
1

TDDD05 Component-Based Software

DF14900 Software Engineering CUGS

Component-based Software

Introduction and overview

Christoph Kessler, IDA,
Linköpings universitet.

Christoph Kessler

Recommended Reading

 Szyperski: Component Software – Beyond Object-Oriented
Programming, 2nd edition. Addison-Wesley, 2002.

 Douglas McIlroy. Mass-produced software components.
http://cm.bell-labs.com/cm/cs/who/doug/components.txt
in:

1.2 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

in:
P. Naur and B. Randell, "Software Engineering, Report on a
conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7th to 11th October 1968", Scientific
Affairs Division, NATO, Brussels, 1969, 138-155.

Motivation for Component Based
Development

 Managing system complexity:
Divide-and-conquer (Alexander the Great)

 Well known in other disciplines

 Mechanical engineering (e.g., German DIN 2221; IEEE standards)

 Electrical engineering

Architecture

1.3 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Architecture

 Computer architecture

 Outsourcing to component producers

 Goal: Reuse of partial solutions

 Easy configurability of the systems

 Variants, versions, product families

Mass-produced Software Components

 Garmisch 1968, NATO conference on software engineering

 McIlroy:

 Every ripe industry is based on components, since these
allow to manage large systems

1.4 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Components should be produced in masses and composed
to systems afterwards

Mass-produced Software Components

In the phrase `mass production techniques,' my emphasis is on

`techniques' and not on mass production plain.
Of course, mass production, in the sense of limitless replication
of a prototype, is trivial for software.

But certain ideas from industrial technique I claim are relevant.
- The idea of subassemblies carries over directly and is well exploited.

1.5 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Yet this fragile analogy is belied when we seek
for analogues of other tangible symbols of mass production.
- There do not exist manufacturers of standard parts,

much less catalogues of standard parts.
- One may not order parts to individual specifications of size,

ruggedness, speed, capacity, precision or character set.

- The idea of subassemblies carries over directly and is well exploited.
- The idea of interchangeable parts corresponds roughly to our term

`modularity,' and is fitfully respected.
- The idea of machine tools has an analogue in assembly programs

and compilers.

Mass-produced Software Components

 Later McIlroy was with Bell Labs ...

 ... and invented pipes, diff, join, echo (UNIX).

 Pipes are still today the most employed component
system!

1.6 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Where are we today?



2

“Real-world” Component Systems

 Lego

 Square stones

 Building plans

 Car assembly

1.7 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 IC‘s

 Hardware bus

 …

 How do they differ from software?

Definition of “Component”

“A software component is a unit of composition
with contractually specified interfaces and
explicit context dependencies only.

A software component
can be deployed independently and

1.8 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

can be deployed independently and
is subject to composition by third parties.”

- C. Szyperski, ECOOP Workshop WCOP 1997.

More Definitions of “Component”

MetaGroup (OpenDoc):
“Software components are defined as prefabricated,
pretested, self-contained, reusable software modules

“A reusable software component is a
logically cohesive, loosely coupled
module that denotes a single
abstraction”
- Grady Booch

1.9 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

pretested, self-contained, reusable software modules
bundles of data and procedures - that perform specific
functions.”

Sametinger:
“Reusable software components are self-contained,
clearly identifyable pieces that describe and/or perform
specific functions, have clear interfaces,
appropriate documentation, and a defined reuse status.”

“A software component is a static abstraction with
plugs.”

- Nierstrasz/Dami

More Definitions of “Component” (cont.)

 Heineman / Councill [Ch.1]:

“A software component is a software element
that conforms to a component model
and can be independently deployed and composed
without modification according to a composition standard.

1.10 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

without modification according to a composition standard.

A component model defines specific interaction and
composition standards.

Composition is the combination of two or more software
components yielding a new component behavior at a different
level of abstraction ... [which is] determined by the components
being combined and the way how they are combined.”

Component as unit of composition

U. Assmann (2003):

 A component is a container with

 variation points

 extension points

1.11 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 that are adapted during composition

 A component is a reusable unit for composition

 A component underlies a component model

 abstraction level

 composition time (static or runtime?)

Are Objects Components??

Szyperski [CS 4.1]: No!

 An object is a unit of instantiation.

 It has a unique identity.

 It may have state, and this can be (externally) observed

 It encapsulates its state and behavior.

1.12 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Components are rather prototypes / blueprints / plans
from which (stateful) objects can be instantiated

 e.g., a function definition, type definition, class or set of classes

 No (externally observable) state

 Only one copy required per context (e.g., process)

 Unit of independent deployment

 Unit of third-party composition



3

Component Systems
(Component Platforms)

 We call a technology in which component-based systems can
be produced a component system or component platform.

 A component system has

1.13 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

for description of
components

for compositions of
components

Component Model Composition Technique

Software Composition Systems

 A composition system has

1.14 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition
Language

for programming-in-the-
large

and architecture

Component Model Composition Technique

Issues in Component/Composition Systems

 Component Model

 How do components look like?

 Secrets? (Location, lifetime, language, platform, …)?

 Binding points, binding time?

 Interfaces, contracts, substitutability?

 Parameterizability? Adaptability? Extensibility?

1.15 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Parameterizability? Adaptability? Extensibility?

 Standardization of execution environment, services?

 Composition Technique

 How are components glued together, composed, merged, applied?

 Composition time
(Compile- / Link- / Deployment- / Connection- / Run-time ...)

 Composition Language

 How are compositions of large systems described and managed?

Aspect Systems View Systems

Aspect Separation Composition
Operators

Composition
Language

Software Compo-
sition Systems

The Ladder of Component and
Composition Systems

Architecture Systems Architecture as Aspect Darwin, CoSy,
UNICON, BPEL

Aspect-J COMPOST

1.16 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Classical
Component Systems

Web Services SOAP,
WSDL

Standard Components

Uniformly Interoperable
Standard Components

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

.NET CORBA
Beans EJB

Architecture Systems Architecture as Aspect
UNICON, BPEL

The Essence of the 60s-90s:
LEGO Software

 Procedural systems

 Modular systems

 Object-oriented technology

1.17 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Component-based programming
with COTS (Components-off-the-shelf) systems

 CORBA, EJB, DCOM, COM+, .NET

 Software architecture description languages

Blackbox composition

Components

Blackbox Composition

1.18 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition
recipe

Connectors
Component-based

applications



4

Procedural Systems

 Fortran, Algol, Pascal, C, ...

 The procedure is the
component

 The activation record the

Caller
(code)

Callee
(code)

Linker

1.19 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 The activation record the
instantiation

 Component model is supported
by almost all processors
directly

 JumpSubroutine instruction

 Return instruction

Caller-
AR

Run time

Caller-
AR

Caller-
AR

Run-time stack contents

Callee-
AR

Return address

Caller AR addr.

call ret

Procedures as Composition System

Component Model Composition Technique

Content: binary code with symbols

Binding points: linker symbols

procedures (with parameters) and

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

1.20 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

procedures (with parameters) and

global variables
Composition time: link-time, static

Modules

 Implementation of a module
hidden behind a functional
interface

 Static binding of functional
interfaces to each other

Module

Module

Linker

1.21 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Concept has penetrated
almost all programming
languages (Modula, Ada,
Java, C++, Standard ML, C#)

A Linker is a Composition Operator
That Composes Modules

Provided

Required

1.22 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Linker

Bound procedure
symbols (labels),
no glue code

Modules as Composition System

Component Model Composition Technique

Content: groups of procedures

Binding points: linker symbols

procedures (with parameters)

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

1.23 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

procedures (with parameters)

and global variables
Composition time: link-time, static

UNIX Filters and Pipes [McIlroy]

 UNIX shells style still offers the most used component
paradigm:

 Communication with byte streams via standard I/O ports

 Parsing and linearizing the objects

Extremely flexible, simple

1.24 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Extremely flexible, simple

stdinFilter

Filter

stdout

stderr

stdin

pipe



5

Unix Filters and Pipes
as Composition System

Component Model Composition Technique

Content: unknown (due to parsing),
externally bytes

Binding points: stdin/out ports

Adaptation: filter around other components

Filter languages such as sed, awk, perl

Binding time: static

1.25 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

Binding points: stdin/out ports

Secrets: distribution, parallelism
Binding time: static

C, shell, tcl/tk, python…

Build management language makefile

Version management with sccs rcs cvs

Object-Oriented Systems

 Components: classes

 Objects are instances of classes (modules)
with unique identity

 Objects have runtime state

1.26 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Late binding of calls by search/dispatch at runtime

Caller
Object

dispatch

Callee

Callee

Callee

Object-Orientation
as Composition System

Component Model Composition Technique

Content: binary files, objects
(code and data)

Binding points: static (monomorphic)
and polymorphic (dynamically

Adaptation by inheritance or delegation

Extensibility by subclassing

1.27 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

and polymorphic (dynamically
dispatched) calls

Commercial Component Systems

 CORBA / COM / .NET / EJB

 Although different on the first sight, turn out to be rather similar

Caller
Object

Callee
(Server)

1.28 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Software bus

Object
(Client)

Mediator

(Server)

CORBA

 Language independent, location/distribution transparent

 interface definition language IDL

 source code or binary

Client
Java

Server
C++

Client
C

Interface
specification
(in IDL)

1.29 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Java C++C

Stub SkeletonStub

Object Request Broker (ORB), Trader, Services

Object adapter

generate

(D)COM, ActiveX

 Microsoft’s model is similar to CORBA. Proprietary

 (D)COM is a binary standard

Client
VBasic

Server
C++

Client
C++

Server
C++

1.30 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

VBasic C++C++

COM stub
COM

skeleton
COM stub

Monikers, Registry

C++

IDL
skeleton

Object adapter



6

Java Beans

 Java only: source code / bytecode-based

 Event-based, transparent distribution by remote method
invocation (RMI – includes Java Object Serialization)

Bean
Java

Bean
Java

Bean
Java

Server
C++

1.31 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Java JavaJava

Event InfoBus, RMI

C++

IDL
skeleton

Object adapter

DOT-NET

 Language independent, distribution transparent

 NO interface definition language IDL (at least for C#)

 source code or bytecode MSIL

 Common Language Runtime CLR

Client ServerClient

1.32 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Client
Java

Server
C++

Client
C#

.net-CLR .net-CLR.net-CLR

CLR

CORBA/DCOM/JavaBeans/EJB/...:
Components Off-The-Shelf (COTS)

Component Model Composition Technique

Content: binary components

Binding points are standardized

Described by IDL,
set/get properties,

Adaptation for distributed systems
(marshalling) and mixed-language systems
(IDL)

1.33 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

set/get properties,
Standard interfaces (IUnknown...)

Secrets: distribution, language

Dynamic call in CORBA

VisualBasic for COM

Web Services

 Binding procedure is interpreted, not compiled

 More flexible:

 When interface changes, no recompilation and rebinding

 Ubiquitous http protocol – independent of a specific ORB

1.34 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Caller
Object

Mediator

Callee
(Server)

SOAP
interpretation

Web Services as Composition System

Component Model Composition Technique

Content: not important

Binding points are described by XML

Binding procedure is interpretation of SOAP

Adaptation for distributed systems
(marshalling) and mixed-language systems

Glue: WSDL, SOAP, HTTP

1.35 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

Secrets: distribution, implementation language
Glue: WSDL, SOAP, HTTP

Dynamic discovery/binding with UDDI

BPEL

Port

Interface

Role

Component Model in
Software Architecture Systems

 Ports abstract interface points
(as in Linda)

 in(data), out(data)

 Components may be nested

1.36 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Connector

 Connectors are special
communication components

 Abstract from technology
(e.g. component system)

 Specify connectivity
(topology,
system architecture)



7

Software Architecture Systems

 Unicon, ACME, Darwin, …

 feature an Architecture Description Language (ADL)

 Split an application into two concerns:

 Application-specific part

1.37 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Application-specific part
(encapsulated in components)

 Architecture and communication
(in connectors defined in architecture description,
written in ADL)

 Better reuse since both dimensions can be varied
independently

Architecture / Communication can be
varied independently of components

Port 2

Port 1

PortPort Component

Component

1.38 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Component

 Reuse of components and architectures is fundamentally
improved

 High-level system analysis, verification, testing

ACME Studio

1.39 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Software Architecture Systems
as Composition Systems

Component Model Composition Technique

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

1.40 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

Binding points: ports

Architectural language (ADL)

The Essence of Blackbox Composition

Components

Component-based
applications

Connectors

1.41 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Blackbox composition supports variability and adaptation

 but not extensibility

Composition recipe

applications

Aspect Systems View Systems

Aspect Separation Composition
Operators

Composition
Language

Software Compo-
sition Systems

The Ladder of Component and
Composition Systems

Architecture Systems Architecture as Aspect Darwin, CoSy,
UNICON, BPEL

Aspect-J COMPOST
Composition Filters

Hyperslices

1.42 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Classical
Component Systems

Web Services SOAP,
WSDL

Standard Components

Uniformly Interoperable
Standard Components

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85
Modules as Compile-
Time Components

.NET CORBA
Beans EJB

Architecture Systems Architecture as Aspect
UNICON, BPEL



8

TDDD05 Component-Based Software

DF14900 Software Engineering CUGS

Graybox Component Models

Christoph Kessler, IDA,
Linköpings universitet.

Component integration

- Aspect oriented programming

- View-based composition

Structure
Media plan

Aspects in Architecture

1.44 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Light plan Water pipe plan

Integrated
house

Debugging
aspect

Persistence
aspectAlgorithm

Aspects in Software

1.45 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Debugging aspect
Persistence aspect

Persistence
aspectDebugging aspect

Weaver-Tool

Debugging aspect

Aspect Systems

 Aspect languages

 Every aspect in a separate language

 Domain specific

 Weaver must be built (is a compiler, much effort)

1.46 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Script-based Weavers

 The weaver interprets a specific script or aspect
program

 This introduces the aspect into the core

Aspect Weavers Distribute Advice
Components over Core Components

Distributor

 Aspects are crosscutting

 Hence, aspect functionality
must be distributed over the
core

Aspect

Core

1.47 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Distributor
coreCore

Aspect Systems
as Composition Systems

Component Model Composition Technique

Core- and aspect components

Aspects are relative and
crosscutting

Adaptation and glue code by weaving

Weaving is distribution of code snippets

1.48 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition Language

Bindung points: join points

Weaving language
e.g. Aspect-J



9

Composition Systems
with composition operators and expressions

 Hyperspace Programming [Ossher et al., IBM]

 Piccola [Nierstrasz, et.al., Berne]

 Metaclass composition [Forman/Danforth, Cointe]

Invasive software composition [Aßmann 2003]

1.49 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

 Invasive software composition [Aßmann 2003]

 Formal calculi

 Lambda-N calculus [Dami]

 Pi-L calculus [Lumpe]

Composition Systems
with composition operators and expressions

Component Model
Composition Technique

1.50 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Component Model
Composition Operators

Composition Language

Composition
Expressions

User code Library

Invasive Composition of Components

1.51 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

User code Library

Blackbox connection with glue code

User code Library

Blackbox
Composition

Invasive
Composition

Invasive Connection

■ Extension can be used for
inheritance (mixins)

A mixin is a class (i.e., a set of
features) by which a superclass
can be extended to derive a

Composers can be used for inheritance

1.52 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

inherit

can be extended to derive a
subclass. The mixin class itself is
final, i.e., cannot be subclassed.

■ Mixin-based inheritance:

■ copy first superclass

■ extend with fragments of
second superclass (mixin)

Composers Generalize
Aspect Weavers in AOP

Distributor

 Complex composers
distribute aspect fragments
over core fragments

 Distributors extend the core

Aspect

Core

1.53 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Distributor
 Distributors extend the core

 Distributors are more
complex operators, defined
from basic ones

Core

Composition Languages

 Composition languages
describe the structure and build process of the system in-the-
large (“programming in the large”)

 Composition programs combine the basic composition
operations of the composition language

1.54 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

operations of the composition language

 Composition languages can look quite different

 Imperative: e.g. Java+library (in COMPOST)

 Declarative: e.g. ADL, Aspect-J, Makefiles, C++ templates

 Enables us to describe large systems

Composition program size 1
System size 10



10

Conclusions for Composition Systems

 Components have a composition interface

 Composition interface is different from functional interface

 Marks possible places for code injection in components

 The composition is running usually before the execution
of the system

1.55 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

of the system

 Usually, at/before compile time or deployment time

 System composition becomes a new step in system build
System composition (System generation)

System compilation

System deployment

System execution

Invasive Software Composition
as Composition System

Component model Composition technique

Source or binary components

Greybox components

Composition interfaces

Controlled by composition programs

Library of composition operators
(basic and compound operators)

1.56 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.

Composition language

Composition interfaces
with declared an implicit hooks

(basic and compound operators)

In COMPOST:
Standard Language (Java) +
metaprogramming library

Summary:
Component-based Systems

 ... are produced by component systems or composition systems

 ... support a component model

 Blackbox composition supports variability and adaptation

 Greybox composition also supports extensibility

1.57 TDDD05 / DF14900C. Kessler, IDA, Linköpings universitet.


