Aspect-Oriented Programming and Aspect-J

TDDD05 / DF14900

Christoph Kessler

PELAB / IDA Linköping University Sweden

الله Outline: Aspect-Oriented Programming

- New concepts introduced
 - Crosscutting concern
 - Aspect

- Dynamic aspect weaving
- Static aspect weaving
- Join point
- Dynamic join point model
- Static join point model
- Pros and cons
- Case study: Aspect-J (also Lesson 3 + Lab 3)


```
Example (1)

class Account {
    private int balance = 0;
    public void deposit(int amount) {
        balance = balance + amount;
    }
    public void withdraw(int amount) {
        balance = balance - amount;
    }
}
```


Join Point

Static join point model (Invasive Composition)

- A *location* in (a component) code where a concern crosscuts
- Example: A method or class definition

Dynamic join point model (AspectJ)

- A well-defined point in the program flow
- Example: A call to a method

Pointcut

A pointcut is a predicate that matches join points

- The "pattern" part of a weaving rule
- Is a predicate that matches join points
- · Picks out certain join points
- Exposes parameters at join points
- Example
 - The balanceAltered pointcut picks out each join point that is a call to either the deposit() or the withdraw() method of an Account class

pointcut balanceAltered() :

call(public void Account.deposit(int)) ||
 call(public void Account.withdraw(int));

So far we have ...

- Agreed that tangled, scattered code that appears as a result of *mixing* different crosscutting concerns in (OO) programs is a problem
 Sketched a feasible solution - AOP
- Introduced
 - Join points
 - Pointcuts
 - Advice
 - Aspects
 - Weaving
- Tools?

AspectJ

- Xerox Palo Alto Research Center
- Gregor Kiczales, 1997
- Goal: Make AOP available to developers

- Open Source
- Tool integration Eclipse
- Java with aspect support
- Current focus: industry acceptance

Join Points in AspectJ Patterns as Regular Expressions Method call execution Match any type: * Constructor call execution Match 0 or more characters: * Field get Match 0 or more parameters: (...) Field set All subclasses: Person+ Call: call (private void Person.set*(*) Exception handler execution Call: call (* * *.*(*)) Class/object initialization Call: call (* * *.*(..))

Logical Operators

Match all constructor-based instantiations of subclasses of the Person class:

call((Person+ && ! Person).new(..))

Exposing Context in Pointcuts (1)

- Matching with parameters
 - AspectJ gives code access to some part of the context of the join point (parts of the matched pattern)
- Two ways
 - Methods
 - Designators

Exposing Context in Pointcuts (2)

- thisJoinPoint class and its methods
- Designators

- State-based: this, target, args
- Control Flow-based: cflow, cflowbelow
- Class-initialization: staticinitialization
- Program Text-based: withincode, within
- Dynamic Property-based: If, adviceexecution

Designators (1)

I.U LINKOPIN UNIVERSI

- Execution
 - Matches execution of a method or constructor
- Call
 - Matches calls to a method
- Initialization
 - · Matches execution of the first constructor
- Handler
 - Matches exceptions
- Get
 - Matches the reference to a class attribute
- Set
 - Matches the assignment to a class attribute

Designators (3)

Cflow

- Returns join points in the execution flow of another join point
- Cflowbelow
 - Returns join points in the execution flow of another join point but including the current join point
- Staticinitialization
 - Matches the execution of a class's static initialization

Designators (4)

Withincode

- Matches within a method or a constructor
- Within
 - Matches within a specific type (class)
- If
 - Allows a dynamic condition to be part of a pointcut

- Adviceexecution
 - Matches on advice join points

Preinitialization

• Matches pre-initialization join points

AFTER RETURNING Advice Example

Inter-Type Declarations

I.U LINKOPINI UNIVERSI

- So far we assumed the dynamic join point model
- Inter-type declarations assume static program structure modification
 - Static joint point model
 - Compile-time weaving

Inter-Type Declarations Add members methods constructors fields Add concrete implementations to interfaces

- Declare that types extend new types
- Declare that types implement new interfaces

Possible Applications

- Resource pooling connections
- Caching
- Authentication
- Design by contract
- Wait cursor for slow operations
- Inversion of control
- Runtime evolution
- Consistent exception management
 - (Byte) code size reduction ©

Acknowledgements
 Most slides courtesy Jens Gustafsson and Mikhail Chalabine
51