
Design Patterns,

A Quick Introduction

Thomas Panas, Vaxjo University

Thomas.Panas@msi.vxu.se

September 2001

1 Introduction

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice.

Christopher Alexander (1977)

This article is a summarised insight into the �eld of design patterns. With
the help of four books, namely Entwurfsmuster [1] (English: Design Patterns
[2]), Java Design Patterns [3], Patterns in Java [4], Entwurfsmuster anwenden
[5] (English: Pattern hatching [6]), the content of this paper was established.

This article is divided into mainly three di�erent chapters. Chapter Two
and Three give a basic insight into the area of design patterns, explain what
patterns are for and how they can be found and used. You will not �nd a
complete pattern catalogue here, rather one huge example that shows you how
to use speci�c patterns for speci�c problems. Therefore Chapter Four introduces
you to a practical problem that is being solved with the help of three design
patterns. Those patterns are explained in detail whenever they appear.

The example is just a summarised part of a bigger example taken from
the Entwurfsmuster anwenden book [5]. The design patterns explained during
this example are taken out of all four books. They combine a comprehensive
knowledge of all books but do not show an explicit example, since the example
is given by the whole problem stated in Chapter Four. Chapter Two and Three
are also a collection of knowledge from all of those books mentioned above.

1



We hope that this paper will give you a good starting point on how to read,
learn, �nd and use design patterns. After reading the whole example, you should
be motivated to continue reading all the other design patterns that are waiting
out there to be investigated. And who knows, maybe you will write even your
own design pattern after all!

2 Design Patterns

Software patterns are reusable solutions to recurring problems that occur dur-
ing software development. Software patterns are made by experienced program-
mers and allow every other less experienced programmer to act as an expert.
Experience gives programmers a variety of wisdom. As programmers gain ex-
perience, they recognize the similarity of new problems to problems they have
solved before. With even more experience, they recognize that solutions for
similar problems follow recurring patterns. With knowledge of these patterns,
experienced programmers recognize the situations to which patterns apply and
immediately use the solution without having to stop, analyze the problem, and
then pose possible strategies.

When a programmer discovers a pattern, it is just an insight. In most
cases, to go from an unverbalized insight to a well-thought-out idea that the
programmer can clearly articulate is surprisingly diÆcult. It is also an extremely
valuable step. When we understand a pattern well enough to put it into words,
we are able to intelligently combine it with other patterns.

To understand and wisely use design patterns we must however �st go
through the pain of reading and learning the patterns. Learning design pat-
terns is a multiple step process. First, you accept the premise that design
patterns are important in your work. Then, you recognize that you need to
read about design patterns in order to know when you might use them. Finally,
you internalize the patterns in suÆcient detail that you know which ones might
help you solve a given problem.

The legend book "Design Pattern" by Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides merges patterns with similar structure into simi-
lar categories. These categories or classi�cations are in their book creational,
structural and behavioral patterns. Other books as the Patterns in Java from
Mark Grand add new patterns to those classi�cations or create completely new
classi�cations. There is an in�nite amount of areas where patterns can be used.
Therefore there is also a wide classi�cation possible in which design patterns
can be set into. Here we want just give a small example of classi�cations, their
purpose and patterns that fall in their category:

� Creational patterns: create objects for you, rather than you having to in-
stantiate objects directly. Your program gains more exibility in deciding
which objects need to be created for a given case. Patterns that fall in
this category are: Factory Method, Abstract Factory, Builder, Prototype,
Singleton and Object Pool.

� Structural patterns: help you to compose groups of objects into larger
structures, such as complex user interfaces and accounting data. Patterns
that fall in this category are: Adaptor, Iterator, Bridge, Faade, Flyweight,
Dynamic Linkage, Virtual Proxy, Decorator, Cache Management.

2



� Behavioral patterns: help you to de�ne the communication between ob-
jects in your system and how the ow is controlled in a complex program.
Patterns that fall in this category are: Chain of Responsibility, Command,
Little Language, Mediator, Snapshot, Observer, State, Null Object, Strat-
egy, Template Method, Visitor.

� Fundamental patterns: are the most fundamental and important patterns
to know. You will �nd these patterns extensively in other design patterns.
Patterns that fall in this category are: Delegation, Interface, Immutable,
Marker Interface, Proxy.

� Partitioning patterns: In the analysis stage, you examine a problem to
identify the actors, concepts, requirements, and their relationships that
constitute the problem. Partitioning patterns provide guidance on how to
partition complex actors and concepts into multiple classes. Patterns that
fall in this category are: Layered Initialization, Filter, Composite.

� Concurrency patterns: involve coordinating concurrent operations. Pat-
terns that fall in this category are: Single Threaded Execution, Guarded
Suspension, Balking, Scheduler, Read/Write Lock, Producer-Consumer,
Two-Phase Termination.

3 How to �nd the right pattern

Developing a program is not easy. No educated software developer starts nowa-
days just with hacking some code. What is needed is a picture of the "organic
whole". There are mainly two ways to receive this picture that we can call a
design. We can either sit down, think about the problem, discuss it with col-
leagues, build the solution up step by step and �nally create a design as a long
and well thought out thinking process, or we let others think for us. The second
idea sounds good, or? The trick behind this idea is to reuse the knowledge
of experts and we got this knowledge already. It is hidden in well formulated
design patterns. All we have to do is to study and understand those patterns,
so that we can really reuse them. The result is that we can design faster and
qualitatively better, since we use expert knowledge.

But even when we are willing to read a design pattern book or search for a
speci�c design pattern for our current problem, how can we be sure that we will
�nd a pattern? Actually, we can not be sure that we will �nd one. But knowing
how to search for a pattern gives us a higher chance of �nding an appropriate
pattern for our problem. This section will show you how to �nd the right design
pattern.

Currently we face many kind of patterns, like design patterns, analysis pat-
terns, organizational patterns etc. In this article we cope only design patterns.
The three books discussed here: Java Design Patterns and Patterns in Java
cover around 41 design patterns, pattern hatching adds even some more to it.
Dealing with so many design patterns, it is of course diÆcult to �nd the right
pattern. It is even more diÆcult when you are not familiar with the catalog of
patterns. Here come some approaches on how to �nd a proper design pattern
for your problem:

3



� Rethink, on how design patterns solve design problems. Design pattern
helps you to �nd the right object, to �nd the object granularity, to de�ne
the interface of objects and so on. Read the pattern description and decide
if the help a pattern gives is appropriate to your problem.

� Cross-read the purpose sections. Each pattern has a purpose. Read the
purpose section of the patterns to �nd one or more patterns that could be
relevant to solve your problem. Use the classi�cations that patterns are
separated into. Patterns might be classi�ed into structural, behavioral and
creational patterns, but also into concurrency, partitional or fundamental
patterns etc.

� Observe how the patterns are related to each other. The intensive observa-
tion of the relationships between patterns might help you to �nd the way
to the right pattern.

� Investigate patterns with the same task. Design patterns are classi�ed into
di�erent groups. Depending on the book you read the classi�cation might
be di�erent. The classical design pattern book from the Gang of Four sep-
arates patterns into creational, structural and behavioral patterns. Each
classi�cation in a catalog ends with a comparison of commonalties between
those patterns. This might help you to understand their speci�c task in
their classi�cation better.

� Discover the reasons for design revisions. Observe the reasons for design
revisions in order to see if your problem imbeds one or more of those
reasons. Observe afterwards the patterns that can help you to avoid those
reasons for design revisions.

4 How to use the right pattern

Lets say that you have found the right design pattern and you are quite sure
that this is exactly the one that you want to implement. And now you have the
pattern in front of you together with your problem, but how to you implement
the pattern to your problem to get a clean solution? The next part shows a
step-by-step approach on how to implement a pattern:

1. Read the complete pattern once to get an overview. Devote the appli-
cability and consequence part here special attention to be sure that the
pattern is really the right one for your problem.

2. Go back and study once more the structure-, participant- and interaction-
section. Be sure that you understand the classes and objects in the pattern
and their relationships.

3. Take a look on the example code to see a concrete example of a pattern
as source-code. The intensive observation of the code might ease you the
implementation of a pattern.

4. Choose useful names for the objects and classes that participate on the
pattern. The names given for object and classes in the pattern catalog are
mostly very abstract and should be changed to context-oriented names.

4



5. De�ne your classes. De�ne your interfaces, establish your inheritance
relationships and de�ne your exemplar variables, which depict the data
and object references.

6. De�ne appliance speci�c names for operations in the pattern. Hereby the
name depend again on the context of the application.

7. Implement the operations so that they transact the cognizance and inter-
action according to the pattern. Take again a look on the examples that
are provided in the pattern catalogs.

These aspects depict only aid for you to overcome the beginning problems
of �nding the right pattern. But studying some design pattern books will de�-
nitely give you a deeper understanding of each of the patterns and a following
implementation gives you a feeling for how to work practically with these design
patterns. Therefore this article continues with a huge example on how to design
and implement a problem de�nition with the help of patterns.

5 Designing with Patterns

The best way to get a feeling for the use of design patterns is simply to use
them. In this manner we will study a hierarchical �le-system and try to imple-
ment patterns wherever possible. Actually, we will build up an entire design
for a �le-system from scratch, where we create the programming model, which
application programmers use, the so called, Application Programming Interface
(API). While developing this �le-system step by step we search for suitable pat-
terns that describe parts of our system and try to implement them. Through this
example the practical use of design patterns shall be demonstrated. However,
the idea with this is not to show the best way of how to design a hierarchical
�le-system, the idea is to show how to use the design pattern catalog in prac-
tice and encourage the reader to continue using patterns in all his/her future
designs.

5.1 Basic �le-system

From the view of the computer user, a �le-system should be able to cope with
data-structures of arbitrary size and complexity. There should not be a licen-
tious limit on how huge or deep a data-structure could be. From the view of
the programmer, it should be easy to work with such a data-structure and at
the same time the data-structure should be easily extendable.

Assuming that you are implementing a command that lists the �les in a
directory. The code that you write to acquire the name of a directory should
not di�er from the code that acquires the name of a �le. With other words, you
should be able to tread directories and �les in the same way when acquiring their
names. The code resulting from this is easier to write and easier to maintain.
Considering this we get a �le-system structure such as in �gure 1.

How do we implement such a structure? The fact that we have two kinds of
objects here, directories and �les, seduces us to create a class for each of them.
But on the other hand we would like to treat them equally. This means they
should have a common interface that we will call node from now on.

5



Figure 1: The �le-system

All these regards lead us to the UML diagram of �gure 2.
We can see an interface called node and two inherited classes �le and direc-

tory. Both, the �le and directory class implement some speci�c operations to
their classes. Moreover, the directory class aggregates back to the node class.
This means that each directory can itself contain some �les and/or directories
on its own. nodes is the private member in our example that remembers all
the children of this current directory. In order to access a child, we furthermore
implement a function called getChild. This function must be implemented in
both, the directory and the node class. This is because we want to be able to
return both, �les and directories with the getChild function. Considering this,
the getChild function has to return a node object and not a directory or �le ob-
ject and therefore we implement the function getChild in both classes, directory
and node.

Finally we got a basic structure of our �le-system. The next step is to �nd
a pattern that matches our design and try to implement it. If we look through
all design patterns that we have, we will �nd a pattern called composite pattern
that matches exactly our demands. This pattern is explained in the next section
in depth.

5.2 Composite pattern

5.2.1 Description

The composite pattern is also known as the recursive composition pattern. It
allows you to build complex objects recursively composing similar objects in a
treelike manner. The composite pattern also allows the objects in the tree to be
manipulated in a consistent manner, by requiring all of the objects in the tree
to have a common superclass or interface.

6



Figure 2: Basic UML diagram

5.2.2 Forces

� You have a complex object that you want to decompose into a part-whole
hierarchy of objects.

� You want to minimize the complexity of the part-whole hierarchy by min-
imizing the number of di�erent kinds of child objects that objects in the
tree need to be aware of.

5.2.3 Structure

Figure 3 shows the basic structure of the composite pattern.
A typical object-structure of the composite pattern could look as depicted

in �gure 4.

5.2.4 Participants

� Component

{ declares the interface for objects in the jointed structure.

{ implements a default behavior for the interface

{ declares a interface to access and manage child object-components.

{ declares optionally an interface to access the parent object of a com-
ponent within a recursive structure

� Leaf

{ represents child objects in the composition. A leaf does not contain
child objects.

7



Figure 3: Composite Pattern

{ de�nes a behavior for the primitive objects in the composition.

� Composite

{ de�nes the behavior for components that can contain child objects.

{ stores child object components.

{ implements child object related operations of the interface of compo-
nent.

� Client

{ manipulates the objects of the composition through the interface of
component

5.2.5 Consequences

The composite pattern allows you to de�ne a class of hierarchy of simple objects
and more complex composite objects so that they appear to be the same to the
client program. Because of this simplicity, the client can be that much simpler,
since nodes and leaves are handled in the same way. The composite pattern
also makes it easy for you to add new kinds of components to your collection,
as long as they support a similar programming interface. On the other hand,
this has the disadvantage of making your system overly general. You might �nd
it harder to restrict certain classes, where this would normally be desirable.

5.2.6 Implementation

The intent of the composite pattern is to allow you to construct a tree of various
related classes, even though some have di�erent properties than others and some

8



Figure 4: Composite Pattern - Object Model

are leaves that do not have children. However, for very simple cases you can
sometimes use a single class that exhibits both parent and leaf behavior.

5.2.7 Related patterns

� Chain of responsibility: The Chain of responsibility pattern can be com-
bined with the composite pattern by adding child to parent links so that
children can get information from an ancestor without having to know
which ancestor the information came from

� High Cohesion: The High Cohesion pattern discourages putting special-
ized methods in general purpose classes, which is something that the com-
posite pattern encourages

� Visitor: You can use the Visitor pattern to encapsulate operations in a
single class that would otherwise be spread across multiple classes

5.3 Where does the children come from?

As we can see, the composite pattern is exactly what we need. Fortunately we
have already a �le-system structure that is according to our composite pattern,
which means we do not have to change anything here. We got a perfect design,
a design that an expert would use as well.

Looking once more on our code, we can see that we have a getChild function
that returns our children. But where actually does those children come from?
Of course, the user creates them. The user creates new �les and new directories.
We only have to �nd a way on how to associate those �les and directories to
our �le-system. We do that simply with an adopt function:

9



Virtual void adopt(Node* child);
The adopt function adds a new child to a directory. In the same way we

de�ne a orphan function, which releases a child from a directory in the same
way. This is depicted in �gure 5.

Figure 5: File-System

As we can see, we have implemented the adopt function in our directory
class only and not in class node. This has a disadvantage that we are going to
show now. Imagine a client that wants to create a new directory. S/he uses a
mkdir function (from Unix) to create it. In case that we implement the adopt
function only in the directory class as shown in �gure 5, we get the following
C++ code:

void Client::mkdir (Directory* current, const string& path)

{

string subpath = subpath(path);

if (subpath.empty())

{

current->adopt(new Directory(path));

}

else

{

string name = head(path);

Node* child = find(name, current);

If (child)

{

mkdir(child, subpath);

}

else

{

cerr << name << " does not exist." << endl;

}

}

}

The intention of the functions head and subpath are here to manipulate
strings. head returns the �rst name of a path and subpath the whole rest. The
�nd function-call searches a directory after a child with a speci�ed name.

10



As we can see, we create a new directory by specifying the current directory
position and the directory that should be created including the full path. With
the help of the head and subpath functions we can travel from the current
directory to the speci�ed one recursively. Arriving at our destination we create
the new path with the adopt function. This code looks simple, nevertheless, it
would not compile. The problem is that the recursive call mkdir(child, subpath)
passes a child of type node to the function mkdir, which assumes the �rst
parameter to be of type directory.

One solution to this is dynamic down-casting. Adding dynamic casting to
our previous code, we get the following modi�ed code:

void Client::mkdir (Directory* current, const string& path)

{

string subpath = subpath(path);

if (subpath.empty())

{

current->adopt(new Directory(path));

}

else

{

string name = head(path);

Node* node = find(name, current);

If (node)

{

Directory* child = dynamic_cast<Directory*>(node);

If (child)

{

mkdir(child, subpath);

}

else

{

cerr << getName() << " is not a directory." << endl;

}

}

else

{

cerr << name << " does not exist." << endl;

}

}

}

Looking at this example, we can say: "It works". But where is the snag?
The snag is that our class mkdir should try to create a directory and either
create it or print out an error message. But this is not the case. The mkdir
class has deep knowledge of our �le-system structure and checks if the child that
it receives is a directory or a �le. This is not what we want. Here we break
the rules of encapsulation, where one class should not know about the inside
structure of another class. What can we do?

11



As plan A failed, which was to implement the adopt function only into the
directory class, we try now plan B, where we add also a virtual adopt and orphan
function to our node interface. Concerning our make directory (mkdir) code,
we get one main change and that is in line one. We exchange the line to the
following one:

void Client::mkdir (Node* current, const string& path)

This enables us now to specify our current location in form of a node through
our interface and no longer just through the directory class. The new UML
structure is shown in �gure 6.

Figure 6: File-System UML Model

5.4 Symbolic Links

Until now we got a complete �le-system structure that is designed with the help
of the composite pattern. In this part, we want to enhance the system with
symbolic links. A symbolic link is in principle only a reference to another node
in the �le-system. Deleting this link, makes it disappear without e�ecting any
nodes that it referenced to.

A symbolic link has its own access right, which di�er from the ones of the
referenced node. Otherwise, the link behaves like a usual node. In case the
symbolic link refers to a �le a user can use this link as a �le itself; the user can
for example edit or save a �le through its symbolic link. On the other hand, if
the link refers to a directory, a user can add or delete nodes to the directory in
the way that s/he calls the speci�c operations in the same way for the link as
for the directory itself.

Now as we have stated the problem that has to be designed, the question
is: Is there a design pattern that describes a solution for exactly this kind of

12



problem? And the answer is yes, the proxy pattern does exactly that. Before
we continue with our example, the next section explains the proxy pattern �rst
more deeply.

5.5 Proxy Pattern

5.5.1 Description

Proxy is a very general pattern that occurs in many other patterns, but never
by itself in a pure form. The proxy pattern forces method calls to an object to
occur indirectly through a proxy object that acts as a gate for the other objects,
delegating method calls to that object. Classes for proxy objects are declared
in a way that usually eliminates client objects' awareness that they are dealing
with proxy.

5.5.2 Forces

� It is not possible for a service-providing object to provide a service at a
time or place that is convenient.

� Gaining visibility to an object is nontrivial and you want to hide that
complexity

� Access to a service providing object must be controlled without adding
complexity to the service providing object or coupling the service to the
access control policy.

� The management of a service should be provided in a way that is as
transparent as possible to the clients of that service.

5.5.3 Structure

Transparent management of a service providing object can be accomplished by
forcing all access to the service providing object through a proxy object. In
order for the management to be transparent, the proxy object and the service
providing object must either be instances of a common super class or implement
a common interface, as shown in �gure 7.

5.5.4 Participants

� Proxy

{ administrates a reference, which enables the proxy to access the real
subject. The proxy can use the interface of the subject if it is identical
with that one from the real subject.

{ controls the access to the real subject and is possibly responsible to
create and delete it.

� Subject

{ de�nes the common interface of real subject and proxy, so that a
proxy can be used everywhere, where a real object is expected.

13



Figure 7: Proxy Pattern

� Real Subject

{ de�nes the real object, which is being presented by the proxy.

5.5.5 Consequences

The service provided by a service providing object is managed in a manner
transparent to that object and its clients. Unless the use of proxies introduces
new failure modes, there is normally no need for the code of client classes to
reect the use of proxies.

5.5.6 Implementation

Without any speci�c management policy, the implementation of the proxy pat-
tern simply involves creating a class that shares a common superclass or interface
with a service providing class and delegates operations to instances of the service
providing class.

5.5.7 Related patterns

� Access Proxy: The access proxy pattern uses a proxy to enforce a security
policy on access to a service providing object.

� Broker: The proxy pattern is sometimes used with the broker pattern
to provide a transparent way of forwarding service requests to a service
object selected by the broker/proxy object.

� Faade: The faade pattern uses a single object as a front end to a set of
interrelated objects.

14



� Remote Proxy: The Remote Proxy pattern uses a proxy to hide the fact
that a service object is located on a di�erent machine from the client
objects that want to use it.

� Virtual Proxy: This pattern uses a proxy to create the illusion that a
service providing object exists before it has actually been created. It is
useful if the object is expensive to create and its services may not be
needed.

� Decorator: The Decorator pattern is structurally similar to the proxy
pattern in that it forces access to a service providing object to be done
indirectly through another object. The di�erence is a matter of intent.
Instead of trying to manage the service, the indirection object in some
way enhances the service.

5.6 Composite and Proxy work together

Now as you know more about the proxy pattern, we have to �nd a way, how to
combine the idea of the symbolic link as a proxy pattern with our �le-system
structure that is presented as a composite pattern. The �rst thing to do is
therefore to �nd a common structure for the proxy and the composite pattern.

Mapping the proxy pattern to our �le-system, we recognize that node re-
mains our common interface. From here we need to inherit the proxy class from
our already speci�ed node class. The link class might look as follows:

class link : public node

{

public:

Link(Node*);

// other operations

private:

Node* _subject;

};

The object variable subject adds a reference to the link class that points
to a real subject. Indeed the subject here could either be the �le class or the
directory class, but in our case it is both. We need a link to directories and
to �les and therefore the easiest way to conduct this is to point subject to the
class node. Combining the composite and the proxy pattern in their common
interface node, we receive a new UML model that is depicted in �gure 8.

5.7 Code Enhancement

Our �le-system looks pretty nice until now. The whole system consists of two
patterns. Next we would like to enhance our system. The system should be
able to print out the content of �les. The �rst way we might think to handle
this is to add a new functionality to the �le class to print out the content of
a �le. This would mean that we would need to change the �le and the node
class. Here we should remember a golden rule for software as well as hardware

15



Figure 8: Composite and Proxy Pattern

systems: Never touch a running system". So how do we add the functionality
to the �le class without changing our beautiful constructed �le-system?

One idea could be to have the print-out function outside of our system and
implement it in another class that we call the Client. The function on the other
hand we call cat. The code to print out the content of a �le from outside our
system could look as follow:

void Client::cat (Node* node)

{

Link* l;

If (dynamic_cast<File*>(node))

{

node->streamOut(cout);

}

else if (dynamic_cast<Directory*>(node))

{

cerr << "cat can not be performed on a directory." << endl;

}

else if (l=dynamic_cast<Link*>(node))

{

cat(l->getSubject());

}

}

This implementation would work but again we face the same problem as
before. The question is again: Does an outside class should now so much im-
plementation details about our �le-system structure? Should it know to what

16



types to downcast and break our encapsulation? De�nitely not! What we need
is another solution, maybe another pattern. Studying the design pattern cata-
logs once more we �nd a matching pattern for our problem: the visitor pattern.
Read more about it in the following part.

5.8 Visitor pattern

5.8.1 Description

One way to implement an operation that involves the objects in a complex
structure is to provide logic in each of their classes to support the operation.
The Visitor pattern provides an alternate way to implement such operations
that avoids complicating the classes of the objects in the structure by putting
all of the necessary logic in a separate Visitor class. The Visitor pattern also
allows the logic to be varied by using di�erent Visitor classes.

5.8.2 Forces

� There are a variety of operations that need to be performed on an object
structure

� The object structure is composed of objects that belong to di�erent classes.

� The types of objects that occur in the object structure do not change often
and the ways that they are connected are consistent and predictable.

5.8.3 Structure

Figure 9 shows the structure of the Visitor pattern.

Figure 9: Visitor Pattern

17



5.8.4 Participants

� Visitor

{ declares a visit operation for every concrete-element class in the ob-
ject structure. The operations name and its signature give the class a
name, which the visitor operation will call. This enables the visitor,
to obtain the concrete class of the visited element. The visitor can
then under the use of the concrete interface access the element.

� Element

{ de�nes a accept-operation, which takes a visitor as an argument

� Concrete Element

{ implements the accept-operation, which can take a visitor as an ar-
gument.

� Object Structure

{ can enumerate its elements

{ delivers possibly a abstract interface, which allows the visitor to visit
its elements

{ can be also a composite

5.8.5 Consequences

The Visitor pattern is useful when you want to encapsulate fetching data from a
number of instances of several classes. Design Patterns suggest that the Visitor
can provide additional functionality to a class without changing it. However, it's
preferable to say that a Visitor can add functionality to a collection of classes
and encapsulate the methods that it uses. The Visitor is not magic, however,
and cannot obtain private data from classes; it is limited to the data available
from public methods. This might force you to provide public methods that you
would otherwise not provide.

It is easy to add new operations to a program using Visitors, since the Visitor
contains the code instead of each of the individual classes. Further, Visitors can
gather related operations into a single class rather than forcing you to change
or derive classes to add these operations. This can make the program simpler
to write and maintain.

5.8.6 Implementation

You should consider using a visitor pattern when you want to perform an opera-
tion on the data contained in a number of objects that have di�erent interfaces.
Visitors are also valuable if you must perform a number of unrelated operations
on these classes. Visitors are a useful way to add function to class libraries or
frameworks for which you either do not have the source or cannot change the
source for other technical (or political) reasons. In these latter cases, you simply
subclass the classes of the framework and add the accept method to each sub-
class. Visitors are a good choice, however, only when you do not expect many
new classes to be added to your program.

18



5.8.7 Related patterns

� Iterator: The Iterator pattern is an alternative to the Visitor pattern when
the object structure to be navigated has a linear structure.

� Little Language: In the Little Language pattern, you can use the Visitor
Pattern to implement the interpreter part of the pattern.

� Composite: The Visitor pattern is often used with object structures that
are organized according to the Composite pattern.

5.9 The Visitor Pattern joins our �le-system

As we know now more about the visitor pattern, we know also that what we
need to do �rst is to extend all our classes, including the node interface with an
accept function as follows:

virtual void accept(Visitor&)=0; // Node

void File::accept (Visitor& v) { v.visit(this); }

void Directory::accept (Visitor& v) { v.visit(this); }

void Link::accept (Visitor& v) { v.visit(this); }

With the help of our accept functions we can now write a visitor class that
can visit a speci�ed node in order to perform some operation. In our case we
want to print out the content of a �le if the node is of the type �le, else we print
out an error message.

class Visitor

{

public:

Visitor();

void visit(File*);

void visit(Directory*);

void visit(Link*);

}

void Visitor::visit (File* f)

{

f->streamOut(cout);

}

void Visitor::visit (Directory* d)

{

cerr << "cat can not be performed on a directory" << endl;

}

void Visitor::visit (Link* l)

{

l->getSubject()->accept(this);

}

19



Finally, we can specify the code that creates us a visitor object and visits
the accept function of our �le-system:

Visitor cat;

node->accept(cat);

In case the node is of type �le, we call the accept function in the �le class.
This function on the other hand has only one implementation:

v.visit(this);

This code calls our visitor object cat that we have passed to the �le object.
The function visit is called with the �le object as an parameter. After a type
check of the overloaded function Visitor::visit, the right function for handling
�les is found and the content of the �le is printed.

In that way we have added new functionality to one or more classes and we
have speci�ed a new class that handles all the internals of this new functionality.
In this case the new class actually knows again some internals about our �le-
system structure, like it knows about the �le, directory and link classes, but in
this case it is ok, since the visitor class is a part of our �le-system, while the
Client class is not. We can see that we actually have added another pattern to
our �le-system. The complete system, consisting of the composite, the proxy
and the visitor pattern is depicted in �gure 10.

Figure 10: 3 Patterns combined

References

[1] Entwurfsmuster, Elemente wiederverwendbarer objectorientierter Soft-
ware, Erich Gamma, Richard Helm, Raplh Johnsson, John Vlissides,
Addison-Wesley, 5 Auage, 2001, ISBN 3-8273-1862-9

20



[2] Design Patterns, Erich Gamma, Richard Helm, Raplh Johnsson, John Vlis-
sides, 1995, ISBN 0-201-63361-2

[3] Java Design Patterns, A Tutorial, James W. Cooper, 3rd version, July
2000, ISBN 0-201-48539-7

[4] Patterns in Java, A Catalog of Reusable Design, Patterns Illustrated with
UML, Mark Grand, 1998, ISBN 0-471-25839-3

[5] Entwurfsmuster anwenden, John Vlissides, Addison Wesley, 1999, ISBN
3-8273-1544-1

[6] Pattern hatching, Design Patterns applied, Addison Wesley, 1998, ISBN
0-201-43293-3

21


