
1

Aspect-Oriented Programming
and Aspect-J

TDDD05 / DF14900

Christoph Kessler

PELAB / IDA
Linköping University

Sweden

Outline: Aspect-Oriented Programming

 New concepts introduced

 Crosscutting concern

 Aspect

 Dynamic aspect weaving

 Static aspect weaving

2

 Static aspect weaving

 Join point

 Dynamic join point model

 Static join point model

 Pros and cons

 Case study: Aspect-J (also Lesson 3 + Lab 3)

Recall: Reification, Reflection etc.

 Reification

 Reflection

 Introspection

Introcession

Supported in
standard Java

3

 Introcession
AOP, Invasive Composition

Object-Oriented Programming …

 Objects model the real world

 Data and operations combined

 Encapsulation

 Objects are self contained

4

 Separation of concerns ?

Example (1)

5

Example (2)

6

2

Example (3)

7

What is Crosscutting

 Code in objects (components, programs)
not directly related to the core functionality

 User authentication

 Persistence

 Timing

8

 Mixing of concerns leads to

 Code scattering

 Code tangling

Problems: Intermixed Concerns

 Correctness

 Understandability

 Testability

 Maintenance

 Find code

9

 Find code

 Change it consistently

 No help from OO tools

 Reuse

Case Study: Apache Tomcat

 Concern: XML Parsing

Source files

10 From org.apache.tomcat

Case Study (2): Apache Tomcat

 Concern: URL Pattern Matching

11

Case Study (3): Apache Tomcat

 Concern: Logging

12

3

Aspect-Oriented Programming

 Aspect = Implementation of a crosscutting concern

 Components and component language

 Aspects and aspect language

 Does not replace OOP

 Code does not have to be OO based

13

 Code does not have to be OO based

Aspect Weaving

14

Back to the Examples

15

Weave on Demand

16

A weaving rule
(code execution pattern
 execution modification)

Weaving, Example

17

Weaving Time

 Preprocessor

 Compile time

 Link time

 Load time

 Run time

18

 Run time

4

New Concepts

(using Aspect-J terminology)

 Weaving

 Aspect (= weaving rule)

 Join point

19

 Join point

 Pointcut

 Advice

Join Point

 Static join point model (Invasive Composition)

 A location in (a component) code
where a concern crosscuts

 Example: A method or class definition

20

 Dynamic join point model (AspectJ)

 A well-defined point in the program flow

 Example: A call to a method

Pointcut

 A pointcut is a predicate that matches join points

 The “pattern” part of a weaving rule

 Is a predicate that matches join points

 Picks out certain join points

 Exposes parameters at join points

21

 Exposes parameters at join points

 Example

 The balanceAltered pointcut picks out each join point that
is a call to either the deposit() or the withdraw() method
of an Account class

Pointcut, Further Examples

 call (void SomeClass.make*(..))

 picks out each join point that's a call to a void method
defined on SomeClass whose name begins with "make“
regardless of the method's parameters

 call (public * SomeClass.* (..))

22

 call (public * SomeClass.* (..))

 picks out each call to SomeClass public methods

 cflow (somePointcut)

 picks out each pointcut that occurs in the dynamic context
of the join points picked out by somePointcut

 pointcuts in the control flow,
e.g., in a chain of method calls

Advice

 The modification part of a weaving rule

 Code executed at a pointcut

 join point reached

 joint point matched

23

Aspect

 The unit of modularity for a crosscutting concern

 Implements join points, pointcuts, advice

24

5

So far we have …

 Agreed that
tangled, scattered code that appears as a result of mixing
different crosscutting concerns in (OO) programs is a problem

 Sketched a feasible solution - AOP

 Introduced

 Join points

25

 Join points

 Pointcuts

 Advice

 Aspects

 Weaving

 Tools?

AspectJ

 Xerox Palo Alto Research Center

 Gregor Kiczales, 1997

 Goal: Make AOP available to developers

 Open Source

 Tool integration Eclipse

26

 Tool integration Eclipse

 Java with aspect support

 Current focus: industry acceptance

Join Points in AspectJ

 Method call execution

 Constructor call execution

 Field get

 Field set

 Exception handler execution

27

 Exception handler execution

 Class/object initialization

Patterns as Regular Expressions

 Match any type: *

 Match 0 or more characters: *

 Match 0 or more parameters: (..)

 All subclasses: Person+

 Call: call (private void Person.set*(*)

28

 Call: call (private void Person.set*(*)

 Call: call (* * *.*(*))

 Call: call (* * *.*(..))

Logical Operators

 Match all constructor-based instantiations of subclasses of the
Person class:

29

Pointcut Example

 Match all attempts to retrieve the balance variable of the
Account class:

30

6

Exposing Context in Pointcuts (1)

 Matching with parameters

 AspectJ gives code access to some part of the context of
the join point (parts of the matched pattern)

 Two ways

 Methods

31

 Designators

Exposing Context in Pointcuts (2)

 thisJoinPoint class and its methods

 Designators

 State-based: this, target, args

 Control Flow-based: cflow, cflowbelow

 Class-initialization: staticinitialization

32

 Class-initialization: staticinitialization

 Program Text-based: withincode, within

 Dynamic Property-based: If, adviceexecution

Exposing Context in Pointcuts (3)

 Methods

 getThis()

 getTarget()

 getArgs()

 getSignature()

33

 getSignature()

 getSourceLocation()

 getKind()

 toString()

 toShortString()

 toLongString()

Exposing Context in Pointcuts (4)

 Example

34

Designators (1)

 Execution

 Matches execution of a method or constructor

 Call

 Matches calls to a method

 Initialization

Matches execution of the first constructor

35

 Matches execution of the first constructor

 Handler

 Matches exceptions

 Get

 Matches the reference to a class attribute

 Set

 Matches the assignment to a class attribute

Designators (2)

 This

 Returns the target object of a join point
or limits the scope of join point

 Target

 Returns the object associated with a particular join point
or limits the scope of a join point by using a class type

36

or limits the scope of a join point by using a class type

 Args

 Exposes the arguments to a join point
or limits the scope of the pointcut

7

Designators (3)

 Cflow

 Returns join points in the execution flow of another join
point

 Cflowbelow

 Returns join points in the execution flow of another join
point but including the current join point

37

point but including the current join point

 Staticinitialization

 Matches the execution of a class's static initialization

Designators (4)

 Withincode

 Matches within a method or a constructor

 Within

 Matches within a specific type (class)

 If

38

 If

 Allows a dynamic condition to be part of a pointcut

 Adviceexecution

 Matches on advice join points

 Preinitialization

 Matches pre-initialization join points

One more Exposing Context Example

39

Exposing Context, Comment

 Prefer designators over method calls

 Higher cost of reflection associated with get*

40

Advice

 Before

 After

 Unqualified

 After returning

 After throwing

41

 After throwing

 Around

BEFORE Advice Example

42

8

AFTER Advice Example

43

AFTER RETURNING Advice Example

44

AFTER THROWING Advice Example

45

AROUND Advice Example

46

Inter-Type Declarations

 So far we assumed the dynamic join point model

 Inter-type declarations assume static program structure
modification

 Static joint point model

47

 Static joint point model

 Compile-time weaving

Inter-Type Declarations

 Add members

 methods

 constructors

 fields

 Add concrete implementations to interfaces

48

 Add concrete implementations to interfaces

 Declare that types extend new types

 Declare that types implement new interfaces

9

Other AOP Languages

 AspectWerkz

 JAC

 JBoss-AOP

 Aspect#

 LOOM.NET

49

 LOOM.NET

 AspectR

 AspectS

 AspectC

 AspectC++

 Pythius

Possible Applications

 Resource pooling connections

 Caching

 Authentication

 Design by contract

 Wait cursor for slow operations

50

 Wait cursor for slow operations

 Inversion of control

 Runtime evolution

 Consistent exception management

 (Byte) code size reduction 

Acknowledgements

 Most slides courtesy Jens Gustafsson and Mikhail Chalabine

51

