
1

Aspect-Oriented Programming
and Aspect-J

TDDD05 / DF14900

Christoph Kessler

PELAB / IDA
Linköping University

Sweden

Outline: Aspect-Oriented Programming

 New concepts introduced

 Crosscutting concern

 Aspect

 Dynamic aspect weaving

 Static aspect weaving

2

 Static aspect weaving

 Join point

 Dynamic join point model

 Static join point model

 Pros and cons

 Case study: Aspect-J (also Lesson 3 + Lab 3)

Recall: Reification, Reflection etc.

 Reification

 Reflection

 Introspection

Introcession

Supported in
standard Java

3

 Introcession
AOP, Invasive Composition

Object-Oriented Programming …

 Objects model the real world

 Data and operations combined

 Encapsulation

 Objects are self contained

4

 Separation of concerns ?

Example (1)

5

Example (2)

6

2

Example (3)

7

What is Crosscutting

 Code in objects (components, programs)
not directly related to the core functionality

 User authentication

 Persistence

 Timing

8

 Mixing of concerns leads to

 Code scattering

 Code tangling

Problems: Intermixed Concerns

 Correctness

 Understandability

 Testability

 Maintenance

 Find code

9

 Find code

 Change it consistently

 No help from OO tools

 Reuse

Case Study: Apache Tomcat

 Concern: XML Parsing

Source files

10 From org.apache.tomcat

Case Study (2): Apache Tomcat

 Concern: URL Pattern Matching

11

Case Study (3): Apache Tomcat

 Concern: Logging

12

3

Aspect-Oriented Programming

 Aspect = Implementation of a crosscutting concern

 Components and component language

 Aspects and aspect language

 Does not replace OOP

 Code does not have to be OO based

13

 Code does not have to be OO based

Aspect Weaving

14

Back to the Examples

15

Weave on Demand

16

A weaving rule
(code execution pattern
 execution modification)

Weaving, Example

17

Weaving Time

 Preprocessor

 Compile time

 Link time

 Load time

 Run time

18

 Run time

4

New Concepts

(using Aspect-J terminology)

 Weaving

 Aspect (= weaving rule)

 Join point

19

 Join point

 Pointcut

 Advice

Join Point

 Static join point model (Invasive Composition)

 A location in (a component) code
where a concern crosscuts

 Example: A method or class definition

20

 Dynamic join point model (AspectJ)

 A well-defined point in the program flow

 Example: A call to a method

Pointcut

 A pointcut is a predicate that matches join points

 The “pattern” part of a weaving rule

 Is a predicate that matches join points

 Picks out certain join points

 Exposes parameters at join points

21

 Exposes parameters at join points

 Example

 The balanceAltered pointcut picks out each join point that
is a call to either the deposit() or the withdraw() method
of an Account class

Pointcut, Further Examples

 call (void SomeClass.make*(..))

 picks out each join point that's a call to a void method
defined on SomeClass whose name begins with "make“
regardless of the method's parameters

 call (public * SomeClass.* (..))

22

 call (public * SomeClass.* (..))

 picks out each call to SomeClass public methods

 cflow (somePointcut)

 picks out each pointcut that occurs in the dynamic context
of the join points picked out by somePointcut

 pointcuts in the control flow,
e.g., in a chain of method calls

Advice

 The modification part of a weaving rule

 Code executed at a pointcut

 join point reached

 joint point matched

23

Aspect

 The unit of modularity for a crosscutting concern

 Implements join points, pointcuts, advice

24

5

So far we have …

 Agreed that
tangled, scattered code that appears as a result of mixing
different crosscutting concerns in (OO) programs is a problem

 Sketched a feasible solution - AOP

 Introduced

 Join points

25

 Join points

 Pointcuts

 Advice

 Aspects

 Weaving

 Tools?

AspectJ

 Xerox Palo Alto Research Center

 Gregor Kiczales, 1997

 Goal: Make AOP available to developers

 Open Source

 Tool integration Eclipse

26

 Tool integration Eclipse

 Java with aspect support

 Current focus: industry acceptance

Join Points in AspectJ

 Method call execution

 Constructor call execution

 Field get

 Field set

 Exception handler execution

27

 Exception handler execution

 Class/object initialization

Patterns as Regular Expressions

 Match any type: *

 Match 0 or more characters: *

 Match 0 or more parameters: (..)

 All subclasses: Person+

 Call: call (private void Person.set*(*)

28

 Call: call (private void Person.set*(*)

 Call: call (* * *.*(*))

 Call: call (* * *.*(..))

Logical Operators

 Match all constructor-based instantiations of subclasses of the
Person class:

29

Pointcut Example

 Match all attempts to retrieve the balance variable of the
Account class:

30

6

Exposing Context in Pointcuts (1)

 Matching with parameters

 AspectJ gives code access to some part of the context of
the join point (parts of the matched pattern)

 Two ways

 Methods

31

 Designators

Exposing Context in Pointcuts (2)

 thisJoinPoint class and its methods

 Designators

 State-based: this, target, args

 Control Flow-based: cflow, cflowbelow

 Class-initialization: staticinitialization

32

 Class-initialization: staticinitialization

 Program Text-based: withincode, within

 Dynamic Property-based: If, adviceexecution

Exposing Context in Pointcuts (3)

 Methods

 getThis()

 getTarget()

 getArgs()

 getSignature()

33

 getSignature()

 getSourceLocation()

 getKind()

 toString()

 toShortString()

 toLongString()

Exposing Context in Pointcuts (4)

 Example

34

Designators (1)

 Execution

 Matches execution of a method or constructor

 Call

 Matches calls to a method

 Initialization

Matches execution of the first constructor

35

 Matches execution of the first constructor

 Handler

 Matches exceptions

 Get

 Matches the reference to a class attribute

 Set

 Matches the assignment to a class attribute

Designators (2)

 This

 Returns the target object of a join point
or limits the scope of join point

 Target

 Returns the object associated with a particular join point
or limits the scope of a join point by using a class type

36

or limits the scope of a join point by using a class type

 Args

 Exposes the arguments to a join point
or limits the scope of the pointcut

7

Designators (3)

 Cflow

 Returns join points in the execution flow of another join
point

 Cflowbelow

 Returns join points in the execution flow of another join
point but including the current join point

37

point but including the current join point

 Staticinitialization

 Matches the execution of a class's static initialization

Designators (4)

 Withincode

 Matches within a method or a constructor

 Within

 Matches within a specific type (class)

 If

38

 If

 Allows a dynamic condition to be part of a pointcut

 Adviceexecution

 Matches on advice join points

 Preinitialization

 Matches pre-initialization join points

One more Exposing Context Example

39

Exposing Context, Comment

 Prefer designators over method calls

 Higher cost of reflection associated with get*

40

Advice

 Before

 After

 Unqualified

 After returning

 After throwing

41

 After throwing

 Around

BEFORE Advice Example

42

8

AFTER Advice Example

43

AFTER RETURNING Advice Example

44

AFTER THROWING Advice Example

45

AROUND Advice Example

46

Inter-Type Declarations

 So far we assumed the dynamic join point model

 Inter-type declarations assume static program structure
modification

 Static joint point model

47

 Static joint point model

 Compile-time weaving

Inter-Type Declarations

 Add members

 methods

 constructors

 fields

 Add concrete implementations to interfaces

48

 Add concrete implementations to interfaces

 Declare that types extend new types

 Declare that types implement new interfaces

9

Other AOP Languages

 AspectWerkz

 JAC

 JBoss-AOP

 Aspect#

 LOOM.NET

49

 LOOM.NET

 AspectR

 AspectS

 AspectC

 AspectC++

 Pythius

Possible Applications

 Resource pooling connections

 Caching

 Authentication

 Design by contract

 Wait cursor for slow operations

50

 Wait cursor for slow operations

 Inversion of control

 Runtime evolution

 Consistent exception management

 (Byte) code size reduction

Acknowledgements

 Most slides courtesy Jens Gustafsson and Mikhail Chalabine

51

