L1$ D1$ L1$ D1$

L2$

Memory Ctrl

Intel Xeon
Dualcore(2005)

Main memory
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Multiprocessor Scheduling
Multi-CPU scheduling approaches

for sequential and parallel tasks

n Common ready queue (SMP only)  – critical section!
supported by Linux, Solaris, Windows XP, Mac OS X
l Job-blind scheduling (FCFS, SJF, RR – as above)

4 schedule and dispatch one by one as any CPU gets available
l Affinity based scheduling

4 guided by data locality  (cache contents, loaded pages)
l Co-Scheduling / Gang scheduling for parallel jobs à

n Processor-local ready queues
l Load balancing by task migration

4 Push migration  vs.  pull migration (work stealing)
– Linux: Push-load-balancing every 200 ms, 

pull-load-balancing whenever local task queue is empty
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Affinity-based Scheduling
n Cache contains copies of data recently accessed by CPU
n If a process is rescheduled to a different CPU (+cache):
l Old cache contents invalidated by new accesses
l Many cache misses when restarting on new CPU
à much bus traffic and many slow main memory accesses

n Policy: Try to avoid migration to other CPU if possible.
n A process has affinity for the processor on which it is 

currently running
l Hard affinity (e.g. Linux):  

Migration to other CPU is forbidden
l Soft affinity (e.g. Solaris):

Migration is possible but undesirable

Cache Cache

Main Memory

CPU CPU
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Scheduling Communicating Threads
n Frequently communicating threads / processes

(e.g., in a parallel program) should be scheduled 
simultaneously on different processors to avoid idle times

CPU 0:

CPU 1:

A0

A1B0 A1

A0

B0

B1 B1 A0

B0

B1

A1

CPU 0:

CPU 1:

A0

A1 B0 A1

A0

B0

B1 B1 A0

B0

B1

A1

Idle…

Idle… Idle…

Idle…

timeTime 
quantum
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Co-Scheduling / Gang Scheduling
n Tasks can be parallel  (have >1 process/thread)
n Global, shared RR ready queue
n Execute processes/threads from the same job simultaneously 

rather than maximizing processor affinity
n Example:  Undivided Co-scheduling algorithm

l Place threads from same task in adjacent entries in the global queue

l Window on ready queue of size #processors
l All threads within same window execute in parallel for at most 1 time 

quantum

☺ RR à fair  (no indefinite postponement)
☺ Programs designed to run in parallel profit from multiprocessor env.
L May reduce processor affinity

A1 A2 A3 A4 B1 B2 B3 C1 C2 C3 C4 C5 …
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APPENDIX:

Towards
Real-Time Scheduling

(optional, maybe useful for Paper 1)
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Real-Time Systems
Network access
- Search
- Maintain link
- Talk

Display
- Clock
- Browse web
- …

Camera
- Take photo

Keyboard
- Button pressed
- … Event-driven (e.g. sensor input)

and/or time-driven

Deadlines
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Real-Time Scheduling

n Hard real-time systems
l required to complete a critical task within a guaranteed 

amount of time
l missing a deadline can have catastrophic consequences

n Soft real-time computing
l requires that critical processes receive priority 

over less important ones
l missing a deadline leads to degradation of service

4e.g., lost frames / pixelized images in digital TV

n Often, periodic tasks or reactive computations
l require special scheduling algorithms:  RM, EDF, ...
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Utility Function     
(Value of result relative to time)

utility

time

v(t)
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Hard real-time system:

Release time Deadline

3.40TDIU11, C. Kessler, IDA, Linköpings universitet.

Real-Time CPU Scheduling

n Time triggered or event triggered (e.g., sensor measurement)
n Periodic tasks
l Each task i has a periodicity pi,  a (relative) deadline di

and a computation time ti
4CPU utilization of task i:     ti / pi

n Sporadic tasks (no period, but relative deadline)
n Aperiodic tasks (no period, no deadline)
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Real-Time Scheduling Algorithms

Fundamental algorithms for real-time scheduling of periodic 
tasks include:
n Rate-Monotonic Scheduling (RM)
l Fixed priorities

n Earliest-Deadline First (EDF)
l Dynamically updated priorities
l A variant of preemptive SJF (SRTF)

n Details in Paper 1

Chang Liu and James W. Layland: "Scheduling Algorithms for Multiprogramming in 
a Hard-Real-Time Environment". Journal of the ACM Volume 20 (1973): 46-61.
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Minimizing Latency
n Event latency is the amount of time from when an event 

occurs to when it is serviced
n Interrupt latency + Dispatch latency
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Interrupt Latency
n Interrupt latency is the period of time from when an interrupt 

arrives at the CPU to when it is serviced. 

ISR

continued
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Dispatch Latency
n Dispatch latency is the amount of time required for the 

scheduler to stop one process and start another.

Period of conflict, e.g.,
priority inversion


