| T e
Processes and Threads — Overview

TDIU1M
Operating Systems
® Process Concept
e Context Switch
e Scheduling Queues
e Creation and Termination
Processes and Threads a Cooperating Processes
e Interprocess Communication
[SGG7/8/9] Chapters 3.1-3.3 and 4.1-4.3 e Example: Bounded buffer in shared memory
® Thread Concept
® Multithreading Models

Copyright Notice: The lecture notes are modifications of the slides accompanying the course book Th . I
“Operating System Concepts”, 9* edition, 2013 by Silberschatz, Galvin and Gagne.] readlng sSsues

Christoph Kessler, IDA,
Linkdpings universitet.

TDIU11, C. Kessler, IDA, Linképings universitet. 4.2
| (XTI | TR
Process Concept Process Concept
® Process = a program in execution ® Process = a program in execution
e Program is a passive entity stored on disk (executable file),
process is active m Needs resources for execution A process in memory:
e Example: Consider multiple users executing the same program » esp., CPU, memory slice max
stack
)) ®m A process includes:
m Textbook uses the terms job and process almost interchangeably. . l
e The program code (also called text section)
e Current activity including program counter,
processor registers
e Data section containing global variables T
e Stack containing temporary data: heap
function parameters, return addresses,
local variables e
e Heap containing memory dynamically i
allocated during run time

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.3 TDIU11, C. Kessler, IDA, Linképings universitet. 4.4 0

e
Process State

B As aprocess executes, it changes state
e new: The process is being created
e running: Instructions are being executed
e waiting: The process is waiting for some event to occur
e ready: The process is waiting to be assigned to a process

e terminated: The process has finished execution

admitted interrupt exit

terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.5

Process Control Block (PCB)

A data structure for each process in the OS kernel,
containing information associated with a process
(PCB, also called task control block)

B Process state — running, waiting, etc.
B Program counter — location of instruction to execute next

m CPU register contents of all process-centric CPU
registers

m CPU scheduling information d — priorities, scheduling
queue pointers

® Memory-management information — memory allocated
to the process

| [T
CPU Switch From Process to Process

process Py operating system process P,

interrupt or system call

executing J-L
T)H save state into PCB,
.
.

reload state from PCB, 1

ridle interrupt or system call executing

\
save state into PCB;

idle

idle

LINKOPING
| [T

process state

process number

program counter

registers

memory limits

list of open files

J reload state from PCB,,
executing l[
47

TDIU11, C. Kessler, IDA, Linkdpings universitet.

Context Switch

® When CPU switches to another process, the system must

e save the state of the old process

e and load the saved state for the new process

m Context-switch time is overhead

e the system does no useful work while switching

e time depends on hardware support

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.8

e o o
m Accounting information — CPU used, clock time
elapsed since start, time limits
m /O status information — 1/0 devices allocated to
process, list of open files
TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.6
| [T

| [T
Process Scheduling Queues

® Job queue
e set of all processes in the system
® Ready queue

e set of all processes residing in main memory, ready and
waiting to execute

. ready queue CPU
m Device queues ya

e set of processes Vo queue] O request +—i

waiting for an

. . II "UNKOD]NG
Ready Queue And Various I/O Device Queues
queue header PCB, PCB,
ready head —=
queue tail registers registers
\/ -
mag head +—=
tape - -
unit 0 tail =
mag head +—=
lape Wl 1. PCBs PCB,, PCB,
/ -— — -—
disk | head 64
unit 0 tail 1 P |5° a queu
PCE, to wait d queue:
terminal head on A he Rea y
unito [@il A re IS t
: nd
TDIU11, C. Kessler, IDA, Linképings universitet. 4. m

: i li
I/O device sk }‘*
. .
Processes mlgrate T .
among the various \gxeoutes / child
queues m wait for an
w interrupt
TDIU11, C. Kessler, IDA, Linkdpings universitet. 49
| T
Schedulers

®m Long-term scheduler (or job scheduler)
e for batch systems — new jobs for execution queued on disk

e selects which processes should be brought into the ready
queue, and loads them into memory for execution

e controls the degree of multiprogramming
e invoked very infrequently (seconds, minutes)
e No long-term scheduler on UNIX and Windows;
instead swapping, controlled by medium-term scheduler
m Short-term scheduler (or CPU scheduler)
e selects which ready process should be executed next

e invoked very frequently (milliseconds)
= must be fast

TDIU11, C. Kessler, IDA, Linkdpings universitet. 411

| [T
CPU-bound vs I/0O-bound processes

m |/O-bound process
e spends more time doing I/O than computations
e many short CPU bursts
m CPU-bound process
e spends more time doing computations;
e few very long CPU bursts

m Long-term (or medium-term) scheduler should aim at a
good process mix.

TDIU11, C. Kessler, IDA, Linkdpings universitet. 412

| T
Scheduling

® Non-preemptive scheduling:

e process keeps CPU until it terminates or voluntarily
releases it (sleep() — step back into ready queue)

® Preemptive scheduling:

e OS puts process from CPU back into ready queue
after a certain time quantum has passed

1/O queue I._| 1/O request
-
scheduling
e child fork a
executes child
interrupt wait for an
occurs interrupt

More about this in the |

TDIU11, C. Kessler, IDA, Linkdpings universitet. 413

LINKOPING
| [T

Process Creation

m Parent process creates children processesI : ™
which, in turn create other processes,
forming a tree of processes sy

s
pid=7778
7\

e Parent and children share all resources GaGn)
e Children share subset of parent’s resourcesi es ==

e Parent and child share no resources

m Resource sharing variants:

m Execution variants:
e Parent and children execute concurrently
e Parent waits until children terminate
m Address space variants:
e Child is a duplicate of parent
e Child has a program loaded into it

TDIU11, C. Kessler, IDA, Linkdpings universitet. 414

| [T
Example: Process Creation in UNIX

int main ()

m fork system call {

C program forking
a separate process

e creates new child process Pid_t re
/* fork another process: */
m exec system call FeE = o) g

e used after a fork to replace the if (ret < 0) { /* error

process’ memory space with a °ccurred */

fprintf (stderr, "Fork
new program Failed");:

m wait system call exit (-1);

e by parent, suspends parent b . .
execution until child process ~ Stse if (ret ==0) { // T a

h A d child process:
as terminate execlp ("/bin/ls", "1s",

parent e ;D resumes ULL) 7
Q)
N lse { // I am the parent
- B rocess
7 >N // of child
i) ex'()/ rocess with PID==ret
A _— /* wait for child to
TDIU11, C. Kessler, IDA, Linképings universitet. 4.15 I N

| [T
A typical tree of processes in Solaris

fsflush
pid=3

pageout
pid =2
dtlogin
pid = 251
telnetdaemon Xsession
pid = 7776 pid = 294
Csh sdt_shel
pid = 7778 pid = 340
Csh
pid = 1400
Netscape emacs
pid = 8105

pid = 7785 ‘
cat
pid = 2536

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4,16

Iz | [T
Process Termination Cooperating Processes
m Process executes last statement and asks the operating ® Independent process
system to delete it (exit) e cannot affect or be affected by execution of another process
e Process returns status value to its parent (used in wait) m Cooperating process
) e can affect or be affected by execution of another process
e OS de-allocates process’s resources
m Advantages of process cooperation:
®m Parent may terminate execution of children processes (abort) e Information sharing
e Child has exceeded allocated resources e Computation speed-up
e Task assigned to child is no longer required * Modularity
e Convenience
m If parent is exiting: ® Inter-Process Communication (IPC)
e Some OS do not allow child to continue after parent e shared memory
terminates e message passing
» All children terminated - cascading termination © signals
TDIU11, C. Kessler, IDA, Linképings universitet. 417 TDIU11, C. Kessler, IDA, Linkopings universitet. 4. @
| [T | [T
IPC Models — Realization by OS Example: POSIX Shared Memory API
e #include <sys/shm.h>
process A - process A #include <sys/stat.h>
] I — I: shared memory m Let OS create a shared memory segment (system call):
:| e intsegment_id = shmget (IPC_PRIVATE, size, S_IRUSR | S_IWUSR);
process B
m Attach the segment to the executing process (system call):
e void *shmemptr = shmat (segment_id, NULL, 0);
m Now access it:
message queue o strepy ((char *)shmemptr, "Hello world”);
I mp[mq|m[mg] ... [mj |« .
kernel
kernel . .
m Detach it from executing process when no longer accessed:
(a) (b) e shmdt (shmemptr);
IPC via Message Passing IPC via Shared Memory .
m Let OS delete it when no longer used:
e shmctl (segment_id, IPC_RMID, NULL);
TDIU11, C. Kessler, IDA, Linképings universitet. 4, 12 TDIU11, C. Kessler, IDA, Linkopings universitet. 4. Zg

LINKOPING
| [T

Example for IPC:
Producer-Consumer Problem

® Producer-Consumer paradigm for cooperating processes:

e producer process produces data items
that are consumed by a consumer process

m Realization with shared memory: D]]] Consumer

Shared buffer (queue) of data items buffer
e unbounded-buffer
» places no practical limit on the size of the buffer
» Consumer must wait when buffer is empty
e bounded-buffer
» assumes that there is a fixed buffer size
» Producer must also wait when buffer is full

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.21

o
Bounded-Buffer — Shared-Memory Solution

m Shared buffer:

#define BUFFER_SIZE 10
typedef struct {
out in

=
Jitem; buffer

item buffer[BUFFER_SIZE];

intin =0;

int out = 0;
m buffer empty when in == out
m buffer full when ((in+1) % BUFFER_SIZE) == out
® can hold at most BUFFER_SIZE — 1 elements

| [T
Bounded-Buffer Producer and Consumer

while (true) {
/* ... produce an item */ Producer code

while (((in + 1) % BUFFER SIZE) == out)

/* do nothing -- no free buffers

buffer(in] = item; — “rﬂ“i a“ﬂ"

in =_ (in Jy QI qu![nec;on s“ -

[[u*ne-nonunuell-mmgu 0~onms) L
while (true) {

while (in == out)

*/

; // do nothing -- nothing to
consume

item = buffer[out];

out = (out + 1) $ BUFFER SIZE;
// ... now use the item; Consumer code

TDIU11, C. Kessler, IDA, Linkdpings universitet. 422

TDIU11, C. Kesslei IDA, Linkopings universitet. 4.23

| [T
IPC with Message Passing

m Message system

e processes communicate with each other
without resorting to shared variables

e provides two basic operations:
» send(receiverPID, message)
» receive(senderPID, message)

B In order to communicate, two processes
e establish a communication link between them
e exchange messages via send/receive

m [SGG7] 3.4.2.

® More about message passing variants and programming
in TDDC78 Programming of Parallel Computers

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.24

e
Client-Server Communication

m Message passing variant for client-server systems
m Sockets

e Endpoint for IPC between clients and servers

e addressed by (/P address, port number) instead of PID
® Remote Procedure Calls

e Client calls function of (maybe remote) server process
by sending a RPC request to a server socket address

e Server listens on socket port for incoming RPC requests
m In Java: Remote Method Invocation (RMI)

m [SGG7] 3.6

TDIU11, C. Kessler, IDA, Linkdpings universitet. 425

| [T
Single- and Multithreaded Processes
| code || data || files ' | code || data || files ‘
|registers| | stack ’ |registers| |registers| |registers‘
| stack | | stack | | stack ‘
thread ——> ; ; ; ;4—— thread
single-threaded process multithreaded process
A thread is a basic unit of CPU utilization:
= Thread ID, program counter, register set, stack.
= May be represented in a Thread Control Block (TCB)
A process may have one or several threads.
TDIU11, C. Kessler, IDA, Linképings universitet. 4.27

houies
Threads — Overview
m Thread Concept
m Multithreading Models
®m Threading Issues
®m Thread libraries
e Pthreads [SGG7] 4.3.1
e Win32 Threads [SGG7] 4.3.2
e Java Threads [SGG7]4.3.3
m OS thread implementations
e Windows XP Threads [SGG7] 4.5.1
e Linux Threads [SGG7] 4.5.2

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4,26

| [T
Threads: Motivation
m Most modern applications are multithreaded

e Several threads can run within an application,
and thus, within a process

m Multiple tasks with the application can be implemented by
separate threads

e Example: Tasks in a web browser
» Update display
» Fetch data
» Spell checking
» Answer a network request

m Can simplify code, increase efficiency / responsiveness

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4,28

LINKOPING
| [T

Benefits of Multithreading

m Responsiveness

e Interactive application can continue even when part of it is
blocked

m Resource Sharing

e Threads of a process share its memory by default.
® Economy

e Light-weight

e Creation, management, context switching for threads
is much faster than for processes

» E.g. Solaris: creation 30x, switching 5x faster
m Utilization of Multiprocessor Architectures

e Threads are more convenient for shared-memory parallel
processing on multiprocessors, such as multi-core CPUs, to
speed-up program execution

TDIU11, C. Kessler, IDA, Linkdpings universitet. 429

| [T
User Threads (User-Level Threads)

m Thread management (scheduling, dispatch)
done by user-level threads library (linked with the application),
without kernel support.

m The thread-unaware kernel views all user threads of a
multithreaded process as a single thread of control.
e process dispatched as a unit

© user control of scheduling algorithm; less overhead
® user threads do not scale well to multiprocessor systems

m Three primary user-level thread libraries:
e Win32 threads
e Java threads

e POSIX Pthreads (API / standard, not implementation —
may be provided as either user- or kernel-level library)

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.30

| [T
Kernel Threads (Kernel-Level Threads)

m Threads are managed by the OS kernel (Kernel-specific thread API)

m Each kernel thread services (executes) one or several user threads

© Flexible: OS can dispatch ready threads of a multithreaded process
even if some other thread is blocked.

® Kernel invocation overhead at scheduling/synchronization;
less portable

m All modern operating systems
support kernel-level threads In short:
Kernel threads = kernel-managed threads.

NB — The term "kernel thread” is sometimes
misused with a different meaning, namely for the
part of a program thread doing a syscall and
thus running in kernel mode. This is wrong
usage of the term and has nothing to do with the
above kernel-thread/user thread concept!

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.31

| TR
Multicore Programming with Threads

® Multicore or multiprocessor systems putting pressure on
programmers, challenges include: Dividing activities, Balance, Data
splitting, Data dependency, Testing and debugging

m Parallelism implies that a system can perform more than one task
simultaneously, using multiple processors

e Program designed with multiple processors in mind
m Concurrency supports more than one task making progress

e Also on single processor / core, scheduler providing concurrency
m Types of parallelism

o Data parallelism — distributes subsets of the same data across
multiple cores, same operation on each

e Task parallelism — distributing threads across cores, each thread
performing unique operation

® More about this in course TDDD56 Multicore and GPU Programming

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.32

Concurrency vs. Parallelism

Concurrent execution on single-core system:

singlecore Ty To T3 Ty Ty T2 Ta Ts Ty
time
Parallelism on a multi-core system:
core 1 ‘ Tt | Ta | Ty | T3 | Ty
core2 | To Ta T Ty To
time
TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.33

LINKOPING
UNIVERSIT

| T
Side remark: Amdahl’ s Law

m Estimates performance gains from adding additional cores to an

application that does both serial and parallel(izable) work

m Sis serial portion of the work 1
speedup <

s+ 52
m N processing cores N

m That is, if application is 75% parallel(izable) / 25% serial,

moving from 1 to 2 cores results in speedup of 1.6 times

m As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

Multithreading Models

Relationship user threads — kernel threads:
® Many-to-One (M:1)

® One-to-One (1:1)

® Many-to-Many (M:N)

® Variations:
e Two-Level Model

e Light-Weight Processes
[SGG7] 4.4.6

TDIU11, C. Kessler, IDA, Linkdpings universitet. 435

LINKOPING
UNIVERSIT

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.34

LINKOPING
| [T

Many-to-One

® Many user-level threads mapped to single kernel thread

© Low overhead
® Not scalable to

multiprocessors ; ; ; 34_ user thread
m Examples:

e Solaris Green Threads
e GNU Portable Threads

m Few current OS support
this model

k) <—kemel thread

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4,36

e
One-to-One

m Each user-level thread maps to one kernel thread

© more concurrency; scalable to multiprocessors

® overhead of creating a kernel thread for each user thread
(can partly be eliminated by using thread pools)

m The preferred model for parallel computing on multicore CPUs
e Many modern OS support it

«—— user thread

SN
0060

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.37

| T
Two-level Model
m Similar to Many-to-Many,
except that it allows a user thread
to be bound to a kernel thread
m Examples
e Solaris 8 g ;
and ear”er ; ; ; <«—— user thread
e IRIX
e HP-UX
e Tru64 UNIX

@ <«— kernel threa

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4.39

LINKOPING
| [T

Many-to-Many Model

m Allows many user level threads to be mapped
to many kernel threads

m Allows the OS to create
a sufficient number of
kernel threads g ;

® Solaris 8 and earlier é §<—userthread

<«— kernel thread

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4,38

| [T
What have we learned?

®m Processes versus Threads

m Process control block

m Context switch

® Ready queue and other queues used for scheduling
m Long-/Mid-term versus Short-term scheduler

®m Process creation and termination

m Process tree

m Inter-Process Communication

m Motivation for multithreading a process

®m Thread control block

m User (level) threads versus Kernel (level) threads
m Threading models: M:1, 1:1, M:N, two-level

TDIU11, C. Kessler, IDA, Linkdpings universitet. 4,40

AN

