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Software Testing

No issue is meaningful unless it can be put to 
the test of decisive verification.

C.S. Lewis, 1934
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Testing a ballpoint pen
• Does the pen write in the right 

color, with the right line thickness?

• Is the logo on the pen according to 
company standards?

• Is it safe to chew on the pen?

• Does the click-mechanism still 
work after 100 000 clicks?

• Does it still write after a car has run 
over it?

What is expected from this pen?

Intended use!!
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Goal: develop software to meet its intended use!
But: human beings make mistake!

⇒ Product of any engineering activity must be verified
against its requirements throughout its development.

bridge automobile television word processor
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• Verifying  bridge = verifying design, 
construction, process,…

• Software must be verified in much the same 
spirit. In this lecture, however, we shall 
learn that verifying software is perhaps 
more difficult than verifying other 
engineering products.

We shall try to clarify why this is so.
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Customer Developer

Requirements definition
Requirements specification

Functional requirements
Nonfunctional requirements

Design SpecificationCode = System
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Outline
• Some notations
• Integration testing
• Component/Unit/Module/Basic testing
• Function testing
• Performance testing
• Acceptance testing
• Installation testing

• Real life examples
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Error, Fault, Failure

Human error

Can lead to

Can lead to

Fault

Failure
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Debugging vs Testing

• Debugging: to find the bug

• Testing: to demonstrate the existence of a 
fault 
– fault identification

– fault correction / removal
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Types of Faults
(dep. on org. IBM, HP)

• Algorithmic: division by zero
• Computation & Precision: order of op
• Documentation: doc  - code
• Stress/Overload: data-str size ( dimensions of

tables, size of buffers)
• Capacity/Boundary: x devices, y parallel tasks, z

interrupts
• Timing/Coordination: real-time systems
• Throughout/Performance: speed in req
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Types of Faults

• Recovery: power failure

• Hardware & System Software: modem

• Standards & Procedure: organizational standard;
difficult for programmers to follow each other
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Unit & Integration Testing

Objective: to ensure that code implemented 
the design properly.

Design SpecificationCode = System

January 2006 CUGS, SE, Mariam Kamkar, IDA, 
LiU

12

Classes of Integration Testing

• Top-down

• Bottom-up

• Big bang

• Sandwich
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Components

Component
to be 
tested

driver

stub stub Test
cases

Boundary conditions
independent paths
interface
...
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A

B

FE

D
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Top-down

A

B

FE

D

G

C
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Bottom-up

January 2006 CUGS, SE, Mariam Kamkar, IDA, 
LiU

18

A

B

FE

D

G

C



10

January 2006 CUGS, SE, Mariam Kamkar, IDA, 
LiU

19

Bottom-up
A

B

FE

D

G

C
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Big-bang
A

B

FE

D

G

C
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Sandwich
A

B

FE

D

G

C
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In partYesNoYesStubs needed

In partYesYesNoDriver needed

EarlyLateLateEarlyTime to a 
basic working 
program

SandwichBig-bangBottom-upTop-down



12

January 2006 CUGS, SE, Mariam Kamkar, IDA, 
LiU

23

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

Tested components

Tested components

Unit
test

Unit
test

Integration
test

Design Specification

Integrated modules
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Unit Testing

• Code Inspections

• Code Walkthroughs

• Open box testing

• Black box testing
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Test

Object

Input

Output

Failure?

Oracle
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Two Types of Oracles

• Human: an expert that can examine an input 
and its associated output and determine 
whether the program delivered the correct 
output for this particular input.

• Automated: a system capable of performing 
the above task. 
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Balls and Urn

• Testing can be viewed as selecting different colored balls 
from an urn where:

– Black ball = input on which program fails.

– White ball = input on which program succeeds.

• Only when testing is exhaustive is there an “empty” urn.

Urn (program)

Balls (inputs)
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A program that always fails A correct program

A typical program
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Inspection
(originally introduced by Fagan 1976)

• overview (code, inspection goal)

• preparation (individually)

• reporting

• rework

• follow-up
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Inspection (cont)
some classical programming errors

• Use of un-initialized variables

• Jumps into loops

• Non-terminating loops

• Incompatible assignments

• Array indexes out of bounds

• Off-by-one errors

• Improper storage allocation or de-allocation

• Mismatches between actual and formal parameters in 
procedure calls
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Walkthroughs

design, code, chapter of user’s guide,…

• presenter

• coordinator

• secretary

• maintenance oracle

• standards bearer

• user representative
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Discovery activity Faults found per 
thousand lines of code

Requirements review 2.5
Design review 5.0
Code inspection 10.0
Integration test 3.0
Acceptance test 2.0

Jons, S et al, Developing international user information. Bedford, MA: Digital Press, 1991.
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Experiments

• 82% of faults discovered during design & code 
inspection (Fagan)

• 93% of all faults in a 6000-lines application were 
found by inspections (Ackerman, et al 1986) 

• 85% of all faults removed by inspections from 
examining history of 10 million lines of code 
(Jones 1977)

• Inspections : finding code faults
• Prototyping: requirements problem
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Proving code correct

• Formal proof techniques

• Symbolic execution

• Automated theorem proving
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Black box / Closed box testing
• incorrect or missing functions

• interface errors

• performance error

input

output
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Black box testing

• Equivalence partitioning

• Boundary value analysis

• Exhaustive testing



19

January 2006 CUGS, SE, Mariam Kamkar, IDA, 
LiU

37

Equivalence partitioning

Valid inputsInvalid inputs

outputs
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Specification: the program accepts four to 
eight inputs which are 5 digit integers 
greater than 10000.
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Guidelines
If an input condition specifies

• A range: one valid and two invalid 
equivalence classes.

• A specific value: one valid and two invalid 
equivalence classes.

• A member of a set: one valid and one 
invalid equivalence classes.

• A boolean: one valid and one invalid class.
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Boundary value analysis

Less than 10000 Between 10000 and 99999 More than 99999
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Exhaustive testing

• Definition: testing with every member of 
the input value space.

• Input value space: the set of all possible 
input values to the program.
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Glass box testing!
White box testing!
Open box testing!
Clear box testing!
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Glass box testing

• logical decision

• loops

• internal data structure

• paths

• ...
Coverage!!
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Statement Coverage

Begin

if ( y >=  0) 

then y = 0;

abs = y;

end;

begin

y >= 0

y = 0

abs = y

yes

test case-1 (yes):
input: y = ?
expected result: ?
actual result: ?
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Branch Coverage 

Begin

if ( y >=  0) 

then y = 0;

abs = y;

end;

begin

y >= 0

y = 0

abs = y

yes

no

test case-1(yes):
input: y = 0
expected result: 0
actual result: 0

test case-2 (no):
input: y = ?
expected result: ?
actual result: ?
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Begin

if ( x < 10 && y > 20) {

z = foo (x,y); else z =fie (x,y);

}

end;

test case-1 (yes):
input: x = ?, y = ?
expected result: ?
actual result: ?

test case-2 (no):
input: x = ?, y = ?
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no
x<10
&&
y>20
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Condition - Branch Coverage 
Begin

if ( x < 10 && y > 20) {

z = foo (x,y); else z =fie (x,y);

}

end;

x < 10

z=foo (x,y) 
yes

y > 20

z=fie (x,y) 

yesno

no

x<? y>?
-----------------------------------
test-case-1: t t
test-case:2 t f
test-case-3: f t
test-case-4 f f
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Path Coverage 

x <> 0

yes

yes

no

no

z > 10

z = z-x z = sin(x)

z = 0 z = z / x

(n, y) x = ?, z = ?
(y, n) x = ?, z = ?

(n, n) x = ?, z = ?
(n, y) x = ?, z = ?
(y, n) x = ?, z = ?
(y, y) x = ?, z = ?
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Path with loops 

a

b c
d

e a

? ?

e
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Path with loops 

a

b c
d

e a

c,b,d d

e
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Data Flow Testing

DEF(S) = {x | statement S contains a definition of variable x}

USE(S) = {x | statement S contains a use of variable x}

DEF-USE-Chain (du chain) = [x, S, S’]

S1: i  = 1;

S2: while (i <= n)
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Data Flow testing
s = 0;

i = 1; ?

s = 1;

while (i <= n)

{

s + = i;

i ++ 

}

print (s);

print (i);

print (n);

du: def-use
dk: def-kill

...
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s = 0;
i = 1;
while (i <= n)

{
s + = i;
i ++ 

}
print (s);
print (i);
print (n);

i = 1;
while (i <= n)

{

i ++ 
}

print (i);

Program Slicing
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All paths

Relative strengths of test strategies (B. Beizer 1990)

All definition-use paths

All uses

All predicate/
Some computational uses

All computational/
Some predicate uses

All computational uses
All predicate uses

Branch

StatementAll definition
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Outline

• Function testing

• Performance testing

• Acceptance testing

• Installation testing
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Objective: to ensure that the system does what 
the customer wants it to do.

Customer Developer

Requirements definition
Requirements specification

Functional requirements
Nonfunctional requirements
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Tested components

Design Specification

Unit
test
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Tested components

Integrated modules
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Function
test

Performance
test

Acceptance
test

Installation
test
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System functional requirements Other software requirements
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st
em

System 
In
Use!

Customer requirements spec. User environment
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Function testing
(testing one function at a time) 

functional requirements

• have a high probability of detecting a fault

• use a test team independent of the designers and 
programmers

• know the expected actions and output

• test both valid and invalid input

• never modify the system just to make testing 
easier

• have stopping criteria
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Cause-Effect
(test case generation from req.)

Causes

C1: command is credit 

C2: command is debit 

C3: account number is 
valid 

C4: transaction amount is 
valid 

Effects

E1: print “invalid command” 

E2: print “invalid account 
number” 

E3: print “debit amount not valid ” 

E4: debit account print

E5: credit account print
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C2

andC3

C4

not

E3
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Performance testing
nonfunctional requirements

• Security

• Accuracy

• Speed

• Recovery

• Stress test

• Volume test

• …
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Acceptance testing
customers, users need

• Benchmark test: a set of special test cases

• Pilot test: everyday working
– Alpha test: at the developer’s site, controlled 

environment

– Beta test: at one or more customer site.

• Parallel test: new system in parallel with 
previous one
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Installation testing
users site

Acceptance test at developers site 

installation test at users site,

otherwise may not be needed!!
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Test Planing

• Establishing test objectives

• Designing test cases

• Writing test cases

• Testing test cases

• Executing tests

• Evaluating test results
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Automated Testing Tools

• Code Analysis tools
– Static, Dynamic

• Test execution tools
– Capture-and-Replay

– Stubs & Drivers

• Test case generator
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Termination Problem
How decide when to stop testing

• The main problem for managers!

• Termination takes place when
• resources (time & budget) are over

• found the seeded faults

• some coverage is reached
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What can be automated?

Oracle

Test case
generation

Scaffolding

Termination
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The Distribution of Faults in a 
Large Industrial Software System

Thomas J. Ostrand, Elaine J. Weyuker

AT&T Labs – Research

ACM SIGSOFT

2002 International Symposium on Software 
Testing and Analysis (ISSTA 02)
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Empirical studies:

• difficult to locate and gain access to  large 
systems.

• very time consuming, and therefore expensive, to 
collect and analyze the necessary data.

• difficult to find personnel with the appropriate 
skills to perform the empirical studies.
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Questions
• How faults are distributed over the different files

– Between release
– Lifecycle stage
– Severity

• How the size of modules affected their fault density
• Whether files that contained large numbers of faults during early 

stages of development, also had larger numbers of faults during later 
stages, and whether faultiness persisted from release to release.

• Whether newly written files were more fault-prone than ones that were 
written for earlier releases of the product.

Goal: identify characteristics of files that can be used as predictors of 
fault-proneness, thereby helping organizations determine how best to 
use their testing resources.
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System description
• 13 successive releases
• Fault data was collected during:

• Requirements
• Design
• Development
• Unit testing
• Integration testing
• System testing
• Beta release
• Limited release:

– Controlled release
– General release

• Current version: 1,974 files, 500,000 lines of code, most of the system 
written in Java (1,412 files)
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4743113157341193459303Total

125922615235471177213

27319153813062476174012

281144711715817427160711

24611124711984396137210

4368250282985037713219

4906277283631433911978

207171127156142929937

33913033528712548676

340112301328222328045

3284031029302037434

48700850387151917063

2011024317121545672

99000218276371465841

TotalGen’lLimitedSysIntUnitDevKLOCFilesRelease

Post-ReleaseLate-Pre-ReleaseEarly-Pre- Release

Distribution of Faults
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Classification of 4,743 faults

• Severity-1:   78 faults (1,6%)

• Severity-2:   687 faults (14.5%) 

• Severity-3:   3,847 faults (81%) 

• Severity-4:   131 faults (2,8%) 
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Fault concentration by release

• For each release, the faults were heavily 
concentrated in a relatively small number of 
files.

• For all of the releases, the percentage of the 
code mass contained in the files containing 
faults exceeded the percentage of the files.
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134-10013

247-10012

267-10011

268-10010

311130969

381232948

321132977

341333926

461641855

421537884

432033833

361633852

724035681

% LOC% Files% LOC% FaultsRelease

100% Faults Contained In10% Files Contain

Overall Pareto Distribution by Release
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417110313

5111220612

4116318511

319222710

511242799

1119434118

61622897

7216332126

4117439125

4112339144

0022744183

3011335152

00431867361

% LOC% Files% LOC% Files% LOC% FilesRelease

Post-ReleaseLate-Pre-ReleaseEarly-Pre- Release

Distribution of Faults by Lifecycle Stage
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Fault Concentration by Severity

24722612

381235118

724068361

% LOC% Files% LOC% FilesRelease

100% Faults Contained InSeverity-3 (80% faults)

•Severity-1:   78 faults (1,6%)  -- in 3% files in release-1 to 0% in release 12

•Severity-4:   131 faults (2,8%) -- in 4% files in release-1 to 0,3% in release 12

•Severity-2:   687 faults (14.5%) -- in small percentage of files

•Severity-3:   3,847 faults (81%)  
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Effects of Module size on Fault-proneness

• Standard wisdom: large modules – much more fault-prone
• Basili (1984), Moller (1993): contrary, opsite was true. 
• In the study here

– Fault densities between 10 and 75 faults/KLOC for smallest files (under 
100 lines)

– 2-3 faults/KLOC for larger than 1000 lines
• Hatton (1997): fault density was high for smallest components, decreased to 

minimum for medium-size components, and then started increasing again as 
components size grew.

• Fenton (2000): don’t agree with any of the above, found no trend at all
• Various other factors: new file, amount of changed code, amount of testing 

performed, experience of the programmer…

=> needs more investigation
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-2236222734345630274663Rel (n+1)

2439172134524245215427-Rel (n-1)

121110987654321Release

Persistence of High-Fault Files

• High-Fault Files: top 20% of files ordered by decreasing number of faults, plus all other 
files that have as many faults as the least number among the top 20%

• Rel (n-1): shows the percent of high-fault files in Release (n-1) that remained high-fault 
files in Release n.

•Rel (n+1): shows the percent of high-fault files in Release (n+1) that had been high-fault 
files in Release n.

=> file containing high numbers of faults in one release, remain high-fault 
files in later release
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NEWNEW OLDOLDRelease

1.08.4914.45.812

1.54.607.96.911

1.15.6020.77.610

4.85.8136.38.99

1.971.3612.812.28

.90.6913.310.27

4.901.1336.811.06

2.091.3331.013.85

5.441.4239.113.84

4.012.3224.818.53

1.461.2916.315.42

Fault /KLOC%Faulty Files

Comparison of Faults For Old and New Files

• Percentage of faulty new files is larger than the percentage of faulty pre-existing files
•The fault density is higher for new files than for pre-existing ones

=> More resources for testing new files 
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Conclusions

• Fault concentrate in small numbers of files and 
small percentages of the code mass.

• For each release, the early-pre-release faults 
accounted for a clearly majority of the faults. 

• Percentage of lines of code contained in files that 
contained faults exceeded the percentage of files 
that contained faults.

• Across successive releases, high-fault files of one 
release tend to remain high-fault in later release.
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Real life examples

• First U.S. space mission to Venus failed.
(reason: missing comma in a Fortran do loop)

• December 1995: AA, Boeing 575, mountain crash 
in Colombia, 159 killed. Incorrect one-letter 
computer command (Cali, Bogota 132 miles in 
opposite direction, have same coordinate code)

• June 1996: Ariane-5 space rocket, self-destruction, 
$500 million.
(reason: reuse of software from Ariane-4 without 
recommended testing).
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Real life examples

• Australia: Man jailed because of computer glitch. 
He was jailed for traffic fine although he had 
actually paid it for 5 years ago.

• Dallas Prisoner released due to program design 
flaw: He was temporary transferred from one prison 
to another (witness). Computer gave him 
“temporary assignment”.
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Goals of software testing: Historical Evolution

Not distinguished from debugging

Establish confidence

Find faults

Prevent software faults

1950

1960

1970

1980

Years

1957, Charles Baker distinguished debugging from testing

1972 June, First formal conference software testing, university of 
North Carolina, Bill Hetzel.

Measure SQA test objectives

1979: Myers, “Art of software testing”
1981: Deutsch. Software project  V and V

cost
complexity
# applic.
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And …

Testing can show the presence, but never the 
absence of errors in software.

E. Dijkstra, 1969
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