CORBA

Overview, Goals

Basic mechanisms for modularity, exchangeability,
adaptation, transparency

CORBA Services and CORBA Facilities

CORBA, Web and Java

Evaluation of CORBA as a composition system

[Szyperski, Chapter 13]

QINIGERCC 2

OBIECT MANAGEMENT GROUP
CORBA

CORBA

= Common Object Request Broker Architecture®
= Founding year of the OMG (Object Management Group) 1989
= Goal: plug-and-play components everywhere

= CORBA 1.1 1991 (IDL, ORB, BOA)
= ODMG-93 (Standard for OO-databases)

= CORBA 2.0 1995.
Version 2 is a separate line, 2.2 and 2.4 are status quo

= CORBA3.01999 (POA).
Current version (2005) is 3.0.3.

OMA
* (Object Management Architecture)

= A software bus

Application Interfaces Domain Interfaces Common Facilities

¢ Qe Q[T

Object Request Broker

Events
Lifecycle

Persistence
Transactions

Time

‘ Q Q Security
bject Servi Licensing

CORBA Services Properties

-

Background literature on CORBA

F. Bolton: Pure CORBA. Sams Publishing, 2002. Java and C++ examples
R. Orfali, D. Harkey: Client/Server programming with Java and Corba,
2% edition, Wiley 1998. Easy to read but outdated and no longer in print.

R. Orfali, D. Harkey, J. Edwards: Instant Corba. Addison-Wesley 1997.

Special issue of Communications of the ACM 41(10), Oct. 1998.
All articles. Overview of CORBA 3.0.

Tanenbaum, van Steen: Distributed Systems. Pearson, 2003.
Principles and paradigms.

OMG: CORBA 2.2 and CORBA 3.0 Specification.
http://www.omg.org
See also further material from the OMG on the Web

OMG: CORBAfacilities: Common Object Facilities Specifications.

htti :iiwwon mg.org

Ingredients of CORBA

Component Model

= Components == classes and objects, i.e., similar to object-oriented
software. Components have more component secrets

Basic interoperability
= Language interoperability by uniform interfaces description

= Transparent distribution
= Transparent Network protocols

CORBA Services

CORBA Facilities
= Horizontal (general-purpose) vs. vertical (domain-specific)
= CORBA MOF

Corba’s Hydrocephalus

Corba is large
= Object Request Broker — 2000 pages of specification
= Object Services — 300 pages
= Common Facilities — 150 pages
Technical reasons
= Clean detailed solution
= Sometimes overkill
Sociologic reasons
= OMG is large (over 800 partners) and heterogeneous
= Standard covers a wide range
Linguistic reasons
= Own language
= Lots of unintuitive 3-capitals-names (OMG, ORB, IDL, ...)
= Appears larger than necessary

Corbas Mechanisms for Composition
(Basic Interoperability)

Language Transparency

-

= Interface definition language - CORBA IDL
CORBA Interface Definition Language describes interfaces

From that, glue code is generated
(glue code is code that glues non-fitting components together)

= Generate stub and skeletons for language adaptation
Powerful type system
Standardized (SO 14750)

= Language bindings for many languages
= Antique: COBOL
= Classic: C
= OO: C++, SmallTalk, Eiffel, Java
= Scripting: Python

IDL-to-Language Mapping

Bijective mapping

from Corba IDL types to programming language types
= Maps basic types directly
= Maps type constructors

= Mapping makes transparent
= Byte order (big-endian/ little-endian)
= Word length
= Memory layout
= References

= One standard for each programming language!

CORBA interoperability mechanisms

INTERFACE DL IMPLEMENTATION
REPOSITORY COMPILER REPOSITORY
............................ =
operation() OBJECT
(SERVANT)

C) STANDARD INTERFACE QSTANDARD LANGUAGE MAPPING

ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL
Source: http://www.cs.wustl.edu/~schmidt

Concepts in the CORBA
* Interface Definition Language (IDL)

module <identifier> { Lipes)
<type declarations>
<constant declarations>
<exception declarations> /# T

/l classes IOR g |value objects
interface <identifier> : <inheriting-from> { —
<type declarations>

<constant declarations> [basictypes y [constructors |
<exception declarations>

/I methods
<optype> <identifier>(<parameters>)

[t Ghort)y [_Struct__y

) [Any .\Reals(ﬂoa:..)‘ [Sequence g

[~ Bool I\Char,string,l [Union 1

[Enum [octet g [Aray

IDL-to-C, Mapping for basic types

aivie 1-1 Data Tepe Mappings
OMGIDL |C

short CORBA_short
long CORBA_long
long long CORBA long long

unsigned short | CORBA unsigned short

unsignedlong | CORBA unsigned long

unsigned long | CORBA_nsigned_long_long

long

float CORBA _float

double CORBA_double

long double | CORBA_long_double

char CORBA char

wichar CORBA wchar

boolean CORBA boolean

any typecef stiuct CORBA_any { CORBA_TypeCade _type: void
* value; }
CORBA_any.

_ Source: OMG, www.omg.org

g |DL-to-Java, mapping of basic types

Tatte 25 Baste Type Mappings
! IDL Type Java ype Exceptions

boolean boolaan

char char GORBA:DAIN_CONVERSION

wchar char CORBA::DATA CONVERSION

octet byte

stnng java.lang.string CORPA:MARSHAI
CORBA::DATA_CONVERSION

wslring java.lang.string CORPA:MARSHAL

CORPA::DATA_CONVERSION

short short

unsigned short | shozt.

long int
unsigned long int
long long long
unsigned long | 1ong
long ource: OMG,
float float ww.omg.org
double double

- fixed java.math.Biglecimal CORBA:DAIA_CONVERSION

Which Parts of Clients and Servers

*are Generated

IDL interface

.y
IDL
compiler

eg.,
To be written by >1id12java hello.idl

the programmer

Server
Implementation

Client
Implementation

To be written by

To be written by
the programmer

the programmer

Implementation
Repository

> javac HelloClient.java

Client "

Interoperable Object Reference
(IOR) - cont.

= Transient (terminates with server) or persistent
= IOR is larger, more time-consuming than language-bound references
= Consists of:
Type name (code), i.e. index into Interface Repository
Protocol and address information
(e.g. TCP/IP, port #, host name),
could support more than one protocol
Object key:
= Object adapter name (for OA)
= Opaque data only readable by the generating ORB (local reference)

IOR Type Name: Object key
Interfaca Protocol Object Adapter
repository Address S -
reference Port paque unique data

Hello World in IDL

hello.idl count.idl
#ifndef _HELLOWORLD_IDL module Counter {
#define _HELLOWORLD_IDL // unbounded sequence of longs:
typedef sequence<long> oneDimArray,
module HelloWorld { // specify interface for a counter:
interface SimpleHelloWorld { interface Count {
string sayHello(); attribute long sum; // counter
¥ long increment();
% void readCtr(in oneDimArray X,
inlong position k);
#endif }
}

Interoperable Object Reference

=gl (07

= An object reference provides information to uniquely specify
an object within a distributed ORB system

Unique name or identifier

Language-transparent:

Mapped to client's normal source language references

(unique mapping for each supported language)

= Implementation in CORBA:

Object reference to a server object is given out by the server's OA,
shipped to clients as /OR object and stored there in a proxy object.
ORB supports stringification / destringification of IOR's.

Retrieval of references by client: supported by naming service

Al referencing goes via the server's ORB
-> enables distributed reference counting

IOR Example

o8 IDL: IIoP
TimeServer: iiop.my.net
Version 1.0 1234

Client

Object key
OA2

0x0003

[Server:fiop-my.net. 7234
Corba Object [0x0001
0x0003

OA 1 (BOA/POA)

How to get an IOR?

= Object references originate in servers.
= If client needs a reference, a server must create it.
= --> Chicken-and-egg problem...

Solutions:
= Server write stringified IOR to afile (e.g., stdout)
= Ok for tests, but not for realistic distributed systems
= Use the CORBA naming service
= Naming service stores (name, IOR) bindings in central location
= Only location of naming service needs to be known to client
= Use the CORBA trading service
= Look up IOR for objects by reg. properties, instead of by name

Problem: Multiple Inheritance

= CORBA:Object includes code into a class
= Many languages only offer single inheritance
= Application superclass must be a delegatee

‘ ApplicationClass

‘CORBA::Objec(‘ CORBA::Object

SuperClass
ApplicationClass
|:: > SuperClass
ApplicationClass ApplicationClass
that needs that needs
connection connection

Basic Connections in CORBA

= Static method call with static stubs and skeletons
= Local or remote

= Polymorphic call
= Local or remote

= Event transmission

= Callback

= Dynamic invocation (DII, request broking)

= Searching services dynamically in the web
(location transparency of a service)

= Trading

= Find services in a yellow pages service, based on properties

The Top Class: CORBA::Object

The class CORBA::Object is
CORBA::Object inherited to all objects

Thereby, CORBA supports
reflection and introspection

Reflective functions:

creal.e_request = get_interface
duplicate delivers a reference to the entry
release in the interface repository

= get_implementation
a reference to the implementation

Reflection also by the Interface
Repository (list_initial_references
from the CORBA::ORB interface).

Basic CORBA Connections

Static CORBA Call

= Advantage: the participants (methods) are statically known
= Call by stub and skeletons, without involvement of an ORB
= Supports distribution:
Exchange of local call in one address space to remote call is very easy:
* Inherit from a CORBA class
= Write an IDL spec
= No search for service objects -> rather fast
= Better type check, since the compiler knows the involved types

= The call goes through the server object adapter
= This hides the detail whether the server is transient or persistent

Client side protocol for static calls Server Side, Old-style Protocol (BOA)

= Step 1: Initialize the ORB
= global_orb = CORBA::ORB_init(argc, argv);
- Step 2: Obtain an object reference (here: from file) impl_is_ | |object_is_ gg;’mﬁvme— gﬁslcﬁvme—
+ CORBA:Object obj = eady eady
global_orb -> string_to_object(read_refstring(“filename.ref’));

and narrow it to expected object type (dynamic downcast)
= Counter:Count ctr = Counter::Count::_narrow(obj);

= Step 3: Invoke on Count object |
+ ctr->increment(); e

—— ORB Core

= Step 4: Shut down the ORB

. ilobal_orb->shutdown(1); global_orb->destroy();

Basic Object Adapter BOA Object Activation on the Server
. Object adapter
* The BOA hides Server object1 object2 CORBA::BOA
CORBA::BOA » Life time of the server object t create T
vation: ~. ——.
(activation: start, stop) ~ ~— g
create
get_id = Persistency
dispose L . objjs—teady
= The BOA is implemented in every
ORB, for minimal service provision get_id
obj-is—ready
change_implementation = The BOA maintains the tmptis—ready Process dlient
deactivate_impl . . " —is—
deactivate_obj implementation reposnory vateobi requests here...
s (component registry). . "
obj

= It supports non-object-oriented code

—irmp!

= In CORBA 3.0 replaced by POA v v

(Portable Object Adapter) — _

Object Adapters Support

Different Server Models Callbacks with the Callback Service

= Common server process = Callback function registration
= Several objects reside in one process on the server; = Procedure variable.
the BOA initializes them as threads with common address space closure (procedureyvariable with arguments)
(“common appartment”) or reference to an object

= deactivate_impl, impl_is_ready, obj_is_ready

i lient2
are mapped directly to thread functions . Callback works Client Clien Server

- Separate server processes for all languages

= For every object an own process N

s v oo ¢ P = Callback reverses roles | riseEvent()

* Server-per-reques of client and server

«+ Every request generates a new process galiCallback()
= Persistent server etum()

= Here starts another application the objects (e.g., a data base).

= The BOA passes on the queries signal(

Events

= Send event objects from event suppliers to event consumers
unidirectional event channels decouple supplier and consumer

= Event obj (also called ges) are immutable once sent
= Asynchronous communication; order of events is not respected
= No return values (except with references to collector objects)

= Unicast: one receiver

= Multicast: many receivers

= Dyr ically varying r ivers
(register at channels as supplier / consumer; event type filtering)

= Works for every CORBA language

Dynamic Call (DIl, Request Broking)

= Dynamic call via the ORB's DIl (Dynamic Invocation Interface)

Services can be dynamically exchanged,
or brought into the play a posteriori

Without recompilation of clients

Slower than static invocations

= Requires introspection

= Requires descriptions of semantics of service components...
= For identification of services

* Metadata (descriptive data):
catalogs of components (interface repository, implem. repository)

= Naming service, Trading service, Property service (later)

ﬂ mediator that looks up for services: the ORB

ORB Activation

Client
object CORBA ORB

Initializes the mediator

Initializes the server BOA

s Delivers service names

Delivers object references
to server objects from service
names

CORBA Event Service

Push model:
Supplier sends event object by calling push operation on channel,
which calls pushto deliver event object to all registered consumers

Pull model:
Consumer calls pull operation on channel (polling for arriving events)
which triggers calls to pull to registered suppliers

As intermediate instances, an event channel can be allocated
= They buffer, filter, and map pull to push

Untyped generic events, or typed by IDL

Advantage:

= Asynchronous working in the Web (with IIOP and dynamic Call)

= Attachment of legacy systems
interesting for user interfaces, network computing etc.

-tage: Very general interface

Object Request Broker ORB

CORBA::ORB = For a dynamic call, the ORB must be

involved

init

object_to_string = The ORB is a mediator (design pattern)

string_to_object between client and server.

create_list

create_operation_list = Hides the the environment from clients

get_default_context

create_environment = Can talk to other ORBs,

BOA_init also on the web
(IIOP Internet Inter-ORB protocol)

= N
=3

Protocol Dynamic Call (DII)

Client Server Naming
object object Request Context OperationDef ORB
ge
resolve T
—request arguments
e —

Example

// Ship.idl
module Ship {

interface Aircraft {
string codeNumber();

k

interface AircraftCarrier {
Aircraft launch (in string name);

Source: Infowave, Building distributed applications...,
www.waveman.com/etac/corba/page13.html, 1998

Example 2: DIl Invocation in Java
Client program (1)

Il Client java

I/ Building Distributed Object Applications with CORBA
Il Infowave (Thailand) Co., Ltd.

1/ Jan 1998

public class Client {
public static void main(String(] args) {
if (args length 1= 2) {
System.out.printin("Usage: vbj Client <carrier-name> <aircraft-name\n");
return;

String carrierName = args[0];
String aircraftName = args|1];
org.omg.CORBA Object carrier = n
org.omg.CORBA Object aircraft
org.omg.CORBA.ORB orb = null;
[

ull;

ry {

orb = org.omg.CORBA.ORB.init(args, null);
}
catch (org.omg. CORBA. SystemException se) {
System.err.printin(*ORB init failure " + se);
System.exit(1);

}

Example 2
* Server Implementation, BOA version

public class Server

public static void main(String] args) {
org.omg.CORBA.ORB orb = nul;

L

ry { try {
orb = org.omg.CORBA.ORB.init(args, nul); boa.obi_is_ready(carrier);

} catch (org.omg.CORBA.SystemExcepion se)

catch (org.omg.CORBA se) { m.err. printin "
System.err.printin(*ORB init failure * + se); S stem exit(1); ‘Oblect Ready fallue * + so)
System.exit(1); v)

) ome CORBA BOA boa = nult Systam.utprintncanter+teacy fo sunch 1
try {

boa.impl_is_ready();

boa = orb.BOA_init(); } catch (org.omg.CORBA.SystemException se) {

} o " "
Latch (org omg.CORBA o Eys:e:.en‘.'s)‘n;.\ﬂni Impl Ready failure * + se);
System.er.printin(*BOA init failure * + se);) g
System.exit(1);

}
I/ Now ready to serve remote invocations on carier

Ship.AircraftCarier carrier =
new AircraftCarrierlmpl (“Nimitz");

Example 1: Dynamic Call in C++

Client program

CORBA:ORB_ptr orb;

main(int argc, char* argv[]) {
orb = CORBA::ORB_init(argc,argv, ORBID);
I/ alternative description of service
“osNaming::NamingContext_ptr naming =
CosNaming::NamingContext::_narrow(

“resolve_initial_reference(*NameService));

CORBA:Object_ptr obj;
try {

obj = naming->resolve(mk_name("dii_smpl"));
} catch (CORBA::Exception)

cerr << "not registered” << end; exit(1);}

/f Construct arguments:
CORBA:Any valt;
val <<= (CORBA:Shor) 123;
CORBA:Any val2.
val2 <<= (CORBA:Shor) 0;
CORBA:AnNy val3;

val3 <<= (CORBA::Shor) 456;

J/ Build request (short form)

CORBA:Request_ptr rq= obj->_request("op");

Jl Create argument list

rg-arguments() = orb->create_list();
rq->arguments()->add_value("arg1"vall, CORBA:ARG_IN);
rq->arguments()->add_value("arg2"val2. CORBA:ARG_OUT);
rq->arguments()->add_value("arg3"val3,CORBA:ARG_INOUT

Il Invoke request:
rq->invoke();

I/ Analyze result

CORBA:Short rsit ;

if (*(rg->result()->value() >>= rslt) {
Jl Analyze the out/inout-parameters (arg1 has index 0)
CORBA:Short _arg2, _arg3;
*(rg->arguments()->item(1)->value()) >>= _arg2;
*(rg->arguments()->item(2)->value()) >>= _arg3;
cout<<"arg2=" <<arg2 << " arg3= "<<_arg3

<<"retum=" << rslt <<endl; }

else {
cout << “result has unexpected type” << end; }

Example 2: DIl Invocation in Java

Client code (2)

{11 scope
L

ry
carrier = orb bind("IDL:Ship/AircraftCarrier:1.0", carrierName, null, null);

catch (org.omg. CORBA. SystemException se) {
System.err.printin("ORB init failure * + se);

System.exit(1);

Il Build request:

org.omg. CORBA.Request request = carrier._request("launch");
requestadd_in_arg().insert_string(aircraftName);
request set_return_type(orb.get_primitive_tc(org.omg.CORBA TCKind.tk_objref));

I/ Invoke request:
requestinvoke();
/I Read result value:

aircraft = request.result().value().extract_Object();

}
{1 scope

org.omg.CORBA.Request request = aircraft_request("codeNumber");
request set_return_type(orb.get_primitive_tc(org.omg.CORBA TCKind.tk_string))

request.invoke();

String designation = request.result().value().extract_string();
System.out printin (*Aircraft * + designation + " is coming your way");

Example 2

* Server code (Java, POA version)

7 Building Distributed Object Applications with CORBA |
/ Infowave (Thailand) Co., Ltd. http: com™~
org.omg.PortableServer.POA myPOA = null;
limport java.io.; y {
'/ import org.omg.CosNamin(myPOA = rootPOA create_POA(
“personalPOA",
public class Server rootPOA the_POAManager() ,
(new org.omg.CORBA Policy[}{
public static void main(String[] args) 100tPOA create_id_assignment_policy (
{ org.omg.PortableServer.
org.omg.CORBA.ORB orb = IdAssignmentPolicyValue.USER_ID) });
org.omg.CORBA.ORB.nit(args, null);)
catch (java.lang. Exception ex) {
org.omg.CORBA.Object objPOA = null; System.err.printin(*Create POA Exception " + ex);
try System.exit(1);
0bjPOA = orb.resolve_initial_references(
“"RootPOA"); org.omg.PortableServer.Servant carrier = null;
} y {
catch lorg .omg.CORBA.ORBPackage.InvalidName carrier = new AircraftCarrierl mpllmyPOAi.
myPOA activate_object_with
org.omg. “PoriabloServer. POA rootPOA = nul (‘Nimitz".getBytes(), wm,,.
100tPOA = (0rg.omg.PortableServer. POA) 0bjPOA; |}
catch (org.omg.CORBA.SystemException se) {...}
cateh (ora.oma CORBA UserFxcention ue) (.}

Example 2
Server code (Java, POA version) - continued

Il Write object reference to an IOR file

org.omg.CORBA. Object initRef = null;
try {
initRef = myPOA.servant_to_reference(carrier);

FileWriter output = new FileWriter("ns.ior");
output.write orb.object_to_string(initRef));
output.close();

System.out printin("Wrote IOR to file: ns.ior*);

myPOA the_POAManager() activate();
System.out printin(carrier + " ready for launch 1I*);
orb.run();

catch (java.lang Exception exb) {
System.er.printin(*Exception Last deep in here * + exb);
System.exit(1);

Example: Time Service

-

= Call provides current time

Example 2
Servant implementation (Java, POA version)

7Building Distributed Object Appiications with CORBA
/ Infowave (Thailand) Co., Ltd. http:/www.waveman.com, Sep 2000

lpublic class AircraftCarrierlmpl extends Ship.AircraftCarrierPOA

(

private org.omg. POA _rootPOA;
I/ Constructor: System.out printin(name + * on Catapult 2°);
public AircraftCarrierimpi(

org.omg.PortableServer.POA r0otPOA) { Ship.Aircraft _aircraft = nul;

_ro0tPOA = r00tPOA; try {
) _aircraft = Ship.AircraftHelper.narrow(
_rootPOA.create_reference_with_id(

public Ship.Aircraft launch (String name) { e gotByiosl),

org.omg.PortableServer.Servant aircraft arorat. L intertaces(null, nul)o));
= new Aircraftimpl(name);
try {
_rootPOA activate_object with_id(
“name".getBytes(), aircraft);

}
catch (java.lang Exception ex)

) System.err.printin(*Exception 3" + ex);
catch (java.lang.Exception ex) System.exit(1);
{

}
System.err.printin(*Exception 2 + ex); return _aircraft;

System.exit(1);
| i

(on server)
//TestTimeServer.idl
= Code to write:
= DL —mMm»
= Server
= Starts ORB };

module TestTimeServer{

interface ObjTimeServer{
string getTime();

= Initializes Service

= Gives IOR to the output
= Client

= Takes IOR

= Calls service

Time Service
The other part of the server implementation

// TimeServer_Server.java
import CORBA.*;
public class TimeServer Server{
public static void main(String[] argv) {
try {
CORBA.ORB orb = CORBA.ORB.init();

ObjTestTimeServerImpl obj =

Time Service Component
* as part of the server implementation (Java)

//TestTimeServerImpl.java
import CORBA.*;

class ObjTestTimeServerImpl
extends TestTimeServer.ObjTimeServer_Skeleton
//which is generated from IDL

//Variables
//Constructor
//Method (Service) Implementation
public String getTime() throws CORBA.SystemException
{
return “Time: “ + currentTime;

Time Service
Client Implementation

//TimeServer_Client.java
import CORBA.*;

public class TimeServer_Client{
public static void main(String[] argv) {
// pass stringified object reference as argv[0]
try {
CORBA.ORB orb = CORBA.ORB.init();

new ObjTestTimeServerImpl (..);

// print stringified object reference:
System.out .println(orb.object_to_string(obj));

}

catch (CORBA.SystemException e) {
System.err.println(e);

}

EORBA.object obj = orb.string_to_object(argv[0]); //IOR

TestTimeServer.ObjTimeServer timeServer = // downcast
TestTimeServerImpl.0bjTimeServer_var.narrow(obj);

System.out.printIn(timeServer.getTime()); // invoke

}
catch (CORBA.SystemException e) { System.err.printin(e); }

}
[z]

Time Service

* Execution

C:\> java TimeServer_ Server

IOR:00000000000122342435 ..

C:\> java TimeServer_ Client
IOR:00000000000122342435 ..

Time: 14:35:44

Beyond Dynamic Call:
*The Trader Service

= Trader mediates services,
based on published properties (“yellow page service”)

Mediator pattern

Request service IOR
functionality pattern

= Matchmaking

Export service

Modi of Service Properties

= Service properties can be qualified by modi:
= “normal” (can be modified/deleted),
= “fixed” (mandatory, cannot be deleted),
= “readonly” (cannot be modified).

= The modi of the properties form a lattice.

Fixed, readonly

/\

Mandatory readonly

~

(normal)

Available ORBs

= ~Java-based = C-based
. = ACE ORB TAO, University
BM WebSphere Washington (with trader)
= SUN NEO, Joe: own protocol.
the Java Transaction Service = Linux ORBIT (gnome)
JTS is the JOE Corba Object (also for Cygwin).

Transaction Service OTS.

. N * Linux MICO (kde 1.0 used it)
IONA Orbix: developed in

Java, i.e., ORBlets possible, = Python-based
C++, Java-applications . fnorb
= BEA WebLogic

= http://www.omg.org

Borland Visibroker
(in Netscape Communicator),
IIOP based. Also for C++. = [Szyperski CS 13.4]

free: JacORB, ILU, Jorba,

iiiiORB, openORB, JDK1.5

ORBs and Traders

= The ORB resolves operations still based on naming
(with the Naming service = “White pages”)

= The Trader service, however, resolves operations (services)
without names, only based on properties and policies
= “Yellow pages”

= The trader gets offers from servers, containing new services

Service offers for the Trader service

= Service offer (IOR, properties)
= Properties describe services
= Are used by traders to match services to queries

= Dynamic property
= Aproperty can be queried dynamically by the trader of service
= The service-object can determine the value of a dynamic property
anew
= Matching with the standard constraint language
= Boolean expressions about properties
= Numeric and string comparisons

Traders Provide Service Hopping

= If atrader does not find a
service, it can ask neighbor

Flow of the
traders properties of

= Design pattern /‘ the service query

“Chain of Responsibility” Offers with the trader

+ Graph of traders Policies that change
= Links to neighbors the values of
via TraderLink the properties during
= TraderLink filters passing on
and manipulates queries
via policies

= A distributed search E l

algorithm (also used in P2P)

Interfaces Trading Service

- Basic interfaces

= Lookup (query)

= Register (for export, retract, import of services)
= Admin (info about services)

= Link (construction of trader graph)

= How does a query look like?

= Lookup.Query(in ServicetypeName, in Constraint, in PolicySeq,
in SpecifiedProperties, in how to y, out OfferSequence,
offerlterator)

Corba 3.0

* since 1999

Provides the well-defined packaging for producing components
= Messaging
= Language mappings that avoid hand-writing of IDL
= Generating IDL from language specific type definitions
= C++2IDL, Java2IDL, ...
= XML integration (SOAP)
Quality of Service management
= Real-time and small footprint versions
= CORBA Component Model (CCM)
= similar to EJB, see later
= Scripting (CORBA script), a composition language

Modification of Queries

= P ies parameterize the behavior
of the traders and the TraderLinks

Filters, i.e., values, limiting / modifying the queries:

max_search_card: maximal cardinality for the ongoing searches

max_match_card: maximal cardinality for matchings
* max_hop_count: maximal search depth in the graph

]

cardinalities cardinalities
for search for matching L offers

= | =
Cardinalities

CORBA Trader Types

Lookup Lookup Register Lookup Register Admin
Register
Register Lookup Admin Register
Lookup Admin Lookup Admin

M X)

Link proxy
Link proxy

Corba 3.0 (cont.)

New Basic services:

= POA, the Portable Object Adapter, replaces BOA
= SFA, Server Framework Adapter

= Value objects

= Services:

= Message Service MOM:
Objects as asynchronous buffered messages

= Corba Beans-components
= Script language
= Facilities:

compound documents, Mobile Agents, BOF (business object facility)

POA
Portable Object Adapter

The POA is an evolution of the BOA LI e SO
create
Nested POAs possible, e Evaluation of CORBA
with nested name spaces dispose
= Root POA (one per server) _591—|e_xce|°"z”
started/accessed by ORB. ImpLEis-ready;
obj_is_ready
= A POA can create new POAs. change_implementation
= A POA may serve a group of objects deactivate_impl
and handle references to them. deactivate_obj

POAs can be named

= ORB maintains a registry of named as composition system
POAs, e.g. for reactivation as needed.

Policies for object management
le.g. Lifespan: transient / persistent

Evaluation: Evaluation:

* Component Model * Standardization

Mechanisms for secrets and transparency: very good = Quite good!
= Interface and Implementation repository = Services, application services
= Component language hidden (interoperability) = On the other hand, some standards are FAT
+ Life-time of service hidden = Technical vs. application specific vs business components:
* Identity of services hidden = Corba has standards for technical and application specific components

* Location hidden = ... but for business objects, standards must be extended

- (vertical facilities)
No parameterization

Many standards (see following subchapters)

Evaluation: Evaluation:
Composition Technique * Composition Language

Mechanisms for connection

= Weak
= Mechanisms for adaptation: stubs, skeletons, server adapters + CORBA scripting provides a facility to write glue code,
* Mechanisms for glueing: marshalling based on IDL but only black-box composition

Mechanisms for aspect separation
= Multiple interfaces per object
Nothing for extensions
Mechanisms for Meta-modeling
= Interface Repositories with type codes, implementation repositories
Scalability

= Connections cannot easily be exchanged
(except static local and remote call)

What Have We Learned (1)

= CORBA is big, but universal:

= The Corba-interfaces are very flexible, work and can be used in
practice

= ... but also complex and fat, may be too flexible
= If you have to connect to legacy systems, CORBA works

= CORBA has the advantage of an open standard

= Toincrease reuse and interoperability in practice,
one has to learn many standards

= Trading and dynamic call are future advanced communication
mechanisms

= CORBA was probably only the first step,
web services might be taking over

Corba Services

OMG: CORBAservices: Common Object Service Specifications.

http://www.omg.org.

OMG: CORBAfacilities: Common Object Facilities
Specifications.

Object Services

= Name service (directory service)
= Records server objects in a simple tree-like name space
= (Is a simple component system itself)
= Lifecycle service (allocation service)
= Not automatic; semantics of deallocation undefined
= Property service (feature service for objects)
= Persistency service (storing objects in data bases)
= Relationship service to build interoperable relations and graphs
= Support of standard relations: reference, containment

= Divided in standard roles: contains, containedin, references,
referenced

- Container service (collection service)

The End

-

= Appendix: advanced material on CORBA

CORBA services

CORBA facilities

CORBA and the web, ORBlets
CORBA facilities and UML profiles
Licensing for business services

Overview on Corba Services

-

= 16+ standardized service interfaces (i.e., a library)

= Standardized, but status of implementation different depending on
producer

= Object services
= Deal with features and management of objects

= Collaboration services
= Deal with collaboration, i.e., object contexts

= Business services
= Deal with business applications

= The services serve for standardization.
They are very important to increase reuse.
= Available for every language, and on distributed systems!

Collaboration Services

= Communication services

= Resemble connectors in architecture systems, but cannot be
exchanged to each other

= Event service

= push model: the components push events into the event
channel

= pull model: the components wait at the channel and empty it
= Callback service

= Concurrency service
= Distributed locks

= Object transaction service, OTS
= Flat transactions on object graphs

Business Services Dependencies Between the Services

= Trader service [zt

= Yellow Pages, localization of services

= Query service

= Search for objects with attributes and the OQL, SQL (ODMG-93)

Licenses

= Licensing service
= For application providers (application servers)

= License managers

= Security service [collctions |

= Use of SSL and other basic services

Object Services: Names Use of Names

= Binding of a name creates an object in a name space
(directory, scope, naming context).
= A name space is a container with a set of bindings of names to values.
= They can reference each other and build name graphs

System-dependent name

= The representation of a name is based on abstract syntax,
not on the concrete syntax of a operating system or URL.
= A name consists of a tuple (Identifier, Kind).

= The Identifier is the real name, the Kind tells how the name is
represented (e.g., c_source, object_code, executable, postscript,..).

= For creation of names there is a library (design pattern Abstract
Factory).

CORBA name

Naming Service Naming Service

CosNaming::NamingContext

bind (in Name n, in Object obj)
rebind (in Name n, in Object obj)
bind_context

rebind_context

mk_name(String s)

Object resolve

unbind (in Name n)
NamingContext new_context;
NamingContext bind_new_context (in Name n)
void destroy

void list (..)

_narrow()

void bind(in Name n, in Object obj)

raises(NotFound, C: i L)
void rebind(in Name n, in Object obj)

raises(NotFound, Cannotproceed, InvalidName);
void bind_context(in Name n, in NamingContext nc)

raises(NotFound, C: i ., AlreadyBound);
void rebind_context(in Name n, in NamingContext nc)

raises(NotFound, Cannotproceed, InvalidName);
Name mk_name(String s);
Object resolve(in Name n)

raises(NotFound, Cannotproceed, InvalidName);
void unbind(in Name n)

raises(NotFound, Cannotproceed, InvalidName);
NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, C i %
void destroy()

raises(NotEmpty);
void list(in unsigned long how_many, out BindingLis bl, out Bindingiterator bi);

Naming Service in IDL

interface NamingContext {
enin order to NotFoundReason { missing_node,
not_context, not_object };
exception NotFound {
NotFoundReason why;
Name rest_of_name;
¥ ModulesCosNaming {
typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;
typedef sequence <NameComponent> Name;
enin order to BindingType { nobject, ncontext J;
struct Binding {
Name binding_name;
BindingType binding_type;
typedef sequence <Binding> BindingList;
interface Bindinglterator;
interface NamingContext;

exception Cannotproceed {
NamingContext ctxt;
Name rest_of_name;

exception InvalidName {);
exception AlreadyBoand {;
exception NotEmpty {);

interface Bindinglterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingLis bl);
void destroy();

Object Services: Persistency

= Definition of a Persistent Object Identifier (PID)
= references the value of a CORBA object

(in contrast to a CORBA object)
= Interface

= connect, disconnect, store, restore, delete

= Attachment to data bases possible

Collaboration Services: Transactions

= What a dream: the Web as data base with nested transactions.

Scenarios:
= Accounts as Web-objects.

Transfers as transaction on the objects of several banks
= Parallel working on web sites: how to make consistent?

= Standard 2-phase commit protocol:

= begin_ta, rollback, commit
= Nested transactions

= begin_subtransaction, rollback_subtransaction,

commit_subtransaction

Naming Service: Example

1 From: Rediich

import java.io.*;

import java.awt.*;

import IE.lona.Orbix2. CORBA. SystemE xception; // OrbixWeb
import CosNaming.NamingContext; // name service/context
import CosNaming.NamingContext.*; // name

import Calcs.calc.complex; // type ‘complex from Calcs

class MyNaming extends CosNaming { try {
ctxt = NamingContext_narrow(MyNaming

resolve_initial_references(MyNaming.NameService));
public class client extends Frame {

private Calcs.calc.Ref calc; cf = CalcS.calc_factory._narrow(
private TextField inR, inl; ctxtresolve(MyNaming.mk_name("calcfac")));
private Button setB, addB, multB,
divB, quitB, zeroB; = new client(cf.create_new_calc());
f.pack();

public static void main(String argv[]) { f.show();

CosNaming.NamingContextRef ctxt;

CalcS calc_factory.Ref cf; catch (Exception ex) {

Frame f; System.out printin(‘Calc-5/Init." + ex.toString();

}

=== }

Object Services: Property Service

Management of lists of features (properties) for objects

= Properties are strings

= Dynamically extensible

Concept well-known as
= LISP property lists, associative arrays, Java property classes

= Iterators for properties

= Interface:

= define_property, define_properties, get_property_value,
get_properties, delete_property

CORBA Facilities
(Standards for Application Domains)

Application-domain-specific interfaces

Horizontal Facilities Vertical Facilities
* (applicable in many domains) (Domain-Specific Facilities)

The Domain technology committee (DTC) creates
= User interfaces domain task forces DTF for an application domain

Business objects
Finance/insurance
Compound documents + Currency facility
e.g. OpenDoc (since 1996 accepted as standard format. Source
code has been released of IBM. Now obsolete.)

Printing, Scripting

Electronic commerce

Manufacturing
* Product data management enablers (PDM)

Medicine (healthcare CorbaMed)
» Lexicon Query Service

= Information management

* Metadata (meta object facility, MOF) = Person Identifier Service PIDS
= Tool interchange: = Telecommunications
a text- and stream-based exchange format for UML (XMI) = Audio/visual stream control object
+ Common Warehouse Model (CWM): + Notification service
MOF-based metaschema for database applications - Transportation

Corba and the Web

= HTML solves many of the CORBA problems

= HTTP only for data transport
HTTP cannot call methods, except by CGl-gateway-functionality

é CORBA, Web and JaVa (CGI = common gateway interface)

Behind the CGl-interface is a general program, communicating with
HTTP via untyped environment variables (HACK!)

HTTP servers are simple ORBs, pages are objects
The URI/URL-name schema can be integrated into CORBA

= 1IOP becomes a standard internet protocol
= Standard ports, URL-mappings and standard-proxies for firewalls
will be available

= CORBA is an extension of HTTP of data to code

CORBA and Java Corba and the Web (Orblets)

= Java is an ideal partner for CORBA :
= Bytecode is mobile
= Applets: move calculations to clients (thin/thick client problem)
= can be used for migration of objects, ORBs, and agents
= Since 1999 direct CORBA support in JDK 1.2
= IDL-to-Java mapping, IDL compiler, Java-to-IDL compiler, = Download of an ORBlet with HTTP

name service, ORB + Talk to this ORB to get contact to server
= Corba supports for Java a distributed interoperable infrastructure

= Java imitates functionality of Corba

= Basic services:
Remote Method Invocation RMI, Java Native code Interface JNI

= Services: serialization, events

= Application-specific services (facilities):
reflection, properties of JavaBeans

ORBs can be written as bytecode applets if they are written in Java
(ORBlet)

Coupling of HTTP and IlOP:

Replaces CGl hacks!

Will be realized in web services (see later).

ORBlets

ORB

1) Fetch page

2) fetch ORBlet

3) communicate with 1P

Web-Client

ORB
Server

Business objects

Pl

data bases

Lotus Notes

Web server

