
1

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 1

Software Testing

Lecture Notes 2 (of 4)

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 2

Outline of the Lecture

• White box testing
(Glass box testing, Open box testing, Clear box testing,
Structural testing)

– Control flow testing
– Data flow testing

• Regression testing

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 3

White box testing

• logical decision
• loops
• internal data structure
• paths
• ...

Coverage!!

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 4

White-box Testing Techniques
• Definition: a strategy in which testing is based on the internal paths,

structure, and implementation of the software under test (SUT)
• Applicability: all levels of system development (path testing!)

– Unit
– Integration
– System
– Acceptance

• Disadvantages: 1) number of execution paths may be so large; 2) test
cases may not detect data sensitivity; 3) assumes that control flow is
correct (nonexistent paths!); 4) tester must have programming skills.

• Advantages: tester can be sure that every path have been identified
and tested.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 5

Control Flow Graphs

Process blocks Decision Point Junction Point

Sequence
If

While Until
Case

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 6

Definition: Given a program written in an
imperative programming language, its
program graph is a directed graph in which
nodes are statement fragments, and edges
represent flow of control (a complete
statement is a “default” statement
fragment).

2

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 7

Levels of Coverage
(test coverage metrics)

1. Statement (Line) coverage
2. Decision (Branch) coverage
3. Condition coverage
4. Decision/Condition coverage
5. Multiple Condition coverage
6. Loop coverage
7. Path coverage

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 8

Statement Coverage
Begin
if (y >= 0)

then y = 0;
abs = y;
end;

begin

y >= 0

y = 0

abs = y

yes

test case-1(yes):
input: y = ?
expected result: ?
actual result: ?

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 9

Statement Coverage
Begin
if (y >= 0)

then y = 0;
abs = y;
end;

begin

y >= 0

y = 0

abs = y

yes

test case- (yes):
input: y = 0
expected result: 0
actual result: 0

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 10

Branch Coverage
begin

y >= 0

y = 0

abs = y

yes

no

test case-1(yes):
input: y = 0
expected result: 0
actual result: 0

test case-2 (no) :
input: y = ?
expected result: ?
actual result: ?

Begin
if (y >= 0)

then y = 0;
abs = y;
end;

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 11

Branch Coverage
begin

y >= 0

y = 0

abs = y

yes

no

test case-1(yes):
input: y = 0
expected result: 0
actual result: 0

test case-2 (no) :
input: y = -5
expected result: 5
actual result: -5

Begin
if (y >= 0)

then y = 0;
abs = y;
end;

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 12

Condition Coverage

Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

test case-1(T,F):
input: x = ?, y = ?
expected result: ?
actual result: ?

test case-2 (F;T):
input: x = ?, y = ?
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no x<10
&&
y>20

3

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 13

Condition Coverage

Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

test case- (T,F):
input: x = -4, y = 12
expected result: ?
actual result: ?

test case-2 (F,T):
input: x = 12, y = 30
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no x<10
&&
y>20

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 14

Decision/Condition Coverage

Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

test case-1 (T,T,yes):
input: x = ?, y = ?
expected result: ?
actual result: ?

test case-2 (F,F,no):
input: x = ?, y = ?
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no x<10
&&
y>20

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 15

Decision/Condition Coverage

Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

test case-1 (T,T,yes):
input: x = -4, y = 30
expected result: ?
actual result: ?

test case-2 (F,F,no):
input: x = 12, y = 12
expected result: ?
actual result: ?

z=foo (x,y)

yes

z=fie (x,y)

no x<10
&&
y>20

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 16

Multiple Condition Coverage

Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

x < ? y > ?

test-case-1: t t
test-case:2 t f
test-case-3: f t
test-case-4 f f

x < 10

z=foo (x,y)
yes

y > 20

z=fie (x,y)

yesno

no

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 17

Multiple Condition Coverage
Begin
if (x < 10 && y > 20) {
z = foo (x,y); else z =fie (x,y);
}
end;

x < 10 y > 20

test-case-1: t t
test-case:2 t f
test-case-3: f t
test-case-4 f f

x < 10

z=foo (x,y)
yes

y > 20

z=fie (x,y)

yesno

no

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 18

Loop Coverage

C

first

last

A

B

D

C

first

last

A

B

D

Concatenated Nested Knotted (horrible)/
Unstructured

C

first

last

A

B

D

C

first

last

A

B

D

Simple

4

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 19

Loop Coverage
• Simple loops :

– Skip the loop entirely
– Only one pass through the loop
– Two passes through the loop
– m passes through the loop when m < n

m: small number representing a typical loop value
n: maximum number of allowable passes through the loop

– n-1, n, n+1 passes through the loop

• Nested loops:
– Start at the innermost loop, set all other loops to minimum value.
– Conduct Simple loop test for innermost loop. Add other tests for

out-of-range or excluded values.
– Continue until all loops have been tested.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 20

Loop Coverage

• Concatenated loops :
– If each of the loops is independent of the other, use

Simple loops approach
– If the loops are concatenated and dependent (counter

for loop 1 is used as the initial value for loop 2) then
use Nested loop approach.

• Knotted (horrible) /unstructured loops:
– Whenever possible, this class of loops should be

redesigned to reflect the use of the structured
programming constructs.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 21

Path with loops

a

b c
d

e
a

? ?

e

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 22

Path with loops

a

b c
d

e a

c,b,d d

e

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 23

Path Coverage

• All possible execution paths

• Question: How do we know how many
paths to look for?

• Answer: The computation of cyclomatic
complexity

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 24

Cyclomatic Complexity

Cyclomatic Complexity is a software metric that
provides a quantitative measure of the logical
complexity of a program. When used in context of
the basis path testing method, the value computed
for cyclomatic complexity defines the number of
independent paths in the basis set of a program
and provides us with an upper bound for the
number of tests that must be conducted to ensure
that all statements have been executed at least
once.

5

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 25

Computation of cyclomatic complexity
Cyclomatic complexity has a foundation in graph theory
and is computed in the following ways:

1. Cyclomatic complexity V(G), for a flow graph, G, is
defined as:

V(G) = E – N + 2
E: number of edges
N: number of nodes

2. Cyclomatic complexity V(G), for a flow graph, G, with
only binary decisions, is defined as:

V(G) = P + 1
P: number of binary decision

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 26

1. V(G) = E – N + 2

E = ?
N = ?
V(G) = ?

2. V(G) = P + 1

P = ?
V(G) = ?

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 27

1. V(G) = E – N + 2

E = 24
N = 19
V(G) = 24 – 19 + 2 = 7

2. V(G) = P + 1

P = 6
V(G) = 6 +1 = 7

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 28

Independent Paths

An independent path is any path through
the program that introduces at least one new
set of processing statements or a new
condition. When stated in terms of a flow
graph, an independent path must move
along at least one edge that has not been
traversed before the path is defined.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 29

Basis Path Testing
• Derive the control flow graph from the software module.

• Compute the graph’s Cyclomatic Complexity of the
resultant flow graph.

• Determine a basis set of linearly independent paths.

• Create a test case for each basis path.

• Execute these tests.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 30

Determine a basis set of linearly independent paths
McCabe’s baseline method

1. Pick a “baseline” path. This path should be a “normal
case” program execution. McCabe advises: choose a
path with as many decision as possible.

2. To choose the next path, change the outcome of the first
decision along the baseline path while keeping the
maximum number of other decisions the same as the
baseline path.

3. To generate the third path, begin again with the baseline
but vary the second decision rather than the first.

4. Repeat the 3 for other paths until all decision along
baseline path have been flipped.

5. Now proceed to the second path, flipping its decisions,
one by one until the basis path set is completed.

6

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 31

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

Path-1 Path-2

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

1:a decision

2:a decision

3:e decision

4:e decision

5:decision

6:e decision

ABDEGKMQS ACDEGKMQS

1:a decision

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 32

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

Path-1 Path-3

ACDEGKMQS ABDFILORS

2:e decision

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 33

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

Path-1 Path-4

ABDEHKMQSABDEGKMQS

3:e decision

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 34

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

Path-1 Path-5

ABDEGKMQS ABDEGKNQS

4:e decision

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 35

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

Path-2 Path-6

ACDEGKMQS

5:e decision

ACDFJLORS

5:e decision

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 36

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

Path-2 Path-7

6:e decision

ACDEGKMQS ACDFILPRS

7

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 37

S

D

A

B C

F

I J

R

L

O P

E

G H

Q

K

M N

Set of basis paths:
1. ABDEGKMQS

2. ACDEGKMQS

3. ABDFILORS

4. ABDEHKMQS

5. ABDEGKNQS

6. ACDFJLORS

7. ACDFILPRS

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 38

Observation

• Basis path testing calls for the creation of a test
case for each of these paths.

• This set of test cases will guarantee both statement
and branch coverage.

• Note that multiple sets of basis paths can be
created that are not necessarily unique. Each set,
however, has the property that a set of test cases
based on it will execute every statement and every
branch.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 39

Guidelines
• Program with high cyclomatic complexity require more testing.

• Of the organizations that use the cyclomatic complexity metric, most
set some guideline for maximum acceptable complexity; V(G) =10 is a
common choice.

• What happens if a unit has higher complexity?

– Either simplify the unit
– Or plan to do more testing

• In general, when a program is well structured (i.e., composed solely of
the structured programming constructs), it can be reduced to a graph
with one path.

• If the unit is well structured, its essential complexity is 1

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 40

Structured programming constructs

Sequence

Case

Pre-test Loop Post-test Loop

If-Then If-Then-Else

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 41

Condensing with respect to the structured programming constructs

Triangle Program

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 42

Condensing with respect to the structured programming constructs (cont.)

8

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 43

Condensing with respect to the structured programming constructs (cont.)

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 44

Violations of structured programming

Branching into a loop

Branching out of a decision

Branching out of a loop

Branching into a decision

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 45

Applicability and Limitation
• Control flow testing is the cornerstone of unit testing. It

should be used for all modules of code that cannot be
tested sufficiently through reviews and inspections.

• Its limitation are that the tester must have sufficient
programming skill to understand the code and its control
flow.

• Control flow testing can be very time consuming because
of all modules and basic paths that comprise a system.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 46

Data Flow Testing

Data flow testing focuses on the points at
which variables receive values and the
points at which these values are used (or
referenced). It detects improper use of data
values due to coding errors.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 47

Define/Reference Anomalies

• Early data flow analyses often centered on a
set of faults that are known as define/reference
anomalies.
– A variable that is defined but never used

(referenced)
– A variable that is used but never defined
– A variable that is defined twice before it is used

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 48

• dd: defined and defined again – not invalid but
suspicious

• du: defined and used – perfectly correct
• dk: defined and then killed – not invalid but

probably a programming error
• ud: used and defined – acceptable
• uu: used and used again – acceptable
• uk: used and killed – acceptable
• kd: killed and defined – acceptable
• ku: killed and used – a serious defect
• kk: killed and killed – probably a programming

error.

9

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 49

Definition: Given a program (P) written in
an imperative programming language, its
program graph (G) is a directed graph in
which nodes (N) are statement fragments,
and edges (E) represent flow of control. In
addition it details the definition, use and
destruction of each of the module’s
variable.

Data flow Graph G(P) = (N, E)

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 50

Definitions

• DEF(v, n): node n in G(P) is a defining node of
variable v in V, iff the value of variable v is
defined at the statement fragment corresponding to
node n.

• USE(v, n): node n in G(P) is a usage node of
variable v in V, iff the value of variable v is used at
the statement fragment corresponding to node n.
– P-use, C-use: a usage node USE(v, n) is a predicate use

(P-use) iff statement n is a predicate statement;
otherwise, USE(v, n) is computation use (C-use).

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 51

Definitions (cont.)

• du-path: a definition-use path (du-path) with
respect to variable v is a path in PATHS(P) such
that, for some v in V, there are defined and usage
nodes DEF(v, m) and USE(v, n) such that m and n
are initial and final nodes of the path.

• dc-path: a definition-clear path with respect to a
variable v is a du-path with initial and final node
such that no other node in the path is defining
node of v.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 52

Data Flow Graphs
define x

use y
kill z

kill z
use x
define z

kill y
define z

define y
use z

define x
use x
use z

use y
use z

define x

use x
define x
use x

Variable x:

~define: correct
define-define: suspicious,
programming error
define-use: correct

Control flow graph annotated with define-use-kill information for x, y, z

• ~d: the variable does not exist, then it is defined
• ~u: the variable does not exist, then it is used
• ~k: the variable does not exist, then it is killed

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 53

Variable y Variable z

Total: 6 problem!

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 54

use y

kill y

define y

use y

kill z

kill z
define z

define z

use z

use z

use z

Variable y Variable z
Variable y:
~use: major blunder
use-define: acceptable
define-use: correct
use-kill: acceptable
define-kill: probable programming error

Variable z
~kill: programming error
kill-use: major blunder
use-use: correct
use-define: acceptable
kill-kill: probable

programming error
kill-define: acceptable
define-use: correct

Total: 6 problem!

10

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 55

All-Paths

All-DU-Paths

All-Uses

All-Defs

All P-Uses/some C-UsesAll C-Uses/some P-Uses

All-P-Uses

All-Edges

All-Nodes

Hierarchy of data flow coverage metrics

Branch

Statement

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 56

Slice-Based Testing

Program slice S(V, n): given a program P and a
set V of variables in P, a slice on the variable set V
at statement n is the set of all statements in P that
contribute to the values of variables in V.

The idea of slices is to separate a program into
components that have some useful (functional)
meaning.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 57

Program slice on variable i

1 s = 0;
2 i = 1;
3 while (i <= n)

{
4 s + = i;
5 i ++

}
6 print (s);
7 print (i);
8 print (n);

2 i = 1;
3 while (i <= n)

{
5 i ++

}
7 print (i);

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 58

• Program slices give us very precise ways to
describe parts of a program that we would like to
test.

• Obs: good testing practices lead to better
programming practices:
– developing programs in terms of compilable slices,
– coding and testing one slice
– coding and testing other slices and merging them into a

solid program.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 59

Applicability and Limitations
(data-flow testing)

• It should be used for all modules of code that
cannot be tested sufficiently through reviews and
inspections.

• Tester must have sufficient programming skill

• Can be very time consuming

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 60

Regression testing
• Regression testing is the activity that helps to

ensure that changes (due to testing or for other
reasons) do not introduce unintended behavior or
additional errors.

• Regression testing may be conducted:
– manually, by re-executing a subset of all test cases
– using automated capture/playback tools

11

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 61

Regression test
• A regression test is a test applied to a new version or

release to verify that it still performs the same functions in
the same manner as an old version or release.

• The regression test suite (the subset of tests to be executed)
contains three different classes of test cases:
– A representative sample of tests that will exercise all software

functions.
– Additional tests that focus on software functions that are likely to

be affected by the change.
– Tests that focus on the software components that have been

changed.

Obs: it is impractical and inefficient to re-execute every test for every
program function once a change has been occurred.

