
1

Introduction to UML
and Design Patterns

Christoph Kessler and Kristian Sandahl
Department of Computer and Information Science

Linköping University, Sweden

DF14900 Software Engineering
CUGS

2011

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

2A Software Life-cycle Model…
Which part will we talk about today?

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,
Detailed Design)

Implementation
of Units (classes, procedures,

functions)
Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

Maintenance

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

The goals of module design

§ Provide the expected function
§ Prepare for change:

Separation of concern

Testability
Understandability

§ Contribute to quality, eg:
Performance
Usability

Reliability
...

3

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Agenda

Part I:
Structural Modeling with UML

Esp., Classes and Objects

Part II:
Short Introduction to Design Patterns

Part III:
Behavioral Modeling with UML

State Machines, Sequence Diagrams,
Use case diagrams, Activity Diagrams

4

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

5

Part I

Modeling Structure with UML

Classes and Objects

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Modeling as a Design Technique

§ Testing a physical entity before building it
§ Communication with customers
§ Visualization

§ Reduction of complexity

§ Models supplement natural language
§ Models support understanding, design, documentation
§ Creating a model forces you to take necessary design

decisions
§ UML is now the standard notation for modeling software.

2

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Literature on UML

§ Official standard documents by OMG:
www.omg.org, www.uml.org

§ Current version is UML 2.0 (2004/2005)
§ OMG documents:

UML Infrastructure, UML Superstructure
§ Books:

Pfleeger: Software Engineering 3rd ed., 2005
(mostly Chapter 6)
Rumbaugh, Jacobson, Booch:
The Unified Modeling Language Reference Manual, Second Edition,
Addison-Wesley 2005
Blaha, Rumbaugh: Object-Oriented Modeling and Design with UML,
Second Edition, Prentice-Hall, 2005.
Stevens, Pooley: Using UML: Software Engineering with Objects and
Components, 2nd edition. Addison-Wesley, 2006
And many others…

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

UML: Different diagram types
for different views of software

Modeling (logical) structure of software:
§ Static view: Class diagram
§ Design view: Structure diagr., collaboration d., component d.
§ Use case view: Use case diagram

Modeling behavior of software:
§ Activity view: Activity diagram
§ State machine view: State machine diagram
§ Interaction view: Sequence diagram, communication diagram

Modeling physical structure of software
§ Deployment view: Deployment diagram

Modeling the model, and extending UML itself
§ Model management view: Package Diagram
§ Profiles

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

9A Single Class

Class name

attributes

operations

visibility
+ public
- private
protected
~ package

Multiplicity
1 exactly one
0..1 Zero or one
* Zero or more

(same as 0..*)
2..8 Between 2 and 8

Return type
Parameter

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

10Relationships (1/6) - overview and intuition
- Association

Association
(with navigability)

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

11Relationships (1/6) - overview and intuition
- Association

attributes Both representations are
almost equivalent

directed association

role name

{ordered} {unordered}
{unique}{nonunique}
Default is unordered,
unique

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

12Relationships (1/6) - overview and intuition
- Association

wheel1

wheel2

wheel3

wheel4mycar

4
class

objects

mycar has links to 4
wheels

Navigation - mycar can reach the
wheels, but not the oppositeExplicitly show that navigation

is not allowed

3

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

13Relationships (1/6) - overview and intuition
- Association

wheel1

mycar1

4

What does it mean to have a * here? What if we have multiplicity 1 instead?

mycar2

wheel2 wheel3 wheel4

mycar3

A wheel can be linked to more
than one car instance wheel1

mycar1

wheel2 wheel3 wheel4

mycar2
A wheel can only be liked

to one car instance

"*" "1"

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

14Relationships (1/6) - overview and intuition
- Association

wheel1

mycar1

4

wheel2 wheel3 wheel4

Associations are the "glue" that ties a system
together

association instance = link

An association describes a relation between
objects at run-time.

{(mycar1,wheel1),
(mycar1,wheel2),

(mycar1,wheel3),
(mycar1,wheel4)}

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

15Relationships (2/6) - overview and intuition
- Aggregation

Association
(with navigability)

"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

Aggregation

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

16Relationships (2/6) - overview and intuition
- Aggregation

4

A major source of confusion
Common vague interpretations: "owns a" or "part of"

What does this mean? What is the
difference to association?

Vague definitions Inconsistency and misunderstandings

Aggregation was added to UML with
little semantics. Why?

Jim Rumbaugh
"Think of it as a modeling placebo"

Recommendation: - Do not use it in your models.
- If you see it in other's models, ask them what they actually mean.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

17Relationships (3/6) - overview and intuition
- Composition

Association
(with navigability)

"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

Aggregation

Composition

Avoid it to avoid misunderstandings

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

18Relationships (3/6) - overview and intuition
- Composition

4

Any difference to association?

Yes! First, multiplicity must be 1 or 0..1. An instance can only have one owner.

1

41

But, isn't this equivalent to what we
showed with associations?

Well, in this case...

wheel1

mycar1

wheel2 wheel3 wheel4

mycar2

4

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

19Relationships (3/6) - overview and intuition
- Composition

41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Ok for wheels to be part of
mycar1 or mybike1

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

20Relationships (3/6) - overview and intuition
- Composition

41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using composition...

wheel5 wheel6

mybike1

Can mycar1 and mybike1
share the same wheels?

NO!
Not with composition!

Key concepts
• "No sharing" rule
• The owner is responsible for managing
its parts, e.g. allocation and deallocation.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

21Relationships (3/6) - overview and intuition
- Composition

41 2 1

wheel1 wheel2 wheel3 wheel4

mycar1

Using associations...

wheel5 wheel6

mybike1

Can mycar1 and mybike1 share
the same wheels this time?

Yes! Associations do not
have a "no sharing"
rule.

(Note the difference. The diamond is removed.)

However, in this case it is a
strange model...

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

22Relationships (4/6) - overview and intuition
- Generalization

Association
(with navigability)

"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

Aggregation

Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

Generalization

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

23Relationships - (4/6) overview and intuition
- Generalization

Class with code for
the drive()
operation

Inherits the code for
drive(). New
operation reverse()

Overrides drive()

1. Inheritance
~ relation implementation

2. Subtyping
~ relation on interfaces

Visible Type: Vehicle.
Instance of: MotorCycle.
Can we drive()? Can we reverse()?

An instance of a class can have many types
= (subtyping) polymorphism

Visible Type: Vehicle.
Instance of: Car
Can we drive()? Can we reverse()?

Visible Type: Car.
Instance of: Car
Can we drive()? Can we reverse()?

reverse() is not visible!

static typing: safe substitution

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

24Relationships - (5/6) overview and intuition
- Realization

Association
(with navigability)

"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

Aggregation

Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a

instance of "B" is expected.
Generalization

Realization

5

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

25Relationships - (5/6) overview and intuition
- Realization

Realization

Realization
~ provides a specified interface

Implementation

Specifier

Correct?
Must implement
the interface

Interface
(no implementation)

Provides the Door
interface

Can we create an instance of
Vehicle? Yes! It is concrete.

Can we create an instance of
AnotherVehicle?

Abstract class
(Italic)

Abstract operation

No!

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

26Relationships - (5/6) overview and intuition
- Realization

What is the difference between an interface
and an abstract class?

+ drive()
+ open()

AnotherVehicle

Abstract classInterface

Non of them can be instantiated

Cannot contain implementation
Can (but need not to) contain

implementation

An abstract class with only abstract operations is conceptually the same as an interface

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

27Relationships - (6/6) overview and intuition
- Realization

Association
(with navigability)

"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

Aggregation

Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a

instance of "B" is expected.
Generalization

Realization "A" provides an implementation of the interface
specified by "B".

Dependency

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

28Relationships - (6/6) overview and intuition
- Dependency

Dependency

supplier
client

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

29Relationships - (6/6) overview and intuition
- Dependency

UML as sketch

UML as blueprint

UML as programming language

§ Help to communicate some important aspect of system
§ Common media: whiteboard
§ In documents: focus on communication compared to

completeness

UML
model

Programming
Code

Forward engineering

Reverse engineering

Round-trip engineering

UML
model

Compile Executable
Code

Reverse engineering can be very
useful to see dependencies
between classes and modules!

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

30Relationships - overview and intuition

Association
(with navigability)

"A" has a reference(s) to
instance(s) of "B". Alternative: attributes

Aggregation

Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a

instance of "B" is expected.

Generalization

Realization "A" provides an implementation of the interface
specified by "B".

"A" is dependent on "B" if changes in the
definition of "B" causes changes of "A".Dependency

6

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Class model with inheritance
and abstract classes

CoffeeCustomer

IndividualCustomer Porter

getCup() getCan()

pay(c: coin)

Abstract class
(cannot be instantiated,
only extended/specialized)

pay() method is
inherited from
CoffeeCustomer

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Classes and objects

CupOfCoffeebuys
0..*0..*

CoffeeCustomer CupOfCoffeebuys
0..*0..*

Kristian:
CoffeeCustomer

c1: CupOfCoffee

c2: CupOfCoffee

Classes:

Objects:

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

: CoffeeCustomer

aCoffeeCustomer:
CoffeeCustomer

Reasoning about an arbitrary object

buys theCupOfCoffee:
CupOfCoffee

buys

buys : CupOfCoffeebuys

...or simply like this:

Like this:

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

34

Part II
Short Introduction to Design Patterns

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Christopher Alexander

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

TAPESTRY OF LIGHT AND DARK

Create alternating areas of light and dark
throughout the building, in such a way that
people naturally walk toward the light,
whenever they are going to important places:
seats, entrances, stairs, passages, places of
special beauty, and make other areas darker, to
increase the contrast.

7

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Software Design Patterns

A Design Pattern is a standard solution for a standard
design problem in a certain context.

Goal: reuse design information

“A pattern involves a general description of a recurring solution to a recurring
problem with various goals and constraints. It identifies more than a
solution, it also explains why the solution is needed.“ (James Coplien)

“... describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it
the same way twice” (Christopher Alexander)

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Example: Facade

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Example: Facade

Facade

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

How to describe design patterns?

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Pattern Catalog in Gamma et al. 1996:

The GoF book describes each pattern
using the following attributes:

The name to describes the pattern,
its solutions and consequences
in a word or two
The problem describes when to apply the pattern:
intent, motivation, applicability
The solution describes the elements that make up the design
(structure with participants), their relationships, responsibilities,
and collaborations/interactions
The consequences are the results and trade-offs in applying
the pattern

Also: implementation notes, known uses, related patterns.
All examples in C++ and Smalltalk

Remark: Patterns exist also beyond the OO world…

8

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Facade

Intent
Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.

Motivation
Structuring a system into subsystems helps reduce complexity.
A common design goal is to minimize the communication and
dependencies between subsystems.

… example …

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Facade

Applicability
Use the Facade pattern when:
§ you want to provide a simple interface to a complex subsystem.

This makes subsystems more reusable and easier to customize.

§ there are many dependencies between clients and the
implementation classes of an abstraction.
Introduce a facade to decouple the subsystem from other
subsystems, thereby promoting subsystem independence and
portability.

§ you want to layer your subsystems.
Use a facade to define an entry point to each subsystem level.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Facade

Consequences
The Facade pattern offers the following benefits:
1. It shields clients from subsystem components, thereby reducing

the number of objects that clients deal with and making
subsystem easier to use.

2. It promotes weak coupling between subsystem and its clients.
Weak coupling lets you vary the components of the subsystem
without affecting its clients.

3. It doesn't prevent applications from using subsystem classes if
they need to.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Observer

0%

10%

20%

30%

40%

50%

a b c
0%

10%

20%

30%

40%

50%

a b c

a = 10%

b = 30%

c = 40%

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Observer

Applicability
§ When an abstraction has two aspects, one dependent on the other.
§ When a change to one object requires changing others.

§ When an object should be able to notify other objects without making
assumptions about who these objects are.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Observer, structure

Subject

attach(Observer)

detach(Observer)

notify()

ConcreteSubject

getState()

setState()

subjectState

Observer

update()

ConcreteObserver

update()

observerState

*

9

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Observer, collaborations

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Observer, consequences

§ Abstract coupling between Subject and Observer
§ Support for broadcast communication
§ Unexpected updates

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

51Strategy

Name: Strategy

Problem:
§ Need to use different variants of the same algorithm in a class

§ Different algorithms will be appropriate at different time.

§ It is hard to add new algorithms and to change existing ones.

Intent (from GoF):
"Define a family of algorithms, encapsulate each one and make them interchangeable.

Strategy lets the algorithm vary independently from clients that use it."

Example:

Input
(Plain Text)

Output
(cipher text)

Cryptographic
Module

AES

DES

3DES RC5

Algorithms:

Also known as: Policy

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

52Strategy

Structure:

In example: Part of crypto
module. Holds data,
keys etc.

Reference to a strategy type Abstract

In example:
e.g. class
EncryptAlg

In Example: Implements
e.g. algorithm AES

E.g. AlgDES E.g. AlgRC5

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Design Pattern Space [Gamma et al.’96]

Creational Patterns Structural Patterns Behavioral Patterns

Factory Method
Abstract factory
Builder

Prototype
Singleton

Adapter (class based)
Adapter (object-based)
Bridge

Composite
Decorator
Facade Flyweight
Proxy

Interpreter
Template method
Chain of Responsibility

Command Iterator
Mediator Memento
Observer State
Strategy Visitor

Creational patterns
Deal with initializing and configuring of classes and objects

Structural patterns
Deal with decoupling interface and implementation of classes and objects

Behavioral patterns
Deal with dynamic interactions among societies of classes and objects

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

54

Part III

Modeling Behavior in UML:
State Machines etc.

Further UML Features

10

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

55State machine diagram

checking idle
falseCoin()/returnCoin(self)

insertCoin()/checkCoin(self)

For class
CoinHandler: start state marker

state trigger event,
causing transition

action, reaction
to the event

transition
this object

Can formally
describe protocols

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

56Orthogonal, composite state

Lab 1 Lab 2
lab1 done

Project

lab2 done

project done

Final exam
pass

Studying

Failed Passedfail

course attempt state machine

orthogonal state

orthogonal region

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

57Explicit exit points

Lab 1 Lab 2
lab1 done

Project

lab2 done

project done

Final exam
pass

Studying

failed passed

fail

course attempt

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Sequence diagram

: CoffeeCustomer

: Interface

insertCoin

machineReady

pressButton(b1)

pourCoffee
time

Life line of object

Message

role

Procedure
is active

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Sequence diagram with several objects

: CoffeeCustomer

: Interface : CoinHandler : Brewer

insertCoin transportA

C

{C-A < 5s}
coinAccepted warmUp

litIndicators

pressButton(b1)
makeOrder(o1)

pourCoffeepourCoffee

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

60Combining fragments of interaction diagrams

:Order :TicketDB :Account

SD processOrder

create

Get existing customer data
ref

loop

[get next item]

reserve(date,no)

add(seats)

destruction

answer

loop condition

loop

11

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

61More fragments of interaction diagrams

:Order :TicketDB

loop

[get next item]

reserve(date,no)

add(seats)

reject

alt [available]

[unavailable]

nested conditional

alternate branches

guard condition

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Use-case modelling

A use-case is:

“… a particular form or pattern or exemplar of usage,
a scenario that begins with some user of the
system initiating some transaction of sequence of
interrelated events.”

Jacobson et al.1992: Object-oriented software engineering. Addison-
Wesley

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Use-case diagram

Buy a cup of coffee

CoffeeDrinker

A CoffeeDrinker approaches the machine
with her cup and a coin of SEK 5. She
places the cup on the shelf just under the
pipe. She then inserts the coin, and presses
the button for coffee to get coffee according
to default settings. Optionally she might use
other buttons to adjust the strength and
decide to add sugar and/or whitener. The
machine processes the
coffee and rings a bell when it is ready. The
CoffeeDrinker takes her cup from the shelf.

Actor: a user of
the system in a

particular role.
Can be human
or system.

Detail of use-case

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Use-case diagram
for the coffee machine

CoffeeDrinker

TeaDrinker

Service

Porter

Buy a cup of
coffee

Get coin in
return

Pour hot water

Clean the
Machine

Brew a can of
coffee

CoffeeMachine

Add substances

Collect coinsSystem boundary

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Relations between use-cases

Clean the
machine

Collect coins

Open machine

<<include>>

<<include>>Service

Add change
<<extend>>Stereotype: extended

classification of meaning

”Separating scenarious”
(often conditional)

”Reuse”

Please, keep as
simple as possible.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Identifying classes:
noun analysis

•machine – real noun handled by the
system

•cup – unit for beverage

•coin – detail of user and machine

•shelf – detail of machine

•pipe – detail of machine

•button– handled by the system

•sugar – detail of coffee

•whitener – detail of coffee

•cup of coffee – handled by the
system

•indicator – not discovered

A CoffeeDrinker approaches the
machine with her cup and a coin of
SEK 5. She places the cup on the
shelf just under the pipe. She then
inserts the coin, and presses the
button for coffee to get coffee
according to default settings.
Optionally, she might use other buttons
to adjust the
strength and decide to add sugar
and/or whitener. The machine
processes the coffee and rings a bell
when it is ready. The CoffeeDrinker
takes her cup from the shelf.

12

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Extended class model

CoffeeCustomer CupOfCoffeebuys
0..*0..*

Porter buys
0..*0..*

CanOfCoffee

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Revised class model

CoffeeCustomer CupOfCoffeebuys
0..*0..*

Porter buys
0..*0..*

CanOfCoffee

Generalisation
association

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

The coffee machine class model

CoffeeCustomer

Porter

CupOfCoffee

CanOfCoffee

buys

buys

0..*

0..1

0..*

0..*

makes machine

1
1

1 11

1

10..*

Interface CoinHandler Brewer

Even small models
take space. You
need good drawing
tools and a large
sheet.

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Communication diagram

: CoffeeCustomer

: Interface

: CoinHandler : Brewer

1: insertCoin

2: transport
4: coinAccepted

3: warmUp

5: litIndicators

6: pressButton(b1)

7: makeOrder(o1) 8: pourCoffee9: pourCoffee

Shows message flows with sequence numbers

Similar information as sequence diagram

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Activity Diagram

§ Graph
Nodes are activities (actions)

• Method invocations, operations, sending / receiving messages,
handling events, creating / accessing / modifying / deleting
objects, variables …

• Data flow by input and output parameter pins
Edges are control flow transitions

To some degree dual to the state diagram
§ Might be refined to a low-level specification;

cf. control flow graph (~ compiler IR)
§ A Petri Net

Interpretation by moving tokens along edges

Models concurrency by multiple tokens for ”current state”
Fork / join for synchronization

§ Models real-world workflows

brew coffee

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Activity diagram

insert coin

brew coffee
add hot water

to adjust strength

pour coffee

coin accepted?
[no]decision

fork

add sugar/whitener

join

initial node

final node

[yes]

13

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Other UML features…

§ Comments
§ Constraints in OCL (Object Constraint Language)

§ Profiles: Collections of stereotypes for specific domains,
e.g. Realtime-profile for UML

Customize (specialize) UML elements, e.g. associations
Can introduce own symbols
More in the lecture on Model-Driven Architecture…

§ MOF (Meta-Object Facility):
UML is specified in UML MOF, a core subset of UML
MOF is the meta-model of UML – a language to define UML
Powerful mechanism for extending UML by adding new language
elements

Book

Copy

Journal

is a copy of
1..* 0..*

is a copy of

{xor}
0..*

1..*
a binary
constraint

{self.npages
>10}

constraint in
a comment

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

UML Summary

§ UML – the standard for modeling software
§ Modeling before/during design, precedes coding
§ Different diagrams for different views

Model a software system only partially,
focus on a certain aspect and/or part at a time
Problem: Maintaining consistency across diagrams

§ UML is customizable and extendible: Profiles, MOF
§ UML is semi-formal, messy, imprecise
§ Tools
§ Trend towards more detailed modeling

Stepwise refinement
”executable UML”: UML 2 is almost a programming language…

§ Trend towards automatized partial generation of models and
code from models (MDA – model-driven architecture)

Part I
Modeling Structure:
Classes and Objects

Part II
Short Introduction
to Design Patterns

Part III
Modeling Behavior:
State Machines etc.

Homework Exercise

§ Draw a class diagram for the following scenario:

A customer, characterized by his/her name and phone number, may
purchase reservations of tickets for a performance of a show. A reservation
of tickets, annotated with the reservation date, can be either a reservation
by subscription, in which case it is characterized by a subscription series
number, or an individual reservation. A subscription series comprehends at
least 3 and at most 6 tickets; an individual reservation at most one ticket.
Every ticket is part of a subscription series or an individual reservation, but
not both. Customers may have many reservations, but each reservation is
owned by exactly one customer. Tickets may be available or not, and one
may sell or exchange them. A ticket is associated with one specific seat in a
specific performance, given by date and time, of a show, which is
characterized by its name. A show may have several performances.

