
1

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

1

Software Testing

No issue is meaningful unless it can be put to
the test of decisive verification.

C.S. Lewis, 1934

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

2

Testing a ballpoint pen
• Does the pen write in the right

color, with the right line thickness?

• Is the logo on the pen according to
company standards?

• Is it safe to chew on the pen?

• Does the click-mechanism still
work after 100 000 clicks?

• Does it still write after a car has run
over it?

What is expected from this pen?

Intended use!!

2

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

3

Goal: develop software to meet its intended use!
But: human beings make mistake!

⇒ Product of any engineering activity must be verified
against its requirements throughout its development.

bridge automobile television word processor

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

4

• Verifying bridge = verifying design,
construction, process,…

• Software must be verified in much the same
spirit. In this lecture, however, we shall
learn that verifying software is perhaps
more difficult than verifying other
engineering products.

We shall try to clarify why this is so.

3

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

5

Customer Developer

Requirements definition
Requirements specification

Functional requirements
Nonfunctional requirements

Design SpecificationCode = System

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

6

Outline
• Some notations
• Integration testing
• Component/Unit/Module/Basic testing
• Function testing
• Performance testing
• Acceptance testing
• Installation testing

• Real life examples

4

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

7

Error, Fault, Failure

Human error

Can lead to

Can lead to

Fault

Failure

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

8

Debugging vs Testing

• Debugging: to find the bug

• Testing: to demonstrate the existence of a
fault
– fault identification

– fault correction / removal

5

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

9

Types of Faults
(dep. on org. IBM, HP)

• Algorithmic: division by zero
• Computation & Precision: order of op
• Documentation: doc - code
• Stress/Overload: data-str size (dimensions of

tables, size of buffers)
• Capacity/Boundary: x devices, y parallel tasks, z

interrupts
• Timing/Coordination: real-time systems
• Throughout/Performance: speed in req

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

10

Types of Faults

• Recovery: power failure

• Hardware & System Software: modem

• Standards & Procedure: organizational standard;
difficult for programmers to follow each other

6

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

11

Unit & Integration Testing

Objective: to ensure that code implemented
the design properly.

Design SpecificationCode = System

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

12

Classes of Integration Testing

• Top-down

• Bottom-up

• Big bang

• Sandwich

7

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

13

Components

Component
to be
tested

driver

stub stub Test
cases

Boundary conditions
independent paths
interface
...

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

14

8

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

15

A

B

FE

D

G

C

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

16

Top-down

A

B

FE

D

G

C

9

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

17

Bottom-up

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

18

A

B

FE

D

G

C

10

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

19

Bottom-up
A

B

FE

D

G

C

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

20

Big-bang
A

B

FE

D

G

C

11

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

21

Sandwich
A

B

FE

D

G

C

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

22

In partYesNoYesStubs needed

In partYesYesNoDriver needed

EarlyLateLateEarlyTime to a
basic working
program

SandwichBig-bangBottom-upTop-down

12

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

23

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

Tested components

Tested components

Unit
test

Unit
test

Integration
test

Design Specification

Integrated modules

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

24

Unit Testing

• Code Inspections

• Code Walkthroughs

• Open box testing

• Black box testing

13

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

25

Test

Object

Input

Output

Failure?

Oracle

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

26

Two Types of Oracles

• Human: an expert that can examine an input
and its associated output and determine
whether the program delivered the correct
output for this particular input.

• Automated: a system capable of performing
the above task.

14

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

27

Balls and Urn

• Testing can be viewed as selecting different colored balls
from an urn where:

– Black ball = input on which program fails.

– White ball = input on which program succeeds.

• Only when testing is exhaustive is there an “empty” urn.

Urn (program)

Balls (inputs)

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

28

A program that always fails A correct program

A typical program

15

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

29

Inspection
(originally introduced by Fagan 1976)

• overview (code, inspection goal)

• preparation (individually)

• reporting

• rework

• follow-up

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

30

Inspection (cont)
some classical programming errors

• Use of un-initialized variables

• Jumps into loops

• Non-terminating loops

• Incompatible assignments

• Array indexes out of bounds

• Off-by-one errors

• Improper storage allocation or de-allocation

• Mismatches between actual and formal parameters in
procedure calls

16

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

31

Walkthroughs

design, code, chapter of user’s guide,…

• presenter

• coordinator

• secretary

• maintenance oracle

• standards bearer

• user representative

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

32

Discovery activity Faults found per
thousand lines of code

Requirements review 2.5
Design review 5.0
Code inspection 10.0
Integration test 3.0
Acceptance test 2.0

Jons, S et al, Developing international user information. Bedford, MA: Digital Press, 1991.

17

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

33

Experiments

• 82% of faults discovered during design & code
inspection (Fagan)

• 93% of all faults in a 6000-lines application were
found by inspections (Ackerman, et al 1986)

• 85% of all faults removed by inspections from
examining history of 10 million lines of code
(Jones 1977)

• Inspections : finding code faults
• Prototyping: requirements problem

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

34

Proving code correct

• Formal proof techniques

• Symbolic execution

• Automated theorem proving

18

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

35

Black box / Closed box testing
• incorrect or missing functions

• interface errors

• performance error

input

output

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

36

Black box testing

• Equivalence partitioning

• Boundary value analysis

• Exhaustive testing

19

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

37

Equivalence partitioning

Valid inputsInvalid inputs

outputs

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

38

Specification: the program accepts four to
eight inputs which are 5 digit integers
greater than 10000.

20

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

39

Guidelines
If an input condition specifies

• A range: one valid and two invalid
equivalence classes.

• A specific value: one valid and two invalid
equivalence classes.

• A member of a set: one valid and one
invalid equivalence classes.

• A boolean: one valid and one invalid class.

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

40

Boundary value analysis

Less than 10000 Between 10000 and 99999 More than 99999

21

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

41

Exhaustive testing

• Definition: testing with every member of
the input value space.

• Input value space: the set of all possible
input values to the program.

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

42

Glass box testing!
White box testing!
Open box testing!
Clear box testing!

22

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

43

Glass box testing

• logical decision

• loops

• internal data structure

• paths

• ...
Coverage!!

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

44

Statement Coverage

Begin

if (y >= 0)

then y = 0;

abs = y;

end;

begin

y >= 0

y = 0

abs = y

yes

test case-1 (yes):
input: y = ?
expected result: ?
actual result: ?

23

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

45

Branch Coverage

Begin

if (y >= 0)

then y = 0;

abs = y;

end;

begin

y >= 0

y = 0

abs = y

yes

no

test case-1(yes):
input: y = 0
expected result: 0
actual result: 0

test case-2 (no):
input: y = ?
expected result: ?
actual result: ?

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

46

Begin

if (x < 10 && y > 20) {

z = foo (x,y); else z =fie (x,y);

}

end;

test case-1 (yes):
input: x = ?, y = ?
expected result: ?
actual result: ?

test case-2 (no):
input: x = ?, y = ?
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no
x<10
&&
y>20

24

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

47

Condition - Branch Coverage
Begin

if (x < 10 && y > 20) {

z = foo (x,y); else z =fie (x,y);

}

end;

x < 10

z=foo (x,y)
yes

y > 20

z=fie (x,y)

yesno

no

x<? y>?

test-case-1: t t
test-case:2 t f
test-case-3: f t
test-case-4 f f

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

48

Path Coverage

x <> 0

yes

yes

no

no

z > 10

z = z-x z = sin(x)

z = 0 z = z / x

(n, y) x = ?, z = ?
(y, n) x = ?, z = ?

(n, n) x = ?, z = ?
(n, y) x = ?, z = ?
(y, n) x = ?, z = ?
(y, y) x = ?, z = ?

25

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

49

Path with loops

a

b c
d

e a

? ?

e

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

50

Path with loops

a

b c
d

e a

c,b,d d

e

26

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

51

Data Flow Testing

DEF(S) = {x | statement S contains a definition of variable x}

USE(S) = {x | statement S contains a use of variable x}

DEF-USE-Chain (du chain) = [x, S, S’]

S1: i = 1;

S2: while (i <= n)

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

52

Data Flow testing
s = 0;

i = 1; ?

s = 1;

while (i <= n)

{

s + = i;

i ++

}

print (s);

print (i);

print (n);

du: def-use
dk: def-kill

...

27

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

53

s = 0;
i = 1;
while (i <= n)

{
s + = i;
i ++

}
print (s);
print (i);
print (n);

i = 1;
while (i <= n)

{

i ++
}

print (i);

Program Slicing

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

54

All paths

Relative strengths of test strategies (B. Beizer 1990)

All definition-use paths

All uses

All predicate/
Some computational uses

All computational/
Some predicate uses

All computational uses
All predicate uses

Branch

StatementAll definition

28

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

55

Outline

• Function testing

• Performance testing

• Acceptance testing

• Installation testing

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

56

Objective: to ensure that the system does what
the customer wants it to do.

Customer Developer

Requirements definition
Requirements specification

Functional requirements
Nonfunctional requirements

29

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

57

Unit
test

C
om

po
ne

nt
 c

od
e

Integration
test

Tested components

Design Specification

Unit
test

C
om

po
ne

nt
 c

od
e

Tested components

Integrated modules

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

58

Function
test

Performance
test

Acceptance
test

Installation
test

In
te

gr
at

ed
 m

od
ul

es

Fu
nc

tio
ni

ng
 s

ys
te

m
s

V
er

if
ie

d
va

li
da

te
d

so
ft

w
ar

e

System functional requirements Other software requirements

A
cc

ep
te

d
sy

st
em

System
In
Use!

Customer requirements spec. User environment

30

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

59

Function testing
(testing one function at a time)

functional requirements

• have a high probability of detecting a fault

• use a test team independent of the designers and
programmers

• know the expected actions and output

• test both valid and invalid input

• never modify the system just to make testing
easier

• have stopping criteria

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

60

Cause-Effect
(test case generation from req.)

Causes

C1: command is credit

C2: command is debit

C3: account number is
valid

C4: transaction amount is
valid

Effects

E1: print “invalid command”

E2: print “invalid account
number”

E3: print “debit amount not valid ”

E4: debit account print

E5: credit account print

31

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

61

C2

andC3

C4

not

E3

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

62

Performance testing
nonfunctional requirements

• Security

• Accuracy

• Speed

• Recovery

• Stress test

• Volume test

• …

32

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

63

Acceptance testing
customers, users need

• Benchmark test: a set of special test cases

• Pilot test: everyday working
– Alpha test: at the developer’s site, controlled

environment

– Beta test: at one or more customer site.

• Parallel test: new system in parallel with
previous one

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

64

Installation testing
users site

Acceptance test at developers site

installation test at users site,

otherwise may not be needed!!

33

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

65

Test Planing

• Establishing test objectives

• Designing test cases

• Writing test cases

• Testing test cases

• Executing tests

• Evaluating test results

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

66

Automated Testing Tools

• Code Analysis tools
– Static, Dynamic

• Test execution tools
– Capture-and-Replay

– Stubs & Drivers

• Test case generator

34

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

67

Termination Problem
How decide when to stop testing

• The main problem for managers!

• Termination takes place when
• resources (time & budget) are over

• found the seeded faults

• some coverage is reached

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

68

What can be automated?

Oracle

Test case
generation

Scaffolding

Termination

35

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

69

The Distribution of Faults in a
Large Industrial Software System

Thomas J. Ostrand, Elaine J. Weyuker

AT&T Labs – Research

ACM SIGSOFT

2002 International Symposium on Software
Testing and Analysis (ISSTA 02)

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

70

Empirical studies:

• difficult to locate and gain access to large
systems.

• very time consuming, and therefore expensive, to
collect and analyze the necessary data.

• difficult to find personnel with the appropriate
skills to perform the empirical studies.

36

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

71

Questions
• How faults are distributed over the different files

– Between release
– Lifecycle stage
– Severity

• How the size of modules affected their fault density
• Whether files that contained large numbers of faults during early

stages of development, also had larger numbers of faults during later
stages, and whether faultiness persisted from release to release.

• Whether newly written files were more fault-prone than ones that were
written for earlier releases of the product.

Goal: identify characteristics of files that can be used as predictors of
fault-proneness, thereby helping organizations determine how best to
use their testing resources.

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

72

System description
• 13 successive releases
• Fault data was collected during:

• Requirements
• Design
• Development
• Unit testing
• Integration testing
• System testing
• Beta release
• Limited release:

– Controlled release
– General release

• Current version: 1,974 files, 500,000 lines of code, most of the system
written in Java (1,412 files)

37

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

73

4743113157341193459303Total

125922615235471177213

27319153813062476174012

281144711715817427160711

24611124711984396137210

4368250282985037713219

4906277283631433911978

207171127156142929937

33913033528712548676

340112301328222328045

3284031029302037434

48700850387151917063

2011024317121545672

99000218276371465841

TotalGen’lLimitedSysIntUnitDevKLOCFilesRelease

Post-ReleaseLate-Pre-ReleaseEarly-Pre- Release

Distribution of Faults

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

74

Classification of 4,743 faults

• Severity-1: 78 faults (1,6%)

• Severity-2: 687 faults (14.5%)

• Severity-3: 3,847 faults (81%)

• Severity-4: 131 faults (2,8%)

38

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

75

Fault concentration by release

• For each release, the faults were heavily
concentrated in a relatively small number of
files.

• For all of the releases, the percentage of the
code mass contained in the files containing
faults exceeded the percentage of the files.

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

76

134-10013

247-10012

267-10011

268-10010

311130969

381232948

321132977

341333926

461641855

421537884

432033833

361633852

724035681

% LOC% Files% LOC% FaultsRelease

100% Faults Contained In10% Files Contain

Overall Pareto Distribution by Release

39

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

77

417110313

5111220612

4116318511

319222710

511242799

1119434118

61622897

7216332126

4117439125

4112339144

0022744183

3011335152

00431867361

% LOC% Files% LOC% Files% LOC% FilesRelease

Post-ReleaseLate-Pre-ReleaseEarly-Pre- Release

Distribution of Faults by Lifecycle Stage

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

78

Fault Concentration by Severity

24722612

381235118

724068361

% LOC% Files% LOC% FilesRelease

100% Faults Contained InSeverity-3 (80% faults)

•Severity-1: 78 faults (1,6%) -- in 3% files in release-1 to 0% in release 12

•Severity-4: 131 faults (2,8%) -- in 4% files in release-1 to 0,3% in release 12

•Severity-2: 687 faults (14.5%) -- in small percentage of files

•Severity-3: 3,847 faults (81%)

40

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

79

Effects of Module size on Fault-proneness

• Standard wisdom: large modules – much more fault-prone
• Basili (1984), Moller (1993): contrary, opsite was true.
• In the study here

– Fault densities between 10 and 75 faults/KLOC for smallest files (under
100 lines)

– 2-3 faults/KLOC for larger than 1000 lines
• Hatton (1997): fault density was high for smallest components, decreased to

minimum for medium-size components, and then started increasing again as
components size grew.

• Fenton (2000): don’t agree with any of the above, found no trend at all
• Various other factors: new file, amount of changed code, amount of testing

performed, experience of the programmer…

=> needs more investigation

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

80

-2236222734345630274663Rel (n+1)

2439172134524245215427-Rel (n-1)

121110987654321Release

Persistence of High-Fault Files

• High-Fault Files: top 20% of files ordered by decreasing number of faults, plus all other
files that have as many faults as the least number among the top 20%

• Rel (n-1): shows the percent of high-fault files in Release (n-1) that remained high-fault
files in Release n.

•Rel (n+1): shows the percent of high-fault files in Release (n+1) that had been high-fault
files in Release n.

=> file containing high numbers of faults in one release, remain high-fault
files in later release

41

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

81

NEWNEW OLDOLDRelease

1.08.4914.45.812

1.54.607.96.911

1.15.6020.77.610

4.85.8136.38.99

1.971.3612.812.28

.90.6913.310.27

4.901.1336.811.06

2.091.3331.013.85

5.441.4239.113.84

4.012.3224.818.53

1.461.2916.315.42

Fault /KLOC%Faulty Files

Comparison of Faults For Old and New Files

• Percentage of faulty new files is larger than the percentage of faulty pre-existing files
•The fault density is higher for new files than for pre-existing ones

=> More resources for testing new files

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

82

Conclusions

• Fault concentrate in small numbers of files and
small percentages of the code mass.

• For each release, the early-pre-release faults
accounted for a clearly majority of the faults.

• Percentage of lines of code contained in files that
contained faults exceeded the percentage of files
that contained faults.

• Across successive releases, high-fault files of one
release tend to remain high-fault in later release.

42

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

83

Real life examples

• First U.S. space mission to Venus failed.
(reason: missing comma in a Fortran do loop)

• December 1995: AA, Boeing 575, mountain crash
in Colombia, 159 killed. Incorrect one-letter
computer command (Cali, Bogota 132 miles in
opposite direction, have same coordinate code)

• June 1996: Ariane-5 space rocket, self-destruction,
$500 million.
(reason: reuse of software from Ariane-4 without
recommended testing).

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

84

Real life examples

• Australia: Man jailed because of computer glitch.
He was jailed for traffic fine although he had
actually paid it for 5 years ago.

• Dallas Prisoner released due to program design
flaw: He was temporary transferred from one prison
to another (witness). Computer gave him
“temporary assignment”.

43

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

85

Goals of software testing: Historical Evolution

Not distinguished from debugging

Establish confidence

Find faults

Prevent software faults

1950

1960

1970

1980

Years

1957, Charles Baker distinguished debugging from testing

1972 June, First formal conference software testing, university of
North Carolina, Bill Hetzel.

Measure SQA test objectives

1979: Myers, “Art of software testing”
1981: Deutsch. Software project V and V

cost
complexity
applic.

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

86

And …

Testing can show the presence, but never the
absence of errors in software.

E. Dijkstra, 1969

44

January 2006 CUGS, SE, Mariam Kamkar, IDA,
LiU

87

