
TDDC18 Component-based software. IDA, Linköpings universitet. Sl ides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metamodeling and
Metaprogramming

�� ������	
���� �� �������

�� ������ ��
���
�	��

�� �������
� �����
�� �����

�� �������
� ��
���� ���!�

"� #������� ���$	�

%� &������' ������� (���)�� #����������* (
�� ����" ���������+,
#� (- ���$�' #������� (���)��* (
�� �.�/* ������ 0��� 1��
����

Slides by courtesy of U. Assmann, IDA / TU Dresden, 2004
Revised 2005, 2006 by C. Kessler, IDA, Linköpings universitet

TDDC18 Component-based software. IDA, Linköpings universite t. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

1. Introduction to Metalevels

2& � ��� �� ���	� ��� �������

& ���
��� � ��� �� ���	� �����3

����� ���* &#� ���(4& �56/

3

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metadata

� Meta: means “describing”
� Metadata: describing data (sometimes: self-describing data).

The type system of metadata is called metamodel
� Metalevel: the elements of the meta-level (the meta-objects)

describe the objects on the base level
� Metamodeling: description of the model elements/concepts in the

metamodel

��������

�����

�����

	
�������

���� �����

��
����� �����

���� �����

4

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.Example:
Different Types of Program Semantics and
their Metalanguages (Description Languages)

� Syntactic structure
� Described by a context free grammar
� Does not consider context

� Static Semantics
� Described by context sensitive grammar

(or attribute grammar, denotational semantics, logic constraints)
� Describes context constraints, context conditions
� Can describe consistency conditions on the specifications

� “If I use a variable here, it must be defined elsewhere”
� “If I use a component here, it must be alive”

� Dynamic Semantics
� Interpreter in an interpreter language (e.g., lambda calculus)
� Sets of runtime states or terms

5

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Level 1 - Software Objects car 1 car1.colorcar1.drive()

Level 2 - Software Classes
(meta-objects)
(Model) Car

void drive() {} int color

Class Method Attribute

Programming Language Concept

Level 3 - Language concepts
 (Metaclasses in the metamodel)

Level 4 - Meta-Concepts in the
metameta model, the metalanguage
(language description)

Metalevels
in Programming Languages

Level 0 – Real World Entities car driving car color

6

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Classes and Metaclasses

class WorkPiece { Object belongsTo; }
class RotaryTable { WorkPiece place1, place2; }
class Robot { WorkPiece piece1, piece2; }
class Press { WorkPiece place; }
class ConveyorBelt { WorkPiece pieces[]; }

public class Class {
 Attribute[] fields;
 Method[] methods;
 Class (Attribute[] f, Method[] m) {
 fields = f;
 methods = m;
 }
}
public class Attribute {..}
public class Method {..}

Metaclasses

Classes in a software system

Concepts of a metalevel can be
represented at the base level.
This is called reification.

Examples:
• Java Reflection API [Szyperski 14.4.1]
• UML metamodel (MOF)

7

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Creating a Class from a Metaclass

� Example: Create a class
by instantiating the metaclass:

Class WorkPiece = new Class(new Attribute[]{ "Object belongsTo" }, new Method[]{});

Class RotaryTable = new Class(new Attribute[]{ "WorkPiece place1", "WorkPiece place2" },

 new Method[]{});

Class Robot = new Class(new Attribute[]{ "WorkPiece piece1", "WorkPiece piece2" },

 new Method[]{});

Class Press = new Class(new Attribute[]{ "WorkPiece place" }, new Method[]{});

Class ConveyorBelt = new Class(new Attribute[]{ "WorkPiece[] pieces" }, new Method[]{});

public class Class {
 Attribute[] fields;
 Method[] methods;
 Class (Attribute[] f, Method[] m) {
 fields = f;
 methods = m;
 }
}
public class Attribute {..}
public class Method {..}

class WorkPiece { Object belongsTo; }
class RotaryTable { WorkPiece place1, place2; }
class Robot { WorkPiece piece1, piece2; }
class Press { WorkPiece place; }
class ConveyorBelt { WorkPiece pieces[]; }

Metaprogram at base level 8

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Reflection
(Self-Modification, Metaprogramming)

� Reflection is computation about the metamodel in the base model.

� The application can look at its own skeleton (metadata)
 and may even change it
� Allocating new classes, methods, fields
� Removing classes, methods, fields

Metadata

Data,
Code,
Information

Meta level

Base level

Remark: In the literature,
“reflection” was originally
introduced to denote
“computation about the
own program” [Maes'87]
but has also been used in
the sense of “computing
about other programs”
(e.g., components).

9

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Introspection

� Read-only reflection is called introspection
� The component can look up the metadata of itself or another

component and learn from it (but not change it!)

� Typical application: find out features of components
� Classes, methods, attributes, types
� Very important in component supermarkets

Metadata

Data,
Code,

Information

Data,
Code,

Information

10

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Introcession

� Read and Write reflection is called introcession
� The component can look up the metadata of itself or another

component and may change it

� Typical application: dynamic adaptation of parts of own program
� Classes, methods, attributes, types

Metadata

Data,
Code,

Information

11

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Reflection Example

 for all c in self.classes do
 generate_class_start(c);
 for all a in c.attributes do
 generate_attribute(a);
 done;
 generate_class_end(c);
done;

Reading Reflection
(Introspection):

Full Reflection
(Introcession):

for all c in self.classes do
 helpClass = makeClass(c.name+"help");
 for all a in c.attributes do
 helpClass.addAttribute(copyAttribute(a));
 done;
 self.addClass(helpClass);
done;

A reflective system is a system that uses this information about itself
in its normal course of execution.

12

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metaprogramming
on the Language Level

enum { Singleton, Parameterizable } BaseFeature;
public class LanguageConcept {
 String name;
 BaseFeature singularity;
 LanguageConcept (String n, BaseFeature s) {
 name = n;
 singularity = s;
 }
}

LanguageConcept Class = new LanguageConcept("Class", Singleton);
LanguageConcept Attribute =
 new LanguageConcept("Attribute", Singleton);
LanguageConcept Method =
 new LanguageConcept("Method", Parameterizable);

Language concepts
(Metamodel)

Metalanguage concepts
Language description concepts
(Metametamodel)

13

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Made It Simple

� Level 1: objects
� Level 2: classes, types
� Level 3: language elements
� Level 4: metalanguage, language description language

14

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Use of Metamodels and
Metaprogramming

� To model, describe, introspect, and manipulate
� Workflow systems, such as ARIS [Scheer'98]
� Databases
� Debuggers
� Programming languages, such as Java Reflection API
� Component systems, such as JavaBeans or CORBA DII
� Composition systems, such as Invasive Software Composition
� Modeling systems, such as UML or Modelica
� ... probably all systems ...

TDDC18 Component-based software. IDA, Linköpings universitet. Sl ides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

2. Metalevel Architectures

� Reflective architecture
� Metalevel architecture

16

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Reflective Architecture

� A system with a reflective architecture maintains metadata and
a causal connection between meta- and base level.
� The metaobjects describe

structure, features, semantics of domain objects
� This connection is kept consistent

� Reflection is thinking about oneself (or others) at the base level
 with the help of metadata

� Metaprogramming is programming with metaobjects,
 either at base level or meta level

17

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Repository
with Objects
as Artefacts Base Level

Metalevel

Repository
with Concepts/
Types/Descriptions
as Artefacts

Metaobjects

Reflection

Meta-
program

Reflective Architecture

Causal
connection:
Changes in the
meta level will be
committed to the
base level.

18

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metalevel Architecture

� In a metalevel architecture,
the metamodel is used for computations,
� but the metaprograms execute either

on the metalevel or on the base level.

� Special variants:
� Introspective architecture

(no self-modification)
� Example: Java Reflection API

� Staged metalevel architecture
(metaprogram evaluation time is at system build time,
 different from system runtime)

� Example: C++ templates (generics), expanded at compile time
� Example: COMPOST composition programs configure programs

19

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Base Level

Metalevel
Metaobjects

Meta-
program

Metalevel Architecture

Metalevel architec-
ture only allows
metaprogramming at
the meta level.
Special case:
Static metalevel
architecture

20

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Base Level

MetalevelMetaobjects

Meta-
program

Static Metaprogramming Architecture

Static Time

Dynamic Time

Metaprogram and metaobjects
exist only at compile time.
No run-time overhead.

21

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Parsing,
Analysing

Code Generation /
Pretty Printing

Analysis,
Transfor-
mations

AST

Programs in
Target Form

ASG

Programs in
Source Form

Compilers

22

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

AST

Programs in
Target Form

ASG

Programs in
Source Form

Compilers Are Static Metaprograms

Meta-
program

Compiler

Analysis,
Transformations

23

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Base Level

Metalevel

Metaobjects
Introspection

Metaobjects

Introspective Architectures

Special case
of a metalevel
architecture:
read-only
reflection at
base level

TDDC18 Component-based software. IDA, Linköpings universite t. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

3. Metaobject Protocols (MOP)

!��� ���	
�	��� �� ��������� ���
����

25

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metaobject Protocol

� A metaobject protocol (MOP)
is an implementation of the methods of the metaclasses.

� It specifies an interpreter for the language,
� describing the semantics, i.e., the behavior of the language objects
� in terms of the language itself.

� By changing the MOP, the language semantics is changed
� or adapted to a context.

� If the language is object-oriented, default implementations of
metaclass methods can be overwritten by subclassing
� thereby changing the semantics of the language

26

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

A Very Simple MOP

public class Class {
 Class(Attribute[] f, Method[] m)
 {
 fields = f; methods = m;
 }
 Attribute[] fields;
 Method[] methods;
}

public class Method {
 public String name;
 public Statement[] statements;
 public Method(String n) { name = n; }
 public void enterMethod() { }
 public void leaveMethod() { }
 public Object execute {
 Object returnValue;
 enterMethod();
 for (int i = 0;
 i <= statements.length; i++) {
 statements[i].execute();
 }
 leaveMethod();
 return returnValue;
 }
}
public class Statement {
 public void execute() { ... }
}

public class Attribute {
 public String name;
 public Object value;
 Attribute (String n) { name = n; }
 public void enterAttribute() { }
 public void leaveAttribute() { }
 public void setAttribute(Object v) {
 enterAttribute();
 this.value = v;
 leaveAttribute();
 }
 public Object getAttribute() {
 Object returnValue;
 enterAttribute();
 returnValue = value;
 leaveAttribute();
 return returnValue;
 }
}

[ISC] p.52

27

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

An Adapted MOP

public class TracingAttribute extends Attribute {
 public void enterAttribute() { // overload Attribute.enterAttribute()
 System.out.println("Here I am, accessing attribute " + name);
 }
 public void leaveAttribute() {
 System.out.println("I am leaving attribute " + name +
 ": value is " + value);
 }
}

Class Robot = new Class(new Attribute[]{ "WorkPiece piece1", "WorkPiece piece2" },
 new Method[]{ "takeUp() { WorkPiece a = rotaryTable.place1; } "});

Class RotaryTable = new Class(new TracingAttribute[]{ "WorkPiece place1",
 "WorkPiece place2" },
 new Method[]{});

 Here I am, accessing attribute place1
 I am leaving attribute place1: value is WorkPiece #5

Adaptation by subclassing
the metaclass Attribute

Base
level:

Meta
level:

28

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Open Languages

� Open Java, Open C++
� Employ static metaprogramming

Language Extensions

Static Metaprograms

Metaobject ProtocolMetamodel

Open Compiler

Program with Language
Extensions

Program in Standard
Language

Standard
Language

29

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

An Open Language

� ... offers its own metamodel for static metaprogramming
� Its schema (e.g., structure of AST)

is made accessible as an abstract data type
� Users can write static metaprograms to adapt the language
� Users can override default methods in the metamodel,

changing the static language semantics or the behavior of the compiler

� ... can be used to adapt components at compile time
� During system generation
� Static adaptation of components

� Metaprograms are removed during system generation,
no runtime overhead
� Avoids the overhead of dynamic metaprogramming

TDDC18 Component-based software. IDA, Linköpings universite t. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

4. Metaobject Facilities (MOF)

31

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Example: Generating IDL specifications

IDL = Interface Description Language

� The type system of CORBA

� Maps to many programming language type systems
� Java, C++, C#, etc.

� Is a kind of “mediating type system”, least common denominator...

� For interoperability to components written in other languages,
an interface description in IDL is required

� (See also lecture on CORBA)

32

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Example: Generating IDL specs (cont.)

� Problem: How to generate an IDL spec from a Java application ?

� You would like to say (here comes the introspection:)
� for all c in classes do

 generate_class_start(c);
 for all a in c.attributes do
 generate_attribute(a);
 done;
 generate_class_end(c);
done;

� Need a type system that describes the Java type system
� With classes and attributes, methods

� Some other problems:
� How to generate code for exchange between C++ and Java?
� How to bind other type systems than IDL into Corba (UML, ..)?

33

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metaobject Facility (MOF)

� Metadata can be used to
� Get knowledge about unknown data formats, types
� Navigate in unknown data
� Generate unknown data

� Generate type systems (e.g., IDL from programming languages)
� Generate languages from metalanguage specifications

 A metaobject facility (MOF) is a generative mapping
 (transformer, generator)
 from the metalanguage level (Level 4)
 to the language level (Level 3)

34

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Level 1 - Software Objects car 1 car1.colorcar1.drive()

Level 2 - Software Classes
(meta-objects)
(Model) Person

void drive(){} int color

Class
Method Attribute

Programming Language Concept

Level 3 -
Language concepts
(Metaclasses in the metamodel)

Level 4 - Meta-Concepts in the
metameta model, the metalanguage
(language description)

The MOF Generator

Level 0 – Real World
car driving car color

Language
Description 2

Language
Description 1

Language 2Language 1

35

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

MOF: Example

� The MOF for the CORBA meta-metamodel
contains a type system for type systems:
� Entities
� Relationships
� Packages
� Exceptions

� Can describe every type system
of a programming or modeling language

� MOF concepts must be mapped to types of a specific type system

� From these mappings, code can be generated
that provides services for that type system,
 e.g. code that navigates in object graphs. 36

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metaobject Facility (MOF)

� From different language descriptions,
different (parts of) languages are generated
� Type systems
� Modelling languages (such as UML)
� Component models
� Workflow languages

� A MOF cannot generate a full-fledged language

� A MOF is not a MOP
� The MOF is generative
� The MOP is interpretative

37

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Language
Description

Language
Description

UML
IDL

Level 1- Software Objects
object1 object1.colorobject1.print()

Level 2- Software Classes
(Model)

Types Person
void Color

Class Method Attribute

Concept

Level 3- Software concepts
(Meta-model, meta-classes)

Type Systems such as
IDL, UML, C++, C, Cobol

Level 4- Meta-Concepts
(Meta-meta model)

Meta-object facility MOF

Meta Levels in Corba Type Systems

���������������	 ��	���� ������� ���� 	�	���	�

C# Java

38

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Metaobject Facility MOF in CORBA

� The OMG-MOF (metaobject facility) is a MOF, i.e., a metalanguage,
describing type systems
� Describing IDL, the CORBA type system
� Describing the UML metamodel
� Describing XML schema
� Standardized Nov. 1997

� It is not a full metalanguage, but only contains
� Classes, relations, attributes
� OCL specifications to express constraints on the classes and their

relations
� A MOP cannot be specified in the MOF

(methods are lacking in the MOF)

39

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Language
Description

Language
Description

UMLIDL

Level 1- Software Objects
object1 object1.color

object1.print()

Level 2- Software Classes
(Model, meta-objects)

Types Person void
Color

Concept

Level 3- Software concepts
(Meta-model, meta-classes)

Type Systems such as
IDL, C++, C, Cobol

Level 4- Meta-Concepts
(Meta-meta model)

Meta-object facility MOF

Meta Levels in Corba Type Systems

���������������	 ��	���� ������� ���� 	�	���	�

C#

XSchema
Class Method

Attribute

Class Method

Attribute

Class Method

Attribute

Class

Attribute

40

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Automatic Data Transformation with
the Metaobject Facility (MOF)

� Given:
� 2 different language descriptions
� An isomorphic mapping between them

� Produced:
� A transformer that transforms data in the languages

� Data fitting to MOF-described type systems can automatically be
transformed into each other
� The mapping is only an isomorphic function in the metametamodel
� Exchange data between tools possible

41

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Isomorphic Language Mappings

Language
Description

UMLIDL

Concept

Class Method
Attribute

Class Method

Attribute

Person void
Color

Person void
Color

Transformer

42

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Reason:
Similarities of Type Systems

� Metalevel hierarchies are similar for programming, specification,
and modeling level

� Since the MOF can be used to describe type systems
there is hope to describe them all in a similar way

� These descriptions can be used to generate
� Conversions
� Mappings (transformations) of interfaces and data

43

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Summary MOF

� The MOF describes general type systems

� New type systems can be added, composed and extended from
old ones

� Relations between type systems are supported

� For interoperability between type systems and -repositories

� Automatic generation of IDL

� Language extensions, e.g. for extending UML

� Reflection/introspection supported

� Application to workflows, data bases, groupware, business
processes, data warehouses (Common Warehouse Model, CWM)

TDDC18 Component-based software. IDA, Linköpings universite t. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

5. Component Markup

�� & ����� ��� ��� �������
���� ��� ���
�������

45

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Markup Languages

� Convey more semantics for the artifact they markup

� HTML, XML, SGML are markup languages

� Remember: a component is a container

� A markup can offer contents of the component
for the external world, i.e., for composition
� It can offer the content for introspection
� Or even introcession

46

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Hungarian Notation

� Hungarian notation is a markup method that defines
naming conventions for identifiers in languages
� to convey more semantics for composition in a component system
� but still, to be compatible with the syntax of the component language
� so that standard tools can still be used

� The composition environment can ask about the
names in the interfaces of a component
(introspection)
� and can deduce more semantics

47

TDDC18 Component-based software. IDA, Linköpings universitet. Sl ides by courtesy of Uwe Assmann, IDA / TU Dresden.

Generic Types in COMPOST

<< ClassBox >>

class SimpleList {
 genericTType elem;
 SimpleList next;
 genericTType getNext() {
 return next.elem;
 }
}

T

class SimpleList {
 WorkPiece elem;
 SimpleList next;
 WorkPiece getNext() {
 return next.elem;
 }
}

<< ClassBox >>

48

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Java Beans Naming Schemes

� Property access
� setField(Object value);
� Object getField();

� Event firing
� fire<Event>
� register<Event>Listener
� unregister<Event>Listener

Metainformation for JavaBeans is identified by markup
in the form of Hungarian Notation.
This metainformation is needed, e.g., by the JavaBeans Assembly tools
to find out which classes are beans and what properties and events they have.

49

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Markup by Comments

� Javadoc tags
� @author
� @date
� @obsolete

� Java 1.5 attributes

� C# attributes
� //@author
� //@date
� //selfDefinedData

� C# /.NET attributes
� [author(Uwe Assmann)]
� [date Feb 24]
� [selfDefinedData(...)]

50

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Markup is Essential
for Component Composition

� because it identifies metadata,
which in turn supports introspection and introcession

� Components that are not marked-up cannot be composed

� Every component model has to introduce
a strategy for component markup

� Insight:
A component system that supports composition techniques
must be a reflective architecture!

51

TDDC18 Component-based software. IDA, Linköpings universitet. Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

What Have We Learned? (1)

� Reflection is reasoning and modification of oneself or others
with the help of metadata.
� Reflection is enabled by reification of the metamodel.
� Introspection is thinking about oneself, but not modifying.

� Metaprogramming is programming with meta-objects.

� System has reflective architecture if metaprogram executes at base
level and the base-model and metamodel are kept consistent

� System has metalevel architecture if it only supports
metaprogramming at meta-level (not at the base level)

� A MOP can describe an interpreter for a language;
the language is modified if the MOP is changed

� A MOF is a generator for (part of) a language
� The CORBA MOF is a MOF for type systems mainly

 52

TDDC18 Component-based software. IDA, Linköpings universite t. S lides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

What Have We Learned? (2)

� Metamodeling, e.g. MOF for UML / Corba IDL / ...

� Some well-known examples of metaprogramming:
� Static metaprogramming at base level

e.g. C++ templates, AOP
� Static metaprogramming at meta level

e.g. Compiler analysis / transformations
� Dynamic metaprogramming at base level

e.g. Java Reflection

� Component and composition systems are reflective architectures
� Markup marks the variation and extension points of components
� Composition introspects the markup
� Look up type information, interface information, property information
� or full reflection

