
TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Component-based Software

Introduction and overview

������ �� 	
�����
� ��� ������� ��� � �� �������

������� ����� ��� � ���! �� "#���
$# %������� ���

2

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Recommended Reading

� Szyperski: Component Software – Beyond Object-Oriented
Programming, 2nd edition. Addison-Wesley, 2002.

� Douglas McIlroy. Mass-produced software components.
http://cm.bell-labs.com/cm/cs/who/doug/components.txt
in:
P. Naur and B. Randell, "Software Engineering, Report on a
conference sponsored by the NATO Science Committee,
Garmisch, Germany, 7th to 11th October 1968", Scientific
Affairs Division, NATO, Brussels, 1969, 138-155.

3

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Motivation for Component Based
Development

� Divide-and-conquer (Alexander the Great)

� Well known in other disciplines
� Mechanical engineering (e.g., German DIN 2221); IEEE standards)
� Electrical engineering
� Architecture
� Computer architecture

� Outsourcing to component producers
(components off the shelf, COTS)

� Goal: Reuse of partial solutions

� Easy configurability of the systems
� Variants, versions, product families

4

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Mass-produced Software Components

� Garmisch 1968, NATO conference on software engineering

� McIlroy:
� Every ripe industry is based on components, since these allow to

manage large systems

� Components should be produced in masses and composed to
systems afterwards

5

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Mass-produced Software Components

 Yet this fragile analogy is belied when we seek
 for analogues of other tangible symbols of mass production.
 - There do not exist manufacturers of standard parts,
 much less catalogues of standard parts.
 - One may not order parts to individual specifications of size,
 ruggedness, speed, capacity, precision or character set.

 In the phrase `mass production techniques,' my emphasis is on
 `techniques' and not on mass production plain.
 Of course, mass production, in the sense of limitless replication
 of a prototype, is trivial for software.

 But certain ideas from industrial technique I claim are relevant.
 - The idea of subassemblies carries over directly and is well exploited.
 - The idea of interchangeable parts corresponds roughly to our term
 `modularity,' and is fitfully respected.
 - The idea of machine tools has an analogue in assembly programs
 and compilers.

6

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Mass-produced Software Components

� Later McIlroy was with Bell Labs ...
� ... and invented pipes, diff, join, echo (UNIX).
� Pipes are still today the most employed component system!

� Where are we today?

7

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Definitions of “Component”

“A software component is a unit of composition
 with contractually specified interfaces and
 explicit context dependencies only.
 A software component
 can be deployed independently and
 is subject to composition by third parties.”
 - C. Szyperski, ECOOP Workshop WCOP 1997.

�� ������	� �
����� �
��
���� �� �
	
����		� �
������� 	

��	� �
��	��
�
��	� ���� ���
��� � ����	�
���������
��
� ����� �

��

�� ������	
 �����
�� �� � ������ ����	������ ���� ������

� ��
	��	�������� 8

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Definitions of Components

MetaGroup (OpenDoc):
“Software components are defined as prefabricated,
pretested, self-contained, reusable software modules
bundles of data and procedures - that perform specific
functions.”

Sametinger:
“Reusable software components are self-contained,
clearly identifyable pieces that describe and/or perform
specific functions, have clear interfaces,
appropriate documentation, and a defined reuse status.”

9

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Definitions of Components (cont.)

� Heineman / Councill [Ch.1]:

“A software component is a software element
that conforms to a component model
and can be independently deployed and composed
without modification according to a composition standard.

A component model defines specific interaction and
composition standards.

Composition is the combination of two or more software
components yielding a new component behavior at a different level
of abstraction ... [which is] determined by the components being
combined and the way how they are combined.”

10

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Real Component Systems

� Lego

� Square stones

� Building plans

� IC‘s

� Hardware bus

� How do they differ from
software?

11

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

What is a Component? [ISC/CS]

� A component is a container with
� variation points
� extension points
� that are adapted during composition

� A component is a reusable unit for composition

� A component underlies a component model
� abstraction level
� composition time (static or runtime?)

12

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

What Is A Component-Based System?

A component-based system
has the following divide-and-conquer feature:

� A component-based system is a system in which a major

relationship between the components is
� tree-shaped
� or reducible.

� Consequence:
the entire system can be reduced to one abstract node
� at least along the structuring relationship

� Systems with layered relations (dag-like relations)
are not necessarily component-based.
� Because they cannot be reduced

13

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

What Is A Component-Based System?

� Because it is divide-and-conquer,
component-based development is attractive.

� However, we have to choose the structuring relation

� And, we have to choose the composition model

� Mainly, two sorts are known:
� Modular decomposition (blackbox)
� Separations of concerns (graybox)

14

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Component Systems
(Component Platforms)

for description of
components

for compositions of
components

Component Model Composition Technique

� We call a technology in which component-based systems can
be produced a component system or component platform.

� A component system has

15

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Software Composition Systems

Composition Language

for programming-in-the-large
and architecture

Component Model Composition Technique

� A composition system has

16

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Classical
Component Systems

Web Services

Aspect Systems View Systems

SOAP,
WSDL

Standard Components

Uniformly Interoperable
Standard Components

Aspect Separation Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85Modules as Compile-
Time Components

Software Compo-
sition Systems

.NET CORBA
Beans EJB

The Ladder of Component and
Composition Systems

Architecture Systems Architecture as Aspect Darwin, CoSy,
UNICON, BPEL

Aspect-J COMPOST

17

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Desiderata for Flexible Software
Composition

� Component Model
� How do components look like?
� Secrets, interfaces, substitutability

� Composition Technique
� How are components plugged together, composed, merged, applied?
� Composition time (Deployment, Connection, ...)

� Composition Language
� How are compositions of large systems described?
� How are system builds managed?

� Be aware: This list is NOT complete!

18

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Desiderata Component Model

� Modularity

� M1 Component secrets (information hiding)
� Location, lifetime, language
� Explicit specification of interfaces (contact points, exchange

points, binding points)
� Provided and required interfaces

� M2 Semantic substitutability (conformance, contracts)
� Syntactic substitutability (typing)

� M3 Content
� Component language metamodel

19

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Desiderata Component Model (cont.)

� Parameterization of components to their reuse context

� P1 Generic type parameters

� P2 Generic program elements

� P3 Property parameterization

� Standardization

� S1 Open standards – or proprietary ones

� S2 Standard components

� S3 Standard services

20

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Desiderata Composition Technique

� Connection and Adaptation
� C1: Automatic Component Adaptation:

adapt the component interface to another interface
� C2: Automatic Glueing: Generation of glue code for communication,

synchronization, distribution. Consists of a sequence of adaptations

� Extension
� E1: Base Class Extension: can base classes be extended?

� E1.1 Generated factories: can factories be generated
� E1.2 Generated access layers

� E2: General Views. Use-based extensions: Can a use of a
component extend the component?

� E3: Integrated Extensions. Can an extension be integrated into a
component?

21

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Desiderata Composition Technique

� Aspect separation (aspect composition)
� AS1: Aspect weaving: Extension by crosscutting aspects
� AS2: Multiple interfaces: Can a component have multiple interfaces?

� Scalability (Composition time)
� SC1: Binding time hiding
� SC2: Binding technique hiding

� Metamodelling
� MM1: Introspection and reflection (metamodel).

Can other components be introspected? The component itself?
� MM2: Metaobject protocol:

Is the semantics of the component specified reflectively?

22

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Desiderata Composition Language

� CL1: Product Consistency
� Variant cleanness: consistent configurations
� Robustness: freedom of run-time exceptions

� CL2: Software Process Support
� Build management automation

� CL3: Meta-composition
� Is the composition language component-based,

i.e., can it be composed itself?
� Reuse of architectures

� CL4: Architectural styles (composition styles)
� Constraints for the composition

23

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

The Essence of the 60s-90s:
LEGO Software

� Procedural systems
� Modular systems
� Object-oriented technology
� Component-based programming

� CORBA, EJB, DCOM, COM+, .NET

� Architecture languages

 Blackbox composition

24

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composition
recipe

Connectors

 Components

Component-based
applications

Blackbox Composition

25

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Procedure Systems

� Fortran, Algol, Pascal, C, ...

� The procedure is the static
component

� The activation record the
dynamic one

� Component model is supported
by almost all processors directly
� JumpSubroutine instruction
� Return instruction

"�����

"�����

&��'��

26

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Procedures as Composition System

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Content: binary code with symbols

Binding points: linker symbols
procedures (with parameters) and

global variables

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

27

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Modules (a la Parnas)

� Every module hides an important design decision behind a
well-defined interface which does not change when the
decision changes.

 We can attempt to define our modules “around” assumptions which
are likely to change. One then designs a module which “hides” or
contains each one.

 Such modules have rather abstract interfaces, which are
relatively unlikely to change.

28

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Modules

� Static binding of functional
interfaces to each other

� Concept has penetrated
almost all programming
languages (Modula, Ada,
Java, C++, Standard ML, C#)

(
����

(
����

&��'��

29

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Linker

Bound procedure
symbols, no
glue code

A Linker is a Composition Operator
That Composes Modules

Provided

Required

30

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Modules as Composition System

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Content: groups of procedures

Binding points: linker symbols
procedures (with parameters)
and global variables

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

31

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

UNIX Filters and Pipes [McIlroy]

� UNIX shells style still offers the most used component
paradigm:
� Communication with byte streams via standard I/O ports
� Parsing and linearizing the objects
� Extremely flexible, simple

stdinFilter

Filter

stdout

stderr

stdin

pipe

32

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Unix Filters and Pipes
as Composition System

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Content: unknown (due to parsing),
externally bytes

Binding points: stdin/out ports

Secrets: distribution, parallelism

Adaptation: filter around other
components

Filter languages such as sed, awk, perl

Binding time: static

C, shell, tcl/tk, python…

Build management language makefile

Version management with sccs rcs cvs

33

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Object-Oriented Systems

� Components: objects (runtime) and classes (compile time)
� Objects are instances of classes (modules) with unique identity

� Objects have runtime state

� Late binding of calls by search/dispatch at runtime

"�����

+�,�	

���$�	#

"�����

"�����

"�����

34

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Object-Orientation
as Composition System

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Content: binary files, objects
(code and data)

Binding points: static
(monomorphic) and
polymorphic (dynamically
dispatched) calls

Adaptation by inheritance or
delegation

Extensibility by subclassing

35

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

� An object-oriented framework is a parametric application
from which different concrete applications can be created.

� A OO-framework consists of a set of template classes which
can be parameterized by hook classes (parameter classes)

Object-Oriented Frameworks

����

�����

��	
����

�����

��	��

��	��� �����

������

��	��� �����

36

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Object-Oriented Frameworks

� Component Model
� Binding points: Hot spots to exchange the parameter classes

(sets of polymorphic methods)

� Composition Technique
� Same as OO

� Compostion language
� Same as OO

37

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Commercial Component Systems

� CORBA / DCOM / .NET / JavaBeans / EJB

� Although different on the first sight, turn out to be rather similar

Software bus

"�����

+�,�	

(����
�

"�����

-������.

38

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

CORBA
http://www.omg.org/corba

� Language independent, distribution transparent
� interface definition language IDL
� source code or binary

������
����

	�
��

���

������
�

	�� 	�������	��

����� ������� �
���
 ������ �
���
� 	�
�����

����� ������

Interface
specification
(in IDL)

generate

39

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

(D)COM, ActiveX
http://www.activex.org

� Microsoft’s model is similar to CORBA. Proprietary

� (D)COM is a binary standard

������
������

	�
��

���

������
���

��� ���
���

��������
��� ���

������
�� �� ���
!

	�
��

���

"#$
��������

����� ������

40

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Java Beans
http://www.javasoft.com

� Java only: source code / bytecode-based
� Event-based, transparent distribution by remote method

invocation (RMI – includes Java Object Serialization)

����
����

����
����

����
����

%���� "�&����� ��"

	�
��

���

"#$
��������

����� ������

41

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

DOT-NET
http://www.microsoft.com

� Language independent, distribution transparent
� NO interface definition language IDL (at least for C#)
� source code or bytecode MSIL
� Common Language Runtime CLR

������
����

	�
��

���

������
�'

(���)�$� (���)�$�(���)�$�

�$�

42

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

 CORBA/DCOM/JavaBeans/...:
Components Off-The-Shelf (COTS)

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Content: binary components

Binding points are standardized
Described by IDL,
set/get properties,
Standard interfaces (IUnknown...)

Secrets: distribution, language

Adaptation for distributed systems
(marshalling) and mixed-language
systems (IDL)

Dynamic call in CORBA

VisualBasic for COM

43

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Web Services

� Binding procedure is interpreted, not compiled
� More flexible:

� When interface changes, no recompilation and rebinding

� Ubiquitous http protocol – independent of a specific ORB

"�����

+�,�	

(����
�

"�����

-������.

�+�/

����$����
�

44

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Web Services as Composition System

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Content: not important

Binding points are described by XML

Binding procedure is interpretation of SOAP

Secrets: distribution, implementation
language

Adaptation for distributed systems
(marshalling) and mixed-language
systems

Glue: WSDL, SOAP, http

WSDL, UDDI

BPEL

45

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Connector

Port

Interface

Role

Component Model in
Architecture Systems

� Ports abstract interface
points (as in Linda)
� in(data), out(data)
� Components may be

nested

� Connectors as special
communication
components

46

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Architecture Systems

� Unicon, ACME, Darwin
� feature an Architecture Description Language (ADL)

� Split an application into:
� Application-specific part

(encapsulated in components)
� Architecture and communication

(in architectural description in ADL)

� Better reuse since both dimensions can be varied independently

47

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Architecture can be exchanged
independently of components

*�
� +

*�
� ,

*�
�*�
� ���������

���������

���������

� Reuse of components and architectures is fundamentally
improved

48

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

ACME Studio

49

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

The Composition Language: ADL

� Architectural description language, ADL
� ADL-compiler
� XML-Readers/Writers for ADL.

XADL is a new standard exchange language for ADL based on XML

� Graphic editing of systems

� Checking, analysing, simulating systems
� Dummy tests
� Deadlock checkers
� Liveness checking

50

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Architecture Systems as Composition
Systems

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Architectural language (ADL)

51

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

What the Composition Language
Offers for the Software Process

� Communication
� Client can understand the architecture graphics well
� Architecture styles classify the nature of a system in simple terms

(similar to design patterns)
� Design support

� Refinement of architectures (stepwise design, design to several levels)
� Visual and textual views to the software resp. the design

� Validation: Tools for consistency of architectures
� Are all ports bound? Do all protocols fit?
� Does the architecture corresponds to a certain style ? Or to a model

architecture?
� Parallelism features, such as deadlocks, fairness, liveness
� Dead parts of the systems

� Implementation: Generation of large parts of the implementation (the
communications- and architecture parts)

52

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

The Essence of Blackbox Composition

� 3 Problems in System construction
� Variability
� Extensibility
� Adaptation

� Blackbox composition supports variability and adaptation
� not extensibility

Composition recipe

 Components

Component-based
applications

 Connectors

53

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Classical
Component Systems

Web Services

Aspect Systems View Systems

SOAP,
WSDL

Standard Components

Uniformly Interoperable
Standard Components

Aspect Separation Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modula Ada-85Modules as Compile-
Time Components

Software Compo-
sition Systems

.NET CORBA
Beans EJB

The Ladder of Component and
Composition Systems

Architecture Systems Architecture as Aspect Darwin, CoSy,
UNICON, BPEL

Aspect-J COMPOST
Composition Filters

Hyperslices

54

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Graybox Component Models

Component integration
- Aspect oriented programming
- View-based composition

55

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Structure
Media plan

Light plan Water pipe plan

Integrated
house

Aspects in Architecture

56

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Debugging
 aspect

Persistence
aspectAlgorithm

Debugging aspect
Persistence aspect

Persistence
aspectDebugging aspect

Weaver-Tool

Debugging aspect

Aspects in Software

57

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Aspect Systems

� Aspect languages
� Every aspect in a separate language
� Domain specific
� Weaver must be built (is a compiler, much effort)

� Script-based Weavers
� The weaver interprets a specific script or aspect program
� This introduces the aspect into the core

58

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Aspect Weavers Distribute Advice
Components over Core Components

Distributor

� Aspects are crosscutting

� Hence, aspect functionality
must be distributed over the
core

Aspect

Core

59

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Aspect Systems As Composition
Systems

"
�$
��� (
��� "
�$
���
� ��	#��)��

"
�$
���
� &��*��*�

Core- and aspect
components

Aspects are relative and
crosscutting

Bindung points: join points

Adaptation and glue code by weaving

Weaving is distribution

Weaving Language

60

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composition Systems
with composition operators and expressions

� Hyperspace Programming [Ossher et al., IBM]

� Piccola [Nierstrasz, et.al., Berne]

� Metaclass composition [Forman/Danforth, Cointe]

� Invasive composition [Aßmann]

� Formal calculi
� Lambda-N calculus [Dami]
� Pi-L calculus [Lumpe]

61

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composition Systems
with composition operators and expressions

Component Model
Composition Technique

Composition Operators

Composition Language

Composition
Expressions

62

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Client Library

Client Library

Blackbox connection with glue code

Client Library

Blackbox
Composition

Invasive
Composition

Connectors are Composition Operators

Invasive Connection

63

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composers can be used for
Skeletons (Coordination functions)

coordinator

� Instead of functions or
modules, skeletons can be
defined over fragment
components

� CoSy coordination schemes
(ACE compiler component
framework www.ace.nl)
� Compose basic components

with coordinating operators

64

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

inherit

� Extension can be used for
inheritance (mixins)

A mixin is a class (i.e., a set of
features) by which a superclass
can be extended to derive a
subclass. The mixin class itself is
final, i.e., cannot be subclassed.

� Mixin-based inheritance:
� copy first superclass
� extend with fragments of

second superclass (mixin)

Composers can be used for inheritance

65

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composers Generalize
Aspect Weavers in AOP

Distributor

� Complex composers
distribute aspect fragments
over core fragments

� Distributors extend the core

� Distributors are more
complex operators, defined
from basic ones

Aspect

Core

66

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composition Languages

� Composition languages describe the structure of the
systen in-the-large (“programming in the large”)

� Composition programs combine the basic composition
operations of the composition language

� Composition languages can look quite different
� Standard languages, such as Java
� Makefiles

� Enables us to describe large systems

Composition program size 1
System size 10

67

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Conclusions for Composition Systems

� Components have a composition interface
� Composition interface is different from functional interface
� The composition is running usually before the execution of the

system
� From the composition interface, the functional interface is derived

� System composition becomes a new step in system build

68

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Steps in System Construction

� We need component models and composition systems on all
levels of system construction

System composition
(System generation)

System compilation

System deployment

System execution

69

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

� Software variation points, hooks
� Method entries/exits
� Generic parameters

 Fragment Components Have Hooks

Hooks are variation points of a component:

fragments or positions,

which are subject to change

70

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Invasive Composition

Invasive composition
 adapts and extends

components
at hooks

by transformation

71

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

The Component Model
of Invasive Composition

� The component is a fragment container (fragment box)
� a set of fragments/tag elements

� Uniform representation of
� a fragment

� a class, a package, a method
� a set of fragments

� an aspect
� a meta description
� a composition program

72

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Implicit Hooks In Software

� Given by the programming language
� Example: Method entry/exit

m () {

 abc..
 cde..

}

Method.entry

Method.exit

73

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Declared Hooks

Declarations

 Declared Hooks are declared
by the component writer as code parameters

74

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

The Composition Technique of
Invasive Composition

A composer transforms unbound to bound hooks

composer: fragment box with hooks --> fragment box with bound hooks

 Invasive Composition
 adapts and extends

components
at hooks

by transformation

MethodEntry MethodEntry

MethodExitMethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

component.findHook(“MethodEntry”).extend(“print(\”enter m\”);”);

component.findHook(“MethodExit”).extend(“print(\”exit m\”);”);

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

76

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Generic Types

<< ClassBox >>

class SimpleList {
 genericTType elem;
 SimpleList next;
 genericTType getNext() {
 return next.elem;
 }
}

T

class SimpleList {
 WorkPiece elem;
 SimpleList next;
 WorkPiece getNext() {
 return next.elem;
 }
}

<< ClassBox >>

77

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Generic Modifiers

/* @hook Modifier MY */ public print() {
 System.out.println(“Hello World”);
}

Component methodComponent = cs.createMethodBox();
 Hook modif = methodComponent.findHook(“MY”);
 if (parallelVersion) {
 modif.bind(“synchronized”);
 } else {
 modif.bind(“ ”);

synchronized public print () {
 System.out.println(“Hello World”);
}

 public print () {
 System.out.println(“Hello World”);
}

78

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Generic Statements

public print() {
 @hook Statement MY;
}

Component methodComponent = cs.createMethodBox();
 Hook statement = methodComponent.findHook(“MY”);
if (StdoutVersion) {
 statement.bind(“System.out.println(“Hello World”);”);
} else {
 statement.bind(“FileWriter.println(“no way”);”);

public print () {
 System.out.println(“Hello World”);
}

public print () {
 FileWriter.println(“no way”);
}

79

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composer

����������
���������
���

The Composition Technique of
Invasive Composition

Uniform for
declared and
implicit hooks

80

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Composition Operators

Basic operators:

� bind hook
(parameterization)
� generalized generic program

elements
� rename component,

rename hook
� remove value from hook

(unbind)
� extend

� extend in different semantic
versions

��
���

��
�

���
����

���

�	

�

+ compound operators ...

81

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Invasive Composition as
Composition System

"
�$
��� �
��� "
�$
���
� �	#��)��

"
�$
���
� ���*��*�

Source or binary components

Graybox components

Composition interfaces
with declared an implicit hooks

Controlled by composition programs

Algebra of composition operators
 (basic and compound operators)

Uniform on declared and implicit hooks

Standard Language (Java)

82

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

The COMPOsition SysTem
COMPOST

� COMPOST is a composition system for Java
� Library of static meta-programs

� Composition language Java

� Reifies concepts Components, Hooks, Composers

� Uni Karlsruhe/Uni Linköping 1998-2003

� http://www.the-compost-system.org

� Version 0.78 of 2003

� Continued at TU Dresden since 2004

� U. Assmann: Invasive Software Composition. Springer, 2003.

83

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Unification of Development Techniques

� With the uniform treatment of declared and implicit hooks,
several technologies can be unified:
� Generic programming

� Inheritance-based programming

� Connector-based programming

� View-based programming

� Aspect-based programming

84

TDDC18 Component Based Software, IDA, Linköpings universitet, 2005. - Slides by courtesy of Uwe Assmann, IDA / TU Dresden. Revised by C. Kessler, 2005.

Summary:
Component-based Systems

� ... are produced by component systems or composition systems

� ... have a central relationship that is tree-like or reducible
� ... support a component model

� ... allow for component composition with composition operators

� ... and – in the large – with composition languages

� Historically, component models and composition techniques have
been pretty different

� from compile time to run time

� Blackbox composition supports variability and adaptation

� Graybox composition also supports extensibility

